Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Módulo Frações, o Primeiro Contato. 6 o ano/e.f."

Transcrição

1 Módulo Frações, o Primeiro Contato Frações e suas Operações. o ano/e.f.

2 Frações, o Primeiro Contato Frações e suas Operações. Exercícios Introdutórios Exercício. Simplifique as frações abaixo até obter uma fração irredutível. a) 0 0. b) 0.. d) 0. e). f) 00. g). h) 0. Exercício. Resolva as seguintes operações fracionárias, simplificando o resultado até obter uma fração irredutível, quando for possível. a) +. b). +. d). e). f). Exercícios de Fixação Exercício. Qual a fração equivalente a, cujo denomi- 9 nador é? Exercício. Um tanque de um combustível, com capacidade de litros, inicialmente vazio, é abastecido. Determine a quantidade de litros utilizados se a fração solicitada pelo motorista foi: a). b).. d). Exercício. Encontre uma fração equivalente a, sabendo que a soma do numerador com o denominador é. Exercício. Alberto e Beto estão comendo uma pizza. Se Alberto já comeu e Beto,, qual a fração que sobrou desta pizza? Exercício. A rodovia que liga duas cidades, Campina da Lagoa e Juranda, está sendo refermada. Se já foi reformada e ainda faltam 0km, qual o comprimento desta rodovia? Exercício. mistos,,,. Escreva em ordem crescente os números Exercício 9. Utilize corretamente os sinais de >, < ou =, para comparar as frações seguintes. a) e. b) e. e. d) e. Exercício 0. Nelson e Nilson herdaram um terreno de maneira que do terreno ficou com Nelson e os 0m restantes ficaram com Nilson. Determine a área total do terreno. Exercício. Um retângulo tem largura igual a do perímetro. Se o perímetro desse retângulo é 0cm, determine a medida do seu comprimento. Exercício. Alan já leu do segundo volume de Game of Thrones. Se essa obra tem 9 páginas, quantas páginas ainda faltam para Alan terminar o livro? Exercício. Luísa tomou de um refrigerante de 00 mililitros. Seu irmão, Luiz, tomou do que havia sobrado. Qual a quantidade de refrigerante que ainda resta na garrafa?

3 Exercício. a) 9. b). d). +. Resolva as seguintes expressões. Exercícios de Aprofundamento e de Exames Exercício. Uma geladeira foi comprada de maneira que do valor foi pago à vista. O restante do valor deve ser pago em 0 prestações iguais. Qual a fração, em relação ao total, de cada parcela? Exercício. Um ônibus transporta estudantes, baianos e mineiros, para um encontro de participantes da OBMEP. Entre os baianos, são homens e, entre os minei- ros, são mulheres. Entre todos os estudantes quantas são as mulheres? a). b).. d). e). Exercício. Ângela tem uma caneca com capacidade para litro de água. Que fração dessa caneca ela encherá com litro de água? a). b).. d). e). Exercício. João fez uma viagem de ida e volta entre Pirajuba e Quixajuba em seu carro, que pode rodar com álcool e com gasolina. Na ida, apenas com álcool no tanque, seu carro fez km por litro e na volta, apenas com gasolina no tanque, fez km por litro. No total, João gastou litros de combustível nessa viagem. Qual é a distância entre Pirajuba e Quixajuba? a) 0km. b) 9km. 0km. d) 0km. e) 0km. Exercício 9. Em uma escola, das meninas usam um único brinco; das meninas restantes, metade usa dois brincos e a outra metade não usa brincos. O número de brincos usados pelas meninas é: a) igual ao número de meninas. b) o dobro do número de meninas. a metade do número de meninas. d) dois terços do número de meninas. e) um terço do número de meninas. Exercício 0. Os gatos Mate e Tica estão dormindo no sofá. Mate chegou antes e quando Tica chegou, ela ocupou um quarto da superfície que havia sobrado do sofá. Os dois juntos ocupam exatamente a metade da superfície do sofá. Qual parte da superfície do sofá está ocupada por Tica? a). b).. d). e). Exercício. Chapeuzinho vermelho saiu de casa com uma cesta de ovos para sua vovozinha. No caminho encontrou o lobinho, a quem deu metade dos ovos e mais meio ovo. Depois encontrou o lobo, a quem deu igualmente metade dos ovos que ainda tinha e mais meio ovo. Logo

4 depois encontrou o lobão, a quem deu igualmente metade dos ovos que tinha e mais meio ovo. Finalmente chegou à casa da vovó, a quem deu metade dos ovos que ainda lhe restavam e mais meio ovo, ficando sem nenhum. Quantos ovos havia na cesta quando chapeuzinho vermelho saiu de casa? a). b).. d) 9. e). Exercício. Qual das alternativas abaixo apresenta uma expressão numérica cujo resultado é mais próximo de? a) + 0. b).. a) km. b) 0km. 0km. d) km. e) km. Exercício. Alan, José e Paulo resolveram sair para comer uma pizza. A pizza foi dividida em pedaços iguais. José comeu pedaços, Paulo comeu pedaços e Alan comeu pedaços. A fração que representa a quantidade de pizza que sobrou é: a). b).. d). e). d). e) +. Exercício. Ester comprou adubo para preparar a terra e plantar flores no jardim de sua casa nova, mas o adubo acabou antes que fosse possível preparar todo o jardim, por isso somente do jardim recebeu adubo. As flores não nasceram em apenas da parte do jardim que não foi adubado. Qual alternativa representa a fração do jardim na qual as flores não nasceram? a). b). d) e)... Exercício. Um eleitor que mora no interior percorreu km para não deixar de votar. Os três quartos iniciais do percurso foram feitos de trem e o restante a pé. Quantos quilômetros ele percorreu de trem?

5 . Respostas e Soluções. a) Como o MDC(0, 0) = 0, basta dividir numerador e denominador por 0. Temos então 0 0 =. b) Como o MDC(, 0) =, basta dividir numerador e denominador por. Temos então 0 =. Como o MDC(, ) =, basta dividir numerador e denominador por. Temos então =. d) Como o MDC(, 0) =, basta dividir numerador e denominador por. Temos então 0 =. e) Como o MDC(, ) =, basta dividir numerador e denominador por. Temos então =. f) Como o MDC(00, ) =, basta dividir numerador e denominador por. Temos então 00 =. g) Como o MDC(, ) =, basta dividir numerador e denominador por. Temos então =. h) Como o MDC(, 0) =, basta dividir numerador e denominador por. Temos então 0 = 9.. a) + = + =. b) = = =. + = + d) = =. e) =. = = =. f) = = =.. Como é o triplo de 9, precisamos ter o triplo do numerador também, ou seja, =. Assim, a fração é.. a) = litros. b) = litros. = litros. d) = litros.. Devemos encontrar um número que, multiplicandoo pelo numerador e pelo denominador, obtemos dois números cuja soma é. Como esse número é, a fração equivalente é 0.. Eles já comeram + = = da pizza. O que sobrou foi = = da pizza, ou seja, metade.. Se da pista já foi reformada, então falta = =. Para encontrarmos o comprimento total da pista, basta fazermos o inverso de de 0km, ou seja, o comprimento total da pista é 0 = 0Km.. Inicialmente vamos fazer a transformação dos números mistos em frações. Ficamos com + =, + =, + =, + =. Escrevendo em ordem crescente, temos < < <, ou seja, < < <. 9. É conveniente utilizar frações equivalentes com o mesmo denominador. a) = e =, ou seja, <. b) =. = = 0 e = = 0, ou seja, <. d) =, ou seja, >.

6 0. Se Nelson herdou, coube a Nilson =, que é equivalente à 0m. Para o cálculo da área total do terreno, basta calcular o inverso de de 0, ou seja, 0 = 0m. = =.. Como a largura é um e para o cálculo do perímetro precisamos de duas medidas da largura, temos 0 = 0cm. Sobraram 0 0 = 90cm. Como também são duas medidas do comprimento para o cálculo do perímetro, a medida do comprimento do retângulo é 90 = cm. d) + = + = Se Alan leu do livro, então ainda falta = =. Como o livro tem 9 páginas, a quantidade de páginas que falta é 9 = = 0.. Se Luísa tomou, resta na garrafa =. Como Luiz tomou do que havia sobrado, então ele tomou =, que é equivalente a 00 = 00 mililitros. Mas Luísa havia tomado 00 = 00 mililitros, ou seja, restam ainda 00 mililitros.. a) 9 = 9 = = 9 =. = + 9 =.. Se já foi pago do valor total, ainda resta. Como o restante deve ser dividido em 0 prestações iguais, cada prestação será 0 = 0 = do valor total. 0. (Extraído da OBMEP) Como do número de alunos baianos é um número inteiro e é uma fração irredutível, concluímos que o número de baianos é múltiplo de. Do mesmo modo concluímos que o número de mineiros é múltiplo de. Os múltiplos de menores que são, 0,, 0, e 0 e os múltiplos de menores que são,,, (não foi incluído o 0 pois o enunciado diz que há tanto baianos como mineiros no ônibus). Como é a soma do número de baianos com o número de mineiros, a única possibilidade é que o ônibus tenha 0 baianos e mineiros. Como do número de alunos baianos é de homens, segue que = é de mulheres. Logo o b) = = = total de mulheres no ônibus é 0 + = + 9 =. Resposta C.. (Extraído da OBMEP 0) Como litro de água enche uma caneca, segue que = litros de água enchem = canecas. Logo, = litro de água =. encherá = de uma caneca. Resposta C.

7 . (Extraído da OBMEP 0) Vamos chamar de D a distância entre Pirajuba e Quixajuba. Qualquer que seja o combustível utilizado, temos D = litros consumidos x quilômetros por litro. Isso mostra que as grandezas litros consumidos e quilômetros por litro são inversamente proporcionais (pois seu produto é constante). Desse modo, temos que a fração que representa o consumo na ida em relação ao consumo na volta é =. Basta agora achar uma fração equivalente a na qual a soma do numerador 0 com o denominador seja, ou seja,. Assim, João gastou 0 litros de álcool na ida e litros de gasolina na volta. Logo, a distância entre as cidades é 0 = = 0km. Resposta C. 9. (Extraído da OBMEP 0) Se cada menina que usa dois brincos desse um de seus brincos para uma menina que não usa brincos, sem que nenhuma menina ganhasse dois brincos, todas as meninas ficariam com um brinco cada. Logo o número de brincos é igual ao número de meninas. Resposta A.. (Extraído do Concurso do Colégio Militar de Curitiba - 0) Se do jardim foi adubado, então = do jardim não foi adubado. Destes, não nasceram flores em, ou seja, = do jardim. Resposta C.. (Extraído do Concurso do Colégio Militar de Curitiba - 0) Como três quartos foram feitos de trem, ele percorreu = = km de trem. Resposta D.. (Extraído do Concurso do Colégio Militar de Curitiba - 0) Como foram comidos + + = 9 pedaços, sobraram 9 = pedaços de um total de, ou seja, =. Resposta E. 0. (Extraído da OBM 0) Se Tica ocupou do que havia sobrado, então sobrou do que havia sobrado. Dividindo o espaço que sobrou quando Mate chegou em quatro partes, Tica ocupou uma e ficaram vazias as outras três partes, que equivalem à metade do sofá, ou seja, dividindo todo o sofá em seis partes, três ficaram vazias, Tica ocupou uma e Mate ocupou duas. Assim, Tica ocupou do sofá. Resposta C.. (Extraído do Concurso do Colégio Militar de Salvador - 0) Vamos usar a história ao contrário para resolver este problema. Como ela deu ao lobão metade do que tinha mais meio ovo e ficou sem nada, é porque ela tinha apenas ovo; como ela deu ao lobo metade do que tinha mais meio ovo e ficou com ovo, é porque ela tinha ovos; como ela deu ao lobinho metade do que tinha mais meio ovo e ficou com ovos, é porque ela tinha ovos. Resposta E.. (Extraído do Concurso do Colégio Militar de Curitiba - 0) Como todos os resultados são expressões donde subtrai-se, de, uma fração, a expressão mais próxima de é a que possuir a menor fração (somando ou subtraindo de ). Agora, vamos encontrar frações equivalentes às dadas nas alternativas, igualando todos os seus denominadores. Como mmc(0,,,, ) = 0, então podemos escrever cada fração com 0 no seu denominador. 0 = 0 ; = 0 ; = 0 ; = 0 0 ; e = 0 0. Portanto, o resultado mais próximo de é +. Resposta A. 0 Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

FRAÇÕES DE UMA QUANTIDADE

FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE PREPARANDO O BOLO DICAS Helena comprou 4 ovos. Ela precisa de dessa quantidade para fazer o bolo de aniversário de Mariana. De quantos ovos Helena vai

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

Quando dividimos uma grandeza em um número inteiro de partes iguais, cada uma destas partes é dita ser uma alíquota da grandeza dada.

Quando dividimos uma grandeza em um número inteiro de partes iguais, cada uma destas partes é dita ser uma alíquota da grandeza dada. 6. FRAÇÕES ORDINÁRIAS 1). A ideia de alíquota 2). A ideia de fração 3). Frações de grandezas contínuas e de grandezas discretas 4). O tipo mais importante de frações discretas: as frações ordinárias 5).

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { }

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { } CURSO: ASTRONOMIA APLICADA À NAVEGAÇÃO PROFESSOR: ALEXANDRE RIBEIRO ANDRADE MÓDULO 1: MATEMÁTICA APLICADA NA ASTRONOMIA NÁUTICA Apostila 1: Sistema de Unidades utilizadas na Navegação e na Astronomia,

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 - (PUCSP) Um mapa está na escala de 1 para 20.000.Qual o valor real de uma distância representada no mapa por um segmento de 5cm? a) 100m b) 250m c) 1Km d)

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. a Lista de Exercícios (L0) Queridos alunos, chegamos à nossa última lista de exercícios! Nesta lista vocês trabalharão com razão, proporção e regra de três. Façam

Leia mais

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO CADERNO DE REVISÃO-2011 Matemática Aluno (a) 5º ANO Caderno de revisão FICHA 1 COORDENADORIA DE EDUCAÇÃO examesqueiros Os Números gloriabrindes.com.br noticias.terra.com.br cidadesaopaulo.olx... displaypaineis.com.br

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 7 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 7 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO EM 0 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 Como prêmio de final de ano, o dono de uma loja quer dividir uma

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 25 DE OUTUBRO DE 2003 DURAÇÃO: 120 MINUTOS CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE

Leia mais

Livro de álgebra para ensino fundamental 2 ( 6º ao 9º ano)

Livro de álgebra para ensino fundamental 2 ( 6º ao 9º ano) O ALGEBRISTA Autor: Laércio Vasconcelos www.laercio.com.br Livro de álgebra para ensino fundamental ( º ao º ano) Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) Pré-IME, Pré-ITA,

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Nível 1 IV FAPMAT 28/10/2007

Nível 1 IV FAPMAT 28/10/2007 1 Nível 1 IV FAPMAT 28/10/2007 1. Sabendo que o triângulo ABC é isósceles, calcule o perímetro do triângulo DEF. a ) 17,5 cm b ) 25 cm c ) 27,5 cm d ) 16,5 cm e ) 75 cm 2. Em viagem à Argentina, em julho

Leia mais

DISCURSIVAS SÉRIE AULA AULA 01

DISCURSIVAS SÉRIE AULA AULA 01 ANÁLISE MATEMÁTICA BÁSICA DISCURSIVAS SÉRIE AULA AULA 01 H40120M 4800 35 M120 1200M) H80 M MATEMÁTICA V M H 1) (Unicamp SP) M120H 50 A média aritmética das idades de um grupo de 120 pessoas é de 40 anos.

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Matemática, Raciocínio Lógico e suas Tecnologias

Matemática, Raciocínio Lógico e suas Tecnologias Matemática, Raciocínio Lógico e suas Tecnologias 21. (UFAL 2008) Uma copiadora pratica os preços expressos na tabela a seguir: Número de cópias Preço unitário (em reais) 1 a 10 0,20 11 a 50 0,15 51 a 200

Leia mais

Lista de Exercícios - Potenciação

Lista de Exercícios - Potenciação Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 14 - Potenciação ou Exponenciação - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=20lm2lx6r0g Gabaritos

Leia mais

Álgebra. SeM MiSTéRio

Álgebra. SeM MiSTéRio Álgebra SeM MiSTéRio Série SeM MiSTéRio Alemão Sem Mistério Álgebra Sem Mistério Cálculo Sem Mistério Conversação em Alemão Sem Mistério Conversação em Espanhol Sem Mistério Conversação em Francês Sem

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Equacionando problemas

Equacionando problemas Reforço escolar M ate mática Equacionando problemas Dinâmica 2 1º Série 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Algébrico Simbólico Função polinomial do 1 grau Aluno

Leia mais

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matemática Grandezas diretamente proporcionais A definição de grandeza está associada a tudo aquilo que pode ser medido ou contado. Como

Leia mais

(c) 2a = b. (c) {10,..., 29}

(c) 2a = b. (c) {10,..., 29} 11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação

Leia mais

material, porque seus 4 m de comprimento tornam-se desprezíveis se comparados aos 20000 m de percurso. Ponto Material

material, porque seus 4 m de comprimento tornam-se desprezíveis se comparados aos 20000 m de percurso. Ponto Material Estudante: 9º Ano/Turma: Data / /2014 Educadora: Daiana Araújo C.Curricular: Ciências Naturais/ Física A Mecânica é o ramo da Física que tem por finalidade o estudo do movimento e do repouso. É dividida

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L10) a Colocarei aqui algumas explicações e exemplos de exercícios para que você possa fazer todos com segurança e tranquilidade, no entanto,

Leia mais

Multiplicação. Divisão 1/15. Exercícios de fixação para 7º anos

Multiplicação. Divisão 1/15. Exercícios de fixação para 7º anos Exercícios de fixação para 7º anos As frações possuem o objetivo de representar partes de um inteiro, por exemplo, uma barra de chocolate foi dividida em doze partes, as quais nove foram servidas aos convidados

Leia mais

NÍVEL 1 1º TREINAMENTO: CEMJ

NÍVEL 1 1º TREINAMENTO: CEMJ NÍVEL 1 1º TREINAMENTO: CEMJ 1- Benjamim passava pela praça de Quixajuba, quando viu o relógio da praça pelo espelho da bicicleta, como na figura. Que horas o relógio estava marcando? A)5h15min B)5h45min

Leia mais

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F.

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios.

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4 AULA 0 REGRA DE TRÊS. Sabendo-se que y z 8 e que / y/ z/, calcule. Se / y/ z/, temos: y z, como desejamos saber o valor de, vamos isolar: y em função de : y y y z em função de : z z z z Agora que conhecemos

Leia mais

Prof. Msc. Edmundo Tork Matemática Básica. + % a b

Prof. Msc. Edmundo Tork Matemática Básica. + % a b Prof. Msc. Edmundo Tork Matemática Básica π n x α φ + % a b χ β Sumário Números Inteiros... 0 Números Naturais... 0 Operações Fundamentais com Números Naturais... 0 Exercícios... 0 Mínimo Múltiplo Comum...

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

Nível 3 IV FAPMAT 28/10/2007

Nível 3 IV FAPMAT 28/10/2007 1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (ENEM) Para construir um contrapiso, é comum, na constituição do

Leia mais

Colégio de Aplicação. Universidade Federal do Rio de Janeiro. são. 1 a série ensino médio. Matemática

Colégio de Aplicação. Universidade Federal do Rio de Janeiro. são. 1 a série ensino médio. Matemática Colégio de Aplicação Universidade Federal do Rio de Janeiro Admissão são 2004 1 a série ensino médio Matemática ADMISSÃO2004 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

a) ( ) 1200 b) ( ) 1800 c) ( ) 2700 d) ( ) 3600 e) ( ) 4500

a) ( ) 1200 b) ( ) 1800 c) ( ) 2700 d) ( ) 3600 e) ( ) 4500 01) A figura abaixo, é formada por um triângulo e um retângulo, usando-se 60 palitos iguais. Para cada lado do triângulo são necessários seis palitos. Se cada palito mede 5 cm de comprimento, qual é a

Leia mais

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA Pré-Curso www.laercio.com.br APOSTILA 09 Colégio Militar 6º ano PROVA CMBH SIMULADA PRÉ-CURSO COLÉGIO MILITAR DE BELO HORIZONTE,

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

ROTEIRO DE RECUPERAÇÃO II ETAPA LETIVA MATEMÁTICA 5.º ANO/EF 2015

ROTEIRO DE RECUPERAÇÃO II ETAPA LETIVA MATEMÁTICA 5.º ANO/EF 2015 SOCIEDADE MINEIRA DE CULTURA MANTENEDORA DA PUC Minas E DO COLÉGIO SANTA MARIA ROTEIRO DE RECUPERAÇÃO II ETAPA LETIVA MATEMÁTICA 5.º ANO/EF 2015 Caro(a) aluno(a), É tempo de conferir os conteúdos estudados

Leia mais

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA PAG - 1 QUESTÃO ÚNICA MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 20 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item: MATEMÁTICA 01.

Leia mais

1 ELEMENTOS DA CIRCUNFERÊNCIA

1 ELEMENTOS DA CIRCUNFERÊNCIA Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

Expressões Algébricas e Polinômios. 8 ano/e.f.

Expressões Algébricas e Polinômios. 8 ano/e.f. Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Sumário Questão 1 (Assunto: Operações com números na forma de fração)... Questão (Assunto: Formas geométricas planas)... Questão (Assunto: Potências e raízes)...4 Questão 4 (Assunto: Expressões numéricas)...4

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

4 Escreva uma expressão algébrica. V perímetro 2 2x 2 3 2(2x 3) base igual a 7. g) O triplo da soma de um número com seu quadrado.

4 Escreva uma expressão algébrica. V perímetro 2 2x 2 3 2(2x 3) base igual a 7. g) O triplo da soma de um número com seu quadrado. Módulo 1: Noções de álgebra d) A 6 C B PÁGINA 10 Atividades para classe AB 6 y 1 Em cada item abaio, escreva uma epressão algébrica, e) y 8 utilizando as letras e y para representar A B esses números.

Leia mais

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

RACIOCÍNIO LÓGICO MATEMÁTICO

RACIOCÍNIO LÓGICO MATEMÁTICO CONCURSO: Curso Regular Gratuito CARGO: Todos os níveis PROFESSOR: Bruno Leal Este curso é protegido por direitos autorais (copyright), nos termos da Lei n.º 9.610/1998, que altera, atualiza e consolida

Leia mais

Matemática e Questionário. 4ª Série Ensino Fundamental Manhã MANHÃ. Nome do aluno: Nome da escola: 4ª SÉRIE EF. Número triângulo:

Matemática e Questionário. 4ª Série Ensino Fundamental Manhã MANHÃ. Nome do aluno: Nome da escola: 4ª SÉRIE EF. Número triângulo: Matemática e Questionário MANHÃ 4ª Série Ensino Fundamental Manhã Nome do aluno: Nome da escola: 4ª SÉRIE EF Turma: Número triângulo: 2007 Prezado aluno, prezada aluna: Para que a Secretaria da Educação

Leia mais

Lista de Exercícios MATEMÁTICA

Lista de Exercícios MATEMÁTICA Prefeitura de Juiz de Fora - PJF Seleção Competitiva Interna Lista de Exercícios MATEMÁTICA Regra de Três Simples Regra de Três Composta Porcentagem Tratamento da Informação Prof. Diego Gomes diegomedasilva@gmail.com

Leia mais

QUESTÃO 16 Observe a figura

QUESTÃO 16 Observe a figura Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Observe a figura O menor número de cubinhos

Leia mais

www.pontodosconcursos.com.br

www.pontodosconcursos.com.br Olá pessoal! Resolverei neste artigo as primeiras questões da prova do Banco do Brasil realizado em 010 pela FCC. Estamos lançando no Ponto um curso de exercícios específico para este concurso de 011 (edital

Leia mais

Resolução . R$ 93,00 = R$ 62,00 3. Resposta: D

Resolução . R$ 93,00 = R$ 62,00 3. Resposta: D Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 Numa divisão, o divisor é 107, o resto é 0 e o quociente é 106.

Leia mais

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 Prova Resolvida Matemática p/ TJ-PR - Uma caixa contém certa quantidade de lâmpadas. Ao retirá-las de 3 em 3 ou de 5 em 5, sobram lâmpadas na caixa. Entretanto, se as lâmpadas forem removidas de 7 em 7,

Leia mais

Exercícios complementares envolvendo a equação de Torricelli

Exercícios complementares envolvendo a equação de Torricelli 01. (Vunesp-SP) Um veículo está rodando à velocidade de 36 km/h numa estrada reta e horizontal, quando o motorista aciona o freio. Supondo que a velocidade do veículo se reduz uniformemente à razão de

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

02 de Fevereiro de 2010

02 de Fevereiro de 2010 Pontifícia Universidade Católica do Paraná Transferência Externa Medicina 1º Semestre 2010 02 de Fevereiro de 2010 1ª FASE CONHECIMENTOS GERAIS N.º DO CARTÃO NOME (LETRA DE FORMA) ASSINATURA INFORMAÇÕES

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2 ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012 ANO 2014 PROFESSOR (a) Elaine Cristina Francisco

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

Regra de três e porcentagem:

Regra de três e porcentagem: 1. O tabagismo (vício do fumo) é responsável por uma grande quantidade de doenças e mortes prematuras na atualidade. O Instituto Nacional de Câncer divulgou que 90% dos casos diagnosticados de câncer de

Leia mais

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas.

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas. Roteiro da aula MA091 Matemática básica Aula 5 MMC e frações. Horas. Francisco A. M. Gomes UNICAMP - IMECC Março de 2015 1 2 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

1. MATEMÁTICA BÁSICA. São aqueles que possuem exatamente 2 divisores distintos. Exemplo: 2 3 5 7 11 13 17 19 23 29

1. MATEMÁTICA BÁSICA. São aqueles que possuem exatamente 2 divisores distintos. Exemplo: 2 3 5 7 11 13 17 19 23 29 1. MATEMÁTICA BÁSICA NÚMEROS PRIMOS São aqueles que possuem exatamente 2 divisores distintos Exemplo: 2 3 5 7 11 13 17 19 23 29 NÚMEROS PRIMOS ENTRE SI São aqueles que compõem uma FRAÇÃO IRREDUTÍVEL Exemplo:

Leia mais

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%.

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES ÁLGEBRA 7º ANO ENSINO FUNDAMENTAL =========================================================================================== 0- Calcule a razão entre:

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Ciências da Natureza I Ensino Médio Oficina Energia e suas transformações Material do monitor

Ciências da Natureza I Ensino Médio Oficina Energia e suas transformações Material do monitor Caro monitor Este material foi produzido com o objetivo de auxiliá-lo nos trabalhos com o material didático impresso Energia e suas transformações e com a web aula Energia, meio ambiente e desenvolvimento.

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE

COLÉGIO MILITAR DE BELO HORIZONTE COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2007 / 200 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONCURSO DE ADMISSÃO À 6ª SÉRIE DO ENSINO FUNDAMENTAL CMBH 2007 PÁGINA: 2 RESPONDA AS

Leia mais

Lê-se como "mais" Ex: 2 + 3 = 5, significa que se somarmos 2 e 3 o resultado é 5. O sinal - também denota um número negativo.

Lê-se como mais Ex: 2 + 3 = 5, significa que se somarmos 2 e 3 o resultado é 5. O sinal - também denota um número negativo. MATEMÁTICA Prof. Pacher TRT-SC OPERADORES E SÍMBOLOS Símbolo Nome Significados e exemplos + adição Lê-se como "mais" Ex: 2 + 3 = 5, significa que se somarmos 2 e 3 o resultado é 5. - subtração / divisão

Leia mais

CONCURSO DE ADMISSÃO 2013/2014 6º ANO/ENS. FUND. MATEMÁTICA PÁG. 1

CONCURSO DE ADMISSÃO 2013/2014 6º ANO/ENS. FUND. MATEMÁTICA PÁG. 1 CONCURSO DE ADMISSÃO 203/204 6º ANO/ENS FUND MATEMÁTICA PÁG PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão A direção de um escritório decidiu promover,

Leia mais

Colégio Militar de Curitiba

Colégio Militar de Curitiba Colégio Militar de Curitiba Caro aluno Este Caderno de Apoio à Aprendizagem em Matemática foi produzido para você com o objetivo de colaborar com seus estudos. Ele apresenta uma série de atividades a serem

Leia mais

Módulo 6 Porcentagem

Módulo 6 Porcentagem Professor: Rômulo Garcia machadogarcia@gmail.com Conteúdo Programático: Razões e proporções, divisão proporcional, regras de três simples e compostas, porcentagens Site: matematicaconcursos.blogspot.com

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

(S.I.) = 10 + 6 3) (FP) O

(S.I.) = 10 + 6 3) (FP) O Lista Cinemática 1) (FP) Um motorista pretende realizar uma viagem com velocidade média de 90 km/h. A primeira terça parte do percurso é realizada à 50km/h e os próximos 3/5 do restante é realizado à 80

Leia mais

NÍVEL 1 7 a Lista. 1) Qual é o maior dos números?

NÍVEL 1 7 a Lista. 1) Qual é o maior dos números? NÍVEL 1 7 a Lista 1) Qual é o maior dos números? (A) 1000 + 0,01 (B)1000 0,01 (C) 1000/0,01 (D) 0,01/1000 (E) 1000 0,01 ) Qual o maior número de 6 algarismos que se pode encontrar suprimindo-se 9 algarismos

Leia mais

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios

Leia mais

Nesse módulo serão apresentadas questões que fizeram parte de diversos concursos no Brasil nos períodos de 2005 à 2008.

Nesse módulo serão apresentadas questões que fizeram parte de diversos concursos no Brasil nos períodos de 2005 à 2008. 1 MÓDULO VII Nesse módulo serão apresentadas questões que fizeram parte de diversos concursos no Brasil nos períodos de 005 à 008. É uma seletiva de problemas que fizeram parte de processos seletivos de

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

CONCURSO DE ADMISSÃO 6º ANO/ENS. FUND. MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA

CONCURSO DE ADMISSÃO 6º ANO/ENS. FUND. MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 6º ANO/ENS. FUND. MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão. 1. O professor Aurélio escreveu

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

Escolha sua melhor opção e estude para concursos sem gastar nada

Escolha sua melhor opção e estude para concursos sem gastar nada Escolha sua melhor opção e estude para concursos sem gastar nada 06. Observe o quadrinho. Para responder às questões de números 08 a 12, leia o texto. (Folha de S.Paulo, 14.06.2013. Adaptado) Assinale

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO- MATEMÁTICA 6º ANO-PROFA. M.LUISA-2º BIMESTRE MÚLTIPLOS, DIVISORES, FATORAÇÃO, MDC.MMC,PROBLEMAS

EXERCÍCIOS DE RECUPERAÇÃO- MATEMÁTICA 6º ANO-PROFA. M.LUISA-2º BIMESTRE MÚLTIPLOS, DIVISORES, FATORAÇÃO, MDC.MMC,PROBLEMAS EXERCÍCIOS DE RECUPERAÇÃO- MATEMÁTICA 6º ANO-PROFA. M.LUISA-2º BIMESTRE ALUNO: Nº TURMA: MÚLTIPLOS, DIVISORES, FATORAÇÃO, MDC.MMC,PROBLEMAS 1. Considere os números 2 000; 2 001; 2 002; 2 003; 2 004; 2

Leia mais

Redação Avaliação Seletiva 9º ano - 2014-2015 Preparatório para as boas Escolas Públicas

Redação Avaliação Seletiva 9º ano - 2014-2015 Preparatório para as boas Escolas Públicas 1 Questão 1 (1,5 pontos) Os irmãos Luiz e Lúcio compraram um terreno cercado por um muro de 340 metros. Eles construíram um muro interno para dividir o terreno em duas partes. A parte de Luiz ficou cercada

Leia mais