REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

Tamanho: px
Começar a partir da página:

Download "REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:"

Transcrição

1 ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento? 2) Observe a seguinte situação: Uma pessoa paga pelo quilo de feijão R$ 1,20. Se comprar 2 quilos de feijão, pagará R$ 2,40. Se comprar 3 quilos, pagará R$ 3,60. Quando a quantidade de feijão comprada aumenta de 1 para 2 quilos, o preço aumenta na mesma razão, pois passa de R$ 1,20 para R$ 2,40. Podemos, então, escrever que a razão de 1 para 2 é igual à razão de 1,20 para 2,40. Em linguagem matemática: 1 = 1,20 que se lê: 1 está 2 2,40 para 2, assim como 1,20 está para 2,40. Da mesma forma, quando o aumento é de 1 para 3 quilos, o preço aumenta na mesma razão: 1 = 1,20 3 3,60 Como já foi visto anteriormente, a igualdade entre duas razões é uma proporção. O preço do feijão, no caso, é proporcional à quantidade de quilos de feijão. 1) Regra de Três Simples EXEMPLO 1: Se um ônibus percorre uma estrada com velocidade média de 80 km/h, quantos quilômetros percorrerá em 2 horas? Podemos organizar os dados do problema numa tabela, da seguinte maneira: Tempo Espaço 1h 80 km 2h A letra representa o valor desconhecido do problema. Tempo e espaço são proporcionais, pois, quando o valor do tempo aumenta, o valor do espaço percorrido aumenta na mesma razão, ou seja, de 1 para 2. Dizemos que tempo e espaço são grandezas que variam da mesma forma e na mesma razão. Se uma aumenta, a outra também aumenta; se uma diminui, a outra também diminui. Da tabela acima, podemos escrever a seguinte proporção: 1 2 = 80, 1 está para 2, assim como 80 está para. Recordando a propriedade fundamental das proporções: O produto do numerador da primeira fração com o denominador da segunda fração é igual ao produto do denominador da primeira fração com o numerador da segunda. Então: 1. = (lembre-se que 1. = ) = 160 Portanto, o espaço percorrido pelo ônibus em 2 horas será de 160 km. Nesse eemplo, três elementos eram conhecidos e faltava determinar o quarto elemento. Dois dos elementos conhecidos são medidas de uma mesma grandeza (tempo) e o terceiro é medida de outra grandeza (espaço). O quarto elemento, aquele que será calculado, é medida da segunda grandeza (espaço). O método usado para resolver problemas desse tipo é chamado regra de três. No eemplo anterior, as grandezas tempo e espaço são diretamente proporcionais e a regra de três é direta. Definição Sendo a e b dois valores correspondentes da grandeza A e, c e d os valores correspondentes da grandeza B, chama-se de regra de três simples ao processo prático para determinar um desses quatro valores, sendo conhecidos os outros três. Grandeza A A B Grandeza B c d Se A e B forem grandezas diretamente proporcionais, então: a = c b d Se A e B forem grandezas inversamente proporcionais, então: ac = bd a = d b c EXEMPLO 2: Dois pintores gastam 18 horas para pintar uma parede. Quanto tempo levaria 4 pintores para fazer o mesmo serviço? Veja a tabela e verifique se as grandezas são diretamente proporcionais: Pintores Tempo 2 18h 4 1

2 Se o número de pintores dobrar, passando de 2 para 4, será que o tempo gasto no serviço também dobrará? Pense um pouco e observe que o tempo gasto no serviço não pode aumentar, pois são mais homens trabalhando. Aumentando o número de pintores, o tempo de serviço deve diminuir. Como o número de pintores dobrou, o tempo será reduzido à metade (razões inversas). Logo, os pintores gastarão 9 horas para pintar a parede. Nesse caso, dizemos que as duas grandezas do problema (número de pintores e tempo de serviço) são grandezas inversamente proporcionais, e a regra de três é inversa. EXEMPLO 3: Cinco operários constroem uma casa em 360 dias. Quantos dias serão necessários para que 15 operários construam a mesma casa? Operários Dias Aumentando-se o número de operários de 5 para 15, ou seja, triplicando-se o número de operários, o que acontecerá com o número de dias necessários para a construção da casa? Da mesma forma que no eemplo anterior, essas grandezas são inversamente proporcionais. Isso quer dizer que variam na razão inversa, e a razão inversa de 3 é 1 3. Então: de 360 = 3 3 = 120 Portanto, os 15 operários construirão a casa em 120 dias. Vimos que, para resolver problemas de regra de três, é importante determinar se as grandezas envolvidas no problema são direta ou inversamente proporcionais. Quando as grandezas são inversamente proporcionais, a proporção entre os valores não é representada por uma mesma razão, mas, sim, por razões inversas. Portanto, no caso de grandezas inversamente proporcionais, devese inverter uma das razões para escrever a proporção relativa ao problema. EXEMPLO 4: Um ônibus, em velocidade média de 80 km/h, leva 5 horas para percorrer uma estrada. Quanto tempo gastará para percorrer a mesma estrada se desenvolver velocidade média de 100 km/h? Tempo(h) Velocidade média (km\h) 5 80 X 100 As grandezas tempo e velocidade são direta ou inversamente proporcionais? Desenvolvendo maior velocidade média, o ônibus gastará menos tempo para percorrer a estrada. As grandezas envolvidas são, portanto, inversamente proporcionais. Assim, escreveremos a proporção invertendo umas das razões: 5 = Aplicando a propriedade fundamental das proporções, 100. = = 400 = = 4 Desenvolvendo velocidade média de 100 km/h, o ônibus levará 4 horas para percorrer a estrada. 2) Regra de Três Composta Neste método, temos mais de duas grandezas proporcionais. Na resolução destes problemas usaremos as seguintes propriedades: a-)se uma grandeza A é diretamente proporcional a uma grandeza B e a uma grandeza C, então: A = B. C Ou seja: A é diretamente proporcional ao produto das grandezas B e C. b-) Se uma grandeza A é diretamente proporcional a uma grandeza B e inversamente proporcional a uma grandeza C, então: A = B C Eemplos: 1) Em 8 horas, 20 caminhões descarregam 160m 3 de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m 3? Horas Caminhões Volume X 125 Identificação dos tipos de relação: Inicialmente colocamos uma seta para baio na coluna que contém o (2ª coluna). A seguir, devemos comparar cada grandeza com aquela onde está o. Observe: Aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação é inversamente proporcional (seta para cima na 1ª coluna). Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto a relação é diretamente proporcional (seta para baio na 3ª coluna). Devemos igualar a razão que contém o termo com o produto das outras razões de acordo com o sentido das setas. 2

3 Montando a proporção e resolvendo a equação Montando a proporção e resolvendo a equação Logo, para completar o muro serão necessários 12 dias. Logo, serão necessários 25 caminhões. 2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias? Homens Carrinhos Dias Observe: Aumentando o número de homens, a produção de carrinhos aumenta. Portanto a relação é diretamente proporcional (não precisamos inverter a razão). Aumentando o número de dias, a produção de carrinhos aumenta. Portanto a relação também é diretamente proporcional (não precisamos inverter a razão). Devemos igualar a razão que contém o termo com o produto das outras razões. Montando a proporção e resolvendo a equação = = = Logo, serão montados 32 carrinhos. 3) Dois pedreiros levam 9 dias para construir um muro com 2m de altura. Trabalhando 3 pedreiros e aumentando a altura para 4m, qual será o tempo necessário para completar esse muro? Inicialmente colocamos uma seta para baio na coluna que contém o. Depois colocam-se flechas concordantes para as grandezas diretamente proporcionais com a incógnita e discordantes para as inversamente proporcionais, como mostra a figura a seguir. EXERCÍCIOS RESOLVIDOS 1-) Calcular a altura de uma torre que projeta uma sombra de 28,80m no mesmo instante em que uma árvore de 4,2m de altura, plantada verticalmente, projeta uma sombra de 3,6m. Altura Sombra 28,8 4,2 3,6 Como a altura e a sombra são grandezas diretamente proporcionais, 28,8 4, 2.28,8 = = = 33,6 4, 2 3,6 3,6 Resposta: A altura da torre é 33,6m. 2-) A ração eistente em um quartel de cavalaria é suficiente para alimentar 30 cavalos durante 30 dias. Quantos dias duraria a ração se eistissem apenas 20 cavalos? Número de cavalos Número de dias X Como as duas grandezas são inversamente proporcionais, = = = Resposta: A ração duraria 45 dias. 3-) Se 25 operários trabalhando 10 horas por dia abriram um canal de 238 metros de comprimento em 17 dias, quantos operários serão necessários para abrir 686 metros do mesmo canal em 25 dias de 7 horas de trabalho? Operários Horas / dia Comprimento N º de dias

4 X Número de operários e número de horas são grandezas inversamente proporcionais..número de operários e Comprimento são grandezas diretamente proporcionais..número de operários e Números de dias são grandezas inversamente proporcionais. Assim sendo: = = = = Resposta: Serão necessários 70 operários. EXERCÍCIOS PROPOSTOS Nível 1 1) Uma máquina varredeira limpa uma área de 5100m 2 em 3 horas de trabalho. Nas mesmas condições, em quanto tempo limpará uma área de 11900m 2? a-) 7 horas b-) 5 horas c-) 9 horas d-) 4 horas 2) Uma gravura de forma retangular, medindo 20cm de largura por 35cm de comprimento, deve ser ampliada para 1,2m de largura. O comprimento correspondente será: a-)0,685m b-) 1,35m c-) 2,1m d-) 6,85m e-) 18m 3) Cem quilogramas de trigo fornecem 85kg de farinha. Quantos quilogramas de farinha se obtêm com 150 sacas de trigo de 75kg cada uma? 4) Quatorze pedreiros levam 180dias para construir uma casa.quanto tempo levarão 10 pedreiros para construir a mesma casa? 5) Um trem percorre 240km em 3 horas. Quanto tempo levará esse trem, com a mesma velocidade, para percorrer 400km? 6) O eio de um motor dá 2376 voltas em 9 minutos. Quantas voltas dará em 1h27min? 7) Uma torneira enche um tanque em 2 horas. Em quanto tempo (em minutos) 3 torneiras iguais a primeira encherão o mesmo tanque? 8) Se 16 operários levam 3 dias para completar uma obra, quantos operários seriam necessários para completar essa obra em 2 dias? 9) Qual é a altura de um edifício cuja sombra tem 6 m no mesmo instante em que um poste de 2 m de altura projeta uma sombra de 0,6 m? 10) Trabalhando durante 40 minutos, uma máquina produz 100 peças. Quantas peças essa máquina produzirá em 2 horas? 11) Para percorrer 360 km de uma estrada, um automóvel consome 30L de gasolina. Para percorrer 450 km, quanto consumirá? 12) Numa classe de 40 alunos, 18 são meninas. Qual é a taa de porcentagem das meninas dessa classe? Nível 2 1) Um alfaiate pagou R$ 960,00 por uma peça de fazenda e R$768 por uma outra de mesma qualidade. Qual o comprimento de cada uma das peças, sabendose que a primeira tem 12m a mais do que a segunda? 2) De duas fontes, a primeira jorra 18l por hora e a segunda 80l. Qual é o tempo necessário para a segunda jorrar a mesma quantidade de água que a primeira jorra em 25 minutos? 3) Empregaram-se 27,4kg de lã para fabricar 24m de tecido de 60cm de largura.qual será o comprimento do tecido que se poderia fabricar com 3,425 toneladas de lã para se obter uma largura de 0,90m? 4) Uma família composta de 6 pessoas consome, em 2 dias, 3kg de pão. Quantos quilos serão necessários para alimentar-se durante 5 dias, estando ausentes 2 pessoas? 5) Uma equipe de 15 homens etrai, em 30 dias 3600kg de carvão. Se for aumentada para 20 homens, em quantos dias conseguirá etrair 5600kg de carvão? 6) Vinte operários trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 30 metros. Quanto tempo levará um a turma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 255 metros? 7) Dez operários, com capacidade de trabalho igual a 45, fazem 150 metros de uma obra em 20 dias. Qual deve ser a capacidade de trabalho de 5 operários para fazer 20 metros da mesma obra em 60 dias? 8) Com 16 máquinas de costura aprontaram-se 720 uniformes em 6 dias de trabalho. Quantas máquinas serão necessárias para confeccionar 2160 uniformes em 24 dias? 9) Um avião consome 400 litros de gasolina por hora. Calcular o consumo numa etapa de 2 horas 10 minutos e 3 segundos. 10) Uma pessoa ao falir só pode pagar 17 do que deve. 36 Se possuísse mais R$ ,00 poderia pagar 80% da dívida. Quanto era a dívida? 11) Gastei 30% do meu salário comprando um vestido. Calcule meu salário sabendo que paguei R$ 60,00 pelo vestido. 12)Quando se aplicam R$ 2.000,00 à taa de 12% ao ano, qual será a quantia recebida após 5 anos? 4

5 GABARITO Nivelamento- Álgebra Cap.VI REGRA DE TRÊS Nível I 1) A 2) C 3) 9562,5 4) 252 dias 5) 5 h 6) ) 40 8) 24 9) 20 m 10) ) 12) 45% Nível II 1) 48 m e 60 m 2) 3) 2000 m 4) 20 5) 35 6) 170 dias 7) 4 8) 12 9) 10) 11) 12) 5

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio.

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. 1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. Regra de três simples Regra de três simples é um processo prático para resolver problemas que envolvam quatro

Leia mais

Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de

Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de 1 Matemática Instrumental 2008.1 Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de Três. Objetivos: Conceituar grandezas diretamente e inversamente proporcionais. Aplicar os conceitos

Leia mais

Grandezas proporcionais (II): regra de três composta

Grandezas proporcionais (II): regra de três composta Grandezas proporcionais (II): regra de três composta 1. Proporcionalidade composta Observe as figuras: A 4 2 B 5 A C 8 B 10 C Triângulo Base Altura Área 5 4 2 2 A = 5. 4 2 = 10 10 8 A = 10. 8 2 = 40 2

Leia mais

Duas grandezas são diretamente proporcionais quando, aumentando ou diminuindo uma delas, a outra grandeza aumenta ou diminui na mesma razão.

Duas grandezas são diretamente proporcionais quando, aumentando ou diminuindo uma delas, a outra grandeza aumenta ou diminui na mesma razão. Regra de três simples Introdução: São problemas onde relacionamos duas grandezas podendo ser diretamente ou inversamente proporcionais. Para a solução dos mesmos consiste em formar com três valores conhecidos

Leia mais

Módulo 4 Regra da Sociedade

Módulo 4 Regra da Sociedade Professor: Rômulo Garcia machadogarcia@gmail.com Conteúdo Programático: Razões e proporções, divisão proporcional, regras de três simples e compostas, porcentagens Site: matematicaconcursos.blogspot.com

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 10 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

Matemática Régis Cortes REGRA DE TRÊS

Matemática Régis Cortes REGRA DE TRÊS REGRA DE TRÊS 1 REGRA DE TRÊS Grandezas Proporcionais O que estudaremos são grandezas que sejam diretamente ou inversamente proporcionais, embora existam casos em que essas relações não se observem, e

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

Matemática. Elementar II Caderno de Atividades

Matemática. Elementar II Caderno de Atividades Matemática Elementar II Caderno de Atividades Autor Leonardo Brodbeck Chaves 2009 2008 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

GRANDEZAS. A sua nota na prova depende do número de questões que você acerta?

GRANDEZAS. A sua nota na prova depende do número de questões que você acerta? . UNIVERSIDADE CASTELO BRANCO CURSO DE MATEMÁTICA DISCIPLINA: Matemática Financeira - Negócios PROFESSOR: Ramon Silva de Freitas DATA: / / ALUNO: GRANDEZAS Você já pensou que: A sua nota na prova depende

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Regra de três. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Regra de três. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 02 matemática Regra de três Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico Secretaria de Educação a

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4 AULA 0 REGRA DE TRÊS. Sabendo-se que y z 8 e que / y/ z/, calcule. Se / y/ z/, temos: y z, como desejamos saber o valor de, vamos isolar: y em função de : y y y z em função de : z z z z Agora que conhecemos

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 - (PUCSP) Um mapa está na escala de 1 para 20.000.Qual o valor real de uma distância representada no mapa por um segmento de 5cm? a) 100m b) 250m c) 1Km d)

Leia mais

Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento?

Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento? A UUL AL A 5 Regra de três Num acampamento, há 48 pessoas e alimento suficiente para um mês. Se 6 pessoas forem embora, para quantos dias ainda haverá alimento? Para pensar Observe a seguinte situação:

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. a Lista de Exercícios (L0) Queridos alunos, chegamos à nossa última lista de exercícios! Nesta lista vocês trabalharão com razão, proporção e regra de três. Façam

Leia mais

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matemática Grandezas diretamente proporcionais A definição de grandeza está associada a tudo aquilo que pode ser medido ou contado. Como

Leia mais

1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa mensal proporcional a taxa oferecida?

1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa mensal proporcional a taxa oferecida? LISTA DE EXERCÍCIOS FUNDAMENTOS DA MATEMÁTICA Prof. Marcos Calil REGRA DE TRÊS SIMPLES E PORCENTAGEM 1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa

Leia mais

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%.

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES ÁLGEBRA 7º ANO ENSINO FUNDAMENTAL =========================================================================================== 0- Calcule a razão entre:

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012 2012-1 TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 1 Explicando o funcionamento da disciplina e a avaliação. Serão 2 aulas semanais onde os conteúdos serão abordados, explicados e exercitados.

Leia mais

a c (com a, b, c e d 0) é chamada de a b c d

a c (com a, b, c e d 0) é chamada de a b c d PROFESSOR: Sebastião Geraldo Barbosa MARÇO - 304 M A T E M Á T I C A C O M E R C I A L. RAZÕES E PROPORÇÕES.. RAZÃO: Razão de dois números a e b (com b 0) é o quociente de a por b. Indica-se b a ou a :

Leia mais

Lista de Exercícios MATEMÁTICA

Lista de Exercícios MATEMÁTICA Prefeitura de Juiz de Fora - PJF Seleção Competitiva Interna Lista de Exercícios MATEMÁTICA Regra de Três Simples Regra de Três Composta Porcentagem Tratamento da Informação Prof. Diego Gomes diegomedasilva@gmail.com

Leia mais

Regra de Três. 1. Questão Seis metros de um certo tecido custam R$ 74,00. Qual o preço de 27 metros desse mesmo tecido?

Regra de Três. 1. Questão Seis metros de um certo tecido custam R$ 74,00. Qual o preço de 27 metros desse mesmo tecido? Regra de Três 1. Questão Seis metros de um certo tecido custam R$ 74,00. Qual o preço de 27 metros desse mesmo tecido? 2. Questão Um relógio adianta 48 minutos por dia. Se esse relógio foi acertado às

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)...

APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)... AULA DEMONSTRATIVA 1. APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)... 3 2.1. EXERCÍCIOS RESOLVIDOS... 3 3. DIVISÃO PROPORCIONAL... 4 3.1. GRANDEZAS DIRETAMENTE PROPORCIONAIS... 4 4. REGRAS

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Números Inteiros Números Naturais Desde os tempos mais remotos, o homem sentiu a necessidade de verificar quantos elementos figuravam em um conjunto. Antes que soubessem contar, os pastores verificavam

Leia mais

Boxe Cálculo mental. Atividades para classe

Boxe Cálculo mental. Atividades para classe Resolução de atividades Capítulo 8 Módulo 1: Grandezas proporcionais Página 178 Boxe Cálculo mental Calcule mentalmente o valor de x para que as seguintes igualdades sejam verdadeiras. a) 12 5 4 x V 12?

Leia mais

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção.

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção. Assunto: Função MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 67-000 - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 0 0/0/0. a) O que é uma unção? Dê um eemplo. b) O que é domínio

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC)

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC) Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Instalador e Reparador de Redes de Computadores MATEMÁTICA

Leia mais

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples Disciplina: Matemática Ano / Série: 7 Professor (a): Rafael Machado Data: 11/2015 Nome: ----------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

Nível B3 PROPORCIONALIDADE INVERSA

Nível B3 PROPORCIONALIDADE INVERSA Nível B PROPORCIONALIDADE INVERSA Grandezas inversamente proporcionais Duas grandezas e y são inversamente proporcionais se o produto dos valores correspondentes é constante e diferentes de zero. Essa

Leia mais

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 Prova Resolvida Matemática p/ TJ-PR - Uma caixa contém certa quantidade de lâmpadas. Ao retirá-las de 3 em 3 ou de 5 em 5, sobram lâmpadas na caixa. Entretanto, se as lâmpadas forem removidas de 7 em 7,

Leia mais

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { }

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { } CURSO: ASTRONOMIA APLICADA À NAVEGAÇÃO PROFESSOR: ALEXANDRE RIBEIRO ANDRADE MÓDULO 1: MATEMÁTICA APLICADA NA ASTRONOMIA NÁUTICA Apostila 1: Sistema de Unidades utilizadas na Navegação e na Astronomia,

Leia mais

Máximos e mínimos. Problemas de máximos e mínimos estão presentes. Nossa aula

Máximos e mínimos. Problemas de máximos e mínimos estão presentes. Nossa aula A UA UL LA Máimos e mínimos Introdução Problemas de máimos e mínimos estão presentes em quase todas as atividades do mundo moderno. Por eemplo, você pode imaginar como um carteiro distribui a correspondência?

Leia mais

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM Olá Caro Aluno, Você já reparou que, no dia a dia quantificamos, comparamos e analisamos quase tudo o que está a nossa volta? Vamos ampliar nossos conhecimentos sobre algumas dessas situações. O objetivo

Leia mais

Lista de exercícios I - regra de três simples

Lista de exercícios I - regra de três simples PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA (MAF) MATEMÁTICA PARA NEGÓCIOS PROFESSOR: MS SAMUEL LIMA PICANÇO Lista de exercícios I - regra de três simples 1 Uma roda dá

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

AULÃO ENEM 2014 MATEMÁTICA OSWALDO

AULÃO ENEM 2014 MATEMÁTICA OSWALDO AULÃO ENEM 2014 MATEMÁTICA OSWALDO 1) Se o litro da gasolina aumentou 10% e um proprietário de carro o abastecia com 55 litros de gasolina, após o aumento, com a mesma quantia de dinheiro, ele abastecerá

Leia mais

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então 1. (Uerj 2015) Na imagem da etiqueta, informa-se o valor a ser pago por 0,256 kg de peito de peru. O SUS oferece 1,0 médico para cada grupo de x habitantes. Na região Norte, o valor de x é aproximadamente

Leia mais

Professor Mauricio Lutz REGRA DE TRÊS SIMPLES E COMPOSTA

Professor Mauricio Lutz REGRA DE TRÊS SIMPLES E COMPOSTA 1 REGRA DE TRÊS SIMPLES E COMPOSTA Regra de três simples São problemas que envolvem duas grandezas direta ou inversamente proporcionais. Resolvê-los consiste em formar com os 3 valores conhecidos e a incógnita

Leia mais

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido.

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Atividade extra Exercício 1 A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Se a balança abaixo se encontra em equilíbrio é correto afirmar que: Fonte: http//portaldoprofessorhmg.mec.gov.br

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

Prof. Msc. Edmundo Tork Matemática Básica. + % a b

Prof. Msc. Edmundo Tork Matemática Básica. + % a b Prof. Msc. Edmundo Tork Matemática Básica π n x α φ + % a b χ β Sumário Números Inteiros... 0 Números Naturais... 0 Operações Fundamentais com Números Naturais... 0 Exercícios... 0 Mínimo Múltiplo Comum...

Leia mais

Equacionando problemas

Equacionando problemas Reforço escolar M ate mática Equacionando problemas Dinâmica 2 1º Série 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Algébrico Simbólico Função polinomial do 1 grau Aluno

Leia mais

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Apostila Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

Você em primeiro lugar.

Você em primeiro lugar. GABARITEI CONCURSOS MATEMÁTICA Charlles Nunes Gabaritei Concursos Matemática CRONOGRAMA Aula 1 13.03.2010 Números e grandezas proporcionais. Razão e proporção. Divisão proporcional. Regras de três simples

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

DIVISÃO EM PARTES PROPORCIONAIS

DIVISÃO EM PARTES PROPORCIONAIS Página DIVISÃO EM PARTES PROPORCIONAIS A) Divisão em Partes Diretamente Proporcionais Dividir um número N em partes diretamente proporcionais a outros é achar partes de N, (, 2,..., n ), diretamente proporcionais

Leia mais

CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA 2.701 DE 29/07/5 DOU 02/08/2005

CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA 2.701 DE 29/07/5 DOU 02/08/2005 CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA.701 DE 9/07/5 DOU 0/08/005 CURSO: Bacharelado em Química Disciplina: Matemática I Professor: Marcos José Ardenghi OBS: esta apostila é destinada

Leia mais

Equações e inequações

Equações e inequações Equações e inequações Antes de ler o capítulo O texto a seguir supõe que o leitor domine o conteúdo do Capítulo 1. Também se exige habilidade para trabalhar com várias unidades de comprimento, massa e

Leia mais

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300 01) Uma empresa possui 1000 carros, sendo uma parte com motor a gasolina e o restante com motor flex (que funciona com álcool e com gasolina). Numa determinada época, neste conjunto de 1000 carros, 36%

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

11. Problemas de Otimização

11. Problemas de Otimização 11. Problemas de Otimização Nesta seção veremos vários eemplos de problemas cujas soluções eigem a determinação de valores máimos e/ou mínimos absolutos das funções que os representam. São chamados de

Leia mais

Grandezas Diretamente e Inversamente Proporcionais Aula baseada em resolução de exercícios.

Grandezas Diretamente e Inversamente Proporcionais Aula baseada em resolução de exercícios. Aula Período Zero Turma 2 Data: 13/03/2013 Tópicos Regra de Três Simples Grandezas Diretamente e Inversamente Proporcionais Aula baseada em resolução de exercícios. Regra de Três Simples A regra de três

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

DISCURSIVAS SÉRIE AULA AULA 01

DISCURSIVAS SÉRIE AULA AULA 01 ANÁLISE MATEMÁTICA BÁSICA DISCURSIVAS SÉRIE AULA AULA 01 H40120M 4800 35 M120 1200M) H80 M MATEMÁTICA V M H 1) (Unicamp SP) M120H 50 A média aritmética das idades de um grupo de 120 pessoas é de 40 anos.

Leia mais

UNIDADE 10 ESTUDOS DE MECÂNICA - INÍCIO LISTA DE EXERCÍCIOS

UNIDADE 10 ESTUDOS DE MECÂNICA - INÍCIO LISTA DE EXERCÍCIOS INTRODUÇÃO À FÍSICA turma MAN 26/2 profa. Marta F. Barroso UNIDADE 1 LISTA DE EXERCÍCIOS UNIDADE 1 ESTUDOS DE MECÂNICA - INÍCIO Exercício 1 Movendo-se com velocidade constante de 15 m/s, um trem, cujo

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema:

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema: 1. Considere que, em uma empresa, 50% dos empregados possuam nível médio de escolaridade e 5%, nível superior. Guardadas essas proporções, se 80 empregados dessa empresa possuem nível médio de escolaridade,

Leia mais

TER EXERCICIOS. 5) Uma sala de aula contém 38 alunos e, dentre eles, 18 são meninas. Assim, podemos afirmar que:

TER EXERCICIOS. 5) Uma sala de aula contém 38 alunos e, dentre eles, 18 são meninas. Assim, podemos afirmar que: Nome: nº: 7º ano: do Ensino Fundamental Professores: Edilaine, Luiz Carlos e Matheus TER Razão EXERCICIOS 1) A idade de Pedro é 30 anos e a idade de Josefa é 45 anos. Qual é a razão entre as idades de

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Unidade 7 Grandezas e medidas

Unidade 7 Grandezas e medidas Sugestões de atividades Unidade 7 Grandezas e medidas 6 MATEMÁTICA 1 Matemática 1. Existem alguns comprimentos que ainda são apresentados em polegadas. Um exemplo são as telas de televisores e computadores,

Leia mais

Profs. Alexandre Lima e Moraes Junior www.pontodosconcursos.com.br 1

Profs. Alexandre Lima e Moraes Junior www.pontodosconcursos.com.br 1 Aula 12 Compreensão e elaboração da lógica das situações por meio de: raciocínio matemático (que envolvam, entre outros, conjuntos numéricos racionais e reais - operações, propriedades, problemas envolvendo

Leia mais

Aula 00 Curso: Raciocínio Lógico e Matemática Professor: Custódio Nascimento

Aula 00 Curso: Raciocínio Lógico e Matemática Professor: Custódio Nascimento Aula 00 Curso: Raciocínio Lógico e Matemática Professor: Custódio Nascimento APRESENTAÇÃO Caros alunos e alunas, Bem vindos ao curso online preparatório para o cargo de Auditor-Fiscal da Receita Federal

Leia mais

Considerando que, ao colocar o sólido dentro da caixa, a altura do nível da água passou a ser 80 cm, qual era o volume do sólido?

Considerando que, ao colocar o sólido dentro da caixa, a altura do nível da água passou a ser 80 cm, qual era o volume do sólido? 1 2 Com o objetivo de trabalhar com seus alunos o conceito de volume de sólidos, um professor fez o seguinte experimento: pegou uma caixa de polietileno, na forma de um cubo com 1 metro de lado, e colocou

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO 36.(ESCREV.TÉC.JUD-CAMPINAS E GUARULHOS- 006-VUNESP) Certo plano de saúde emite boletos para pagamento bancário com as seguintes condições: Pagamento até o vencimento: Pagamento após a data de vencimento:

Leia mais

Módulo 6 Porcentagem

Módulo 6 Porcentagem Professor: Rômulo Garcia machadogarcia@gmail.com Conteúdo Programático: Razões e proporções, divisão proporcional, regras de três simples e compostas, porcentagens Site: matematicaconcursos.blogspot.com

Leia mais

Lista de Exercícios 10 Matemática Financeira

Lista de Exercícios 10 Matemática Financeira Lista de Exercícios 10 Matemática Financeira Razão Chama-se de razão entre dois números racionais a e b, ao quociente entre eles. Indica-se a razão de a para b por a/b ou a:b. Exemplo: Na sala da 6ª B

Leia mais

Matemática Financeira II

Matemática Financeira II Módulo 3 Unidade 8 Matemática Financeira II Para início de conversa... Passagens de ônibus ficam mais caras este mês Vitor Ferri (vferri@redegazeta.com.br)_ Redação Multimídia A Agência Nacional de Saúde

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos:

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Nome: nº: 6º ano: do Ensino Fundamental Professores: Edilaine e Luiz Carlos TER Área e perímetro O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Área do quadrado: Lado x Lado

Leia mais

Quarta lista de exercícios. Porcentagem. Proporções. Regra de três.

Quarta lista de exercícios. Porcentagem. Proporções. Regra de três. MA091 Matemática básica Primeiro semestre de 2012 Quarta lista de exercícios. Porcentagem. Proporções. Regra de três. 1. Represente as frações abaixo na forma percentual. a) 7/10. b) 1/5. c) 3/20. d) 3/4.

Leia mais

MATEMÁTICA BÁSICA. Prof. Edu OPERAÇÕES BÁSICAS

MATEMÁTICA BÁSICA. Prof. Edu OPERAÇÕES BÁSICAS 1. Calcule: 497 + 353 + 217 3134 + 297 + 415 + 1234 4735 + 2137 3174 2891 5739 4372 + 321 49 2. Calcule: 1237 x 23 2489 x 35 2458 x 112 54732 x 247 OPERAÇÕES BÁSICAS 3. Calcule o quociente e o resto de

Leia mais

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 1. A tecla da divisão da calculadora de Arnaldo parou de funcionar, mas nem por isso ele deixou de efetuar as divisões, pois a tecla de multiplicação funciona normalmente.

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

material, porque seus 4 m de comprimento tornam-se desprezíveis se comparados aos 20000 m de percurso. Ponto Material

material, porque seus 4 m de comprimento tornam-se desprezíveis se comparados aos 20000 m de percurso. Ponto Material Estudante: 9º Ano/Turma: Data / /2014 Educadora: Daiana Araújo C.Curricular: Ciências Naturais/ Física A Mecânica é o ramo da Física que tem por finalidade o estudo do movimento e do repouso. É dividida

Leia mais

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente.

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente. Aluno (a): Disciplina MATEMÁTICA Professor ROLANDO Curso FUNDAMENTAL II ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 7º ANO Número: 1 - Conteúdo: Estudo de sistemas de equações do 1º grau Estudo da

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Módulo Frações, o Primeiro Contato. 6 o ano/e.f. Módulo Frações, o Primeiro Contato Frações e suas Operações. o ano/e.f. Frações, o Primeiro Contato Frações e suas Operações. Exercícios Introdutórios Exercício. Simplifique as frações abaixo até obter

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK) 000 IT_005267 A figura a seguir é uma representação da localização das principais cidades ao longo de uma estrada, onde está indicada por letras a posição dessas cidades e por números as temperaturas registradas

Leia mais