DISCURSIVAS SÉRIE AULA AULA 01

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DISCURSIVAS SÉRIE AULA AULA 01"

Transcrição

1 ANÁLISE MATEMÁTICA BÁSICA DISCURSIVAS SÉRIE AULA AULA 01 H40120M M M) H80 M MATEMÁTICA V M H 1) (Unicamp SP) M120H 50 A média aritmética das idades de um grupo de 120 pessoas é de 40 anos. Se a média das idades das mulheres é de 35 anos e a dos homens é de 50 anos, qual o número de pessoas de cada sexo, no grupo? :) ) 40 Fazendo ( 35 1)(2...(2...(1 50(120 ) 35 M600050M 15M 40 Resposta: 80 mulheres e 40 homens. 2) (PUC SP 2006) Para a orientação dos maquinistas, ao longo de uma ferrovia existem placas com a indicação da quilometragem. Um trem percorre essa ferrovia em velocidade constante e, num dado instante, seu maquinista observa uma placa em que o número indicador da quilometragem tinha 2 algarismos. Após 30 minutos, ele passa por uma outra em que, curiosamente, os algarismos assinalados eram os mesmos da primeira, só que escritos na ordem inversa. Decorridos 30 minutos de sua passagem pela segunda placa, ele passa por uma terceira em que o número marcado tinha os mesmos algarismos das anteriores mas na mesma ordem dos da primeira e com um zero intercalado entre eles. Nessas condições, calcule a velocidade desse trem, em quilômetros por hora. N1 N2 100 ABABA100 N3 100A Número indicado na 1ª placa: ( 10 Número indicado BB9A na 99 2ª AA placa: 9B 18BA 108 N2AN1BN3AB ) N62 Número indicado na 3ª placa: Como a velocidade do trem é constante: Assim, Como A e B são algarismos decimais, só existe uma única possibilidade para os mesmos, ou seja: A 1 e B 6; N3 B 9 A)(10 B)(100 B)(10 A v espaço tempo v(106116) Km 90Km/ h O primeiro número indicador h da quilometragem será 16 km; O segundo número indicador da quilometragem será 61 km; O terceiro número indicador da quilometragem será 106 km; v Logo, podemos afirmar que a velocidade do trem para o percurso desenvolvido será: Resposta: 90 Km/h. AULA 01 - Página 1 de 7

2 3) (UFRJ) As faculdades A e B oferecem somente cursos de medicina e engenharia. A tabela a seguir apresenta as percentagens dos alunos que concluíram seus cursos em 1995, distribuídos segundo sua faculdade e curso: Medicina Engenharia Fac A 40% 60% Fac B 30% 70% Sabe-se que esses alunos estão atualmente empregados ou desempregados, de acordo com os índices da tabela a seguir: Empregado Desempregado Medicina 70% 30% Engenharia 20% 80% A tabela abaixo deve apresentar as percentagens dos alunos que concluíram seus cursos em 1995, porem distribuídos por faculdade e situação ocupacional (empregado/desempregado): Empregado Desempregado Fac A X Y Fac EmpregadosFac B FacBA Fac Z W FacA 21 % 48% 30 % 60% 20 % 30% 35 % 60% XZY W W Resposta: W 65% % 70% 80% 30 40%70% Empregados 70%20% 60%20% 30%30% 40%30% Desempregados 40 Desempregados 70%80% 60%80B% 70% 70% 80% 40% 65% % 4 28% 14% 12% 12% 9% 56% 4) (UNICAMP SP) Sabe-se que um número natural escrito na base 10 como... a 5 a 4 a 3 a 2 a 1 a 0 é divisível por 11 se, e somente se, a 0 a 1 a 2 a 3 a 4 a 5... for um número divisível por 11. a) Aplique o critério acima para mostrar que o número natural escrito na base 10 como não é ( 9 5 divisível por 11. b) Qual o menor número natural que devemos subtrair do número para que a diferença seja um número divisível por 11? a) Aplicando o critério do enunciado: ; cujo resultado não é um número divisível por b) O menor número natural é 5, pois o resultado da respectiva soma conforme o critério de divisibilidade por 11 será igual a zero e zero é divisível ( por 11 (zero é divisível por todo número 0 real não nulo) Respostas: a) Vide resolução; b) 5. 8)(76)(5 4)(32)(1 8)(7 6)(5 4)(3 2)(1 0) 0) AULA 01 - página 2 de 7

3 5) (Fava 2012) Um comerciante resolveu dar um desconto de 20% no preço de uma mercadoria (A). Em seguida, aumentou os preços das mercadorias B, C, D e E com percentuais (Y) inversamente proporcionais a seus respectivos Xk preços (X), de modo que a soma desses percentuais fosse também 20%. Vide tabela a seguir, com os preços iniciais, por unidade, de cada mercadoria: Mercadorias A B C D E Preço (R$) Dizemos que uma grandeza Y é inversamente proporcional a outra grandeza X quando existe uma 10k 15k constante k, tal que Y. Calcule, nessas condições: 20 k k a) O valor da constante k; 10% k51 10% 12k 5 b) A quantidade mínima de unidades que devem ser vendidas, apenas do % 48 produto C, para que a diferença entre seus preços final e inicial recupere o desconto concedido em uma única unidade da mercadoria A. a) k b) Para o produto C foi dado um aumento de k, q1008 ) ou seja, de Como o preço unitário do produto C aumentará 4,8%, o aumento em reais será de ; q1008 R 00 O total descontado numa única unidade do produto A foi de ; 48% q4100 q Verificando qual deverá ser a quantidade q de produtos C, a serem vendidos, de forma a compensar os, correspondentes ao desconto em uma única unidade do produto A, teremos: qmin. Respostas: a) k. b) 21 unidades. 6) (UFV MG 2006) Em um exame, foi usado o seguinte critério de correção: 5k 12k6k4k 4,8 51 % R$10, 4, (R$10,00 4, (R$10,00)10, 00 q4,, ,833L I. Para cada questão respondida corretamente o candidato recebeu 5 pontos; II. Para cada questão respondida incorretamente o candidato perdeu 2 pontos; III. Para cada questão em branco o candidato perdeu 1 ponto. A tabela abaixo apresenta o desempenho, nesse exame, dos candidatos Antônio e Maria. 5 yz( zy y6ez4 Com base nos dados acima, determine o número de questões do exame. Assim, o número de questões do exame é: Resposta: 30 questões. (3y (2y z)2(y 2z)2 z)y2y 2z)y 8y 9z 7z AULA 01 - Página 3 de 7

4 12V 7) (Unicamp SP) Uma torneira enche um tanque em 12 minutos, enquanto uma segunda torneira gasta 18 minutos para encher o mesmo 18V tanque. Com o tanque inicialmente vazio, abre-se a primeira torneira durante x minutos: ao fim desse tempo fecha-se essa torneira e abre-se a segunda, a qual termina de encher o tanque em x3 minutos. Calcule o tempo gasto para encher o tanque. Considerando V o volume do tanque, A vazão da 1 x torneira 1 será: unidades volumétricas x( 6V) por minuto; A vazão da torneira 1 será: unidades volumétricas por minuto; Podemos então escrever: 12x x183 (36) 3x12V 2(x18V(x 3)363)V Assim, o tempo gasto para encher o tanque será a soma do tempo efetivo da torneira 1 (6 minutos) com o tempo efetivo da torneira 2 (6 3 9 minutos), totalizando 15 minutos. Resposta: 15 minutos. 8) (Unicamp SP ) Numa escola é adotado o 9seguinte 39 critério: a nota da xprimeira 9 prova é multiplicada por 1, a nota da segunda prova é multiplicada por 2 e anota da terceira prova é multiplicada por 3. Os resultados após somados, são divididos por 6. Se a média obtida por esse critério for maior ou igual a 6,5 o aluno é dispensado das atividades de recuperação. Suponha que um aluno tenha tirado 6,3 na primeira prova e 4,5 na segunda prova. Quanto precisará tirar na terceira prova para ser dispensado da recuperação? Conclusão: O aluno precisará tirar na terceira prova uma nota no mínimo igual a 7,9.,3(1)4,5(2 6 )x(3)6,5 Resposta: Uma nota no mínimo igual a 7,9. 6,3 3x 3x 23,7 7, AULA 01 - página 4 de 7

5 9) (UnB) Julgue os itens abaixo: (1) Se a escala da figura I é linear, então o valor correspondente ao ponto indicado pela seta é 53,75. (2) Se duas grandezas X e Y são inversamente proporcionais e X é acrescido de 25%, então Y decresce 20%. (3) Considere que, a partir das temperaturas máxima e mínima na cidade do Rio de Janeiro, construiu-se uma nova escala linear, mostrada na figura II, em que a temperatura é indicada por N e a correspondência com a escala Celsius é mostrada na tabela que se segue. Nessas condições, o ponto de ebulição da água, naquela cidade, é igual a 400 N , (1) Verificando a linearidade (proporcionalidade): para P (Verdadeiro). figura I ºN ºC figura II (4) Considere que, em um sistema de aposentadoria, um trabalhador pode se aposentar quando a soma de sua idade com o número de anos de serviço totaliza 95 anos. Nesse caso, quem começar a trabalhar com 25 anos só poderá se aposentar com, no mínimo, 65 anos de idade. X11 Y2X1 14X1 Y251 4X1 Y254 1 Y2 Y o ponto indicado, denominando-o pela letra P, teremos : N 3914 C 100 N C (2) Se (Verdadeiro). C N 14 P 5, Y1 5, X1 0, N 14 4(C 2514 ) (3) 4(10014 N ) Verificamos que a temperatura de 100ºC corresponderá, na escala N, ao valor 344ºC. Portanto, a informação do item ( 3 ) é Falsa. (2) Iniciando com 25 anos, como a soma da idade com o tempo de serviço deverá ser igual a 70 anos, para se aposentar, o trabalhador deverá trabalhar 70 anos, ou seja, se aposentará com anos (no cemitério provavelmente) (Falsa). Resposta: V V F F. AULA 01 - Página 5 de 7

6 10) (UFSC ) Assinale a(s) proposição(ões) CORRETA(S). (01) Se uma pessoa A pode fazer uma peça em 9 dias de trabalho e outra pessoa B trabalha com velocidade 50% maior do que A, então B faz a mesma peça em 6 dias de trabalho. (02) Uma empresa dispunha de 144 brindes para distribuir igualmente entre sua equipe de vendedores, mas como no dia da distribuição faltaram 12 vendedores, a empresa distribuiu os 144 brindes igualmente entre os presentes, cabendo a cada vendedor um brinde a mais. Logo, estavam presentes 36 vendedores no dia da distribuição. (04) Se reduzindo o preço x em 20% se obtém y, então y deve sofrer um acréscimo de 20% para se obter novamente x. xv9v V) 23x 9 x6 (08) A soma de dois números naturais é 29. Então o valor mínimo da soma de seus quadrados é 533. (01) Considerando V a velocidade de trabalho da pessoa A e 1 a da pessoa B, teremos: V... 9 dias x144 x (Verdadeiro). 1,5 V... x dias 12yy x x1 x x48oux (02) Considerando x o número funcionários da equipe de vendedores (número total), vamos determinar o número de vendedores presentes no dia da distribuição dos brindes, ou seja, (x 12); ( 48 ( Conclusão: O número de vendedores presentes no dia da distribuição dos brindes era igual a (Verdadeiro)....(1) 1...(2) 1)(2:) 12) (V,5 12x 36 11) (FAVA 2012) Três torneiras enchem um tanque: a primeira em 15 horas; a segunda em 20 horas; e a 20V 30V 40V tv terceira em 30 horas. Há ) t t1 t1 15 um escoadouro que pode esvaziar o tanque em 40 horas. Estando 8as três torneiras e o escoadouro a funcionar, calcule em quantas horas o tanque poderá ficar cheio. Considerando V o volume to tanque e t o tempo necessário para encher o tanque, teremos? t. Resposta: 8 horas. 15V (V 120 horas AULA 01 - página 6 de 7

7 12) (UFSCar-SP 2005) Ao iniciar uma viagem de São Paulo para o Rio de Janeiro, Pedro abasteceu o tanque de combustível do carro, que estava totalmente vazio, até o limite máximo, pagando pelo abastecimento R$111,80. Após percorrer 180 km da viagem, Pedro parou em outro posto para completar o combustível do tanque até o limite máximo, gastando agora R$24,75. Sabe-se que a distância do ponto de partida de Pedro, em São Paulo, até a cidade do Rio de Janeiro é igual a 480km, que o tanque de combustível do carro de Pedro tem capacidade total de 52 litros, e que seu carro percorre na estrada, em média, 16km por litro de combustível. a) Qual é o preço do litro de combustível em cada um dos dois postos em que Pedro abasteceu o carro? b) Sem novos abastecimentos, quantos quilômetros, no máximo, o carro de Pedro poderá percorrer na cidade do P1 Rio de litro$ R Janeiro, sabendo-se que em trecho de cidade seu carro faz, em média, 12km por litro de combustível? P2 P 2 litro$ R a) 1º Posto: considerando o preço do de combustível no 1º posto, 2º Posto: considerando o preço do de combustível no 2º posto, R$111, 11 R$24,,25 litros litros 75 2,15 P1 2,20 P Km litros Km Observação: Como Pedro já havia percorrido entre o 1º e o 2º posto, o seu gasto de litro Km litros litros399km combustível até então foi de: b) Para percorrer os 300 Km restantes, Pedro ainda gastará de combustível; A distância máxima que Pedro poderá percorrer na cidade será:. Km/litro 11,25 Km/litro 12 (52 18,7518,75) Respostas: a) Posto 1 (R$ 2,15) e Posto 2 (R$ 2,20) b) 399 Km. AULA 01 - Página 7 de 7

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 1. Com um automóvel que faz uma média de consumo de 12 km por litro, um motorista A gasta em uma viagem R$ 143,00 em combustível, abastecendo ao preço de R$ 2,60

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matemática Grandezas diretamente proporcionais A definição de grandeza está associada a tudo aquilo que pode ser medido ou contado. Como

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 - (PUCSP) Um mapa está na escala de 1 para 20.000.Qual o valor real de uma distância representada no mapa por um segmento de 5cm? a) 100m b) 250m c) 1Km d)

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 Prova Resolvida Matemática p/ TJ-PR - Uma caixa contém certa quantidade de lâmpadas. Ao retirá-las de 3 em 3 ou de 5 em 5, sobram lâmpadas na caixa. Entretanto, se as lâmpadas forem removidas de 7 em 7,

Leia mais

Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de

Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de 1 Matemática Instrumental 2008.1 Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de Três. Objetivos: Conceituar grandezas diretamente e inversamente proporcionais. Aplicar os conceitos

Leia mais

Módulo 6 Porcentagem

Módulo 6 Porcentagem Professor: Rômulo Garcia machadogarcia@gmail.com Conteúdo Programático: Razões e proporções, divisão proporcional, regras de três simples e compostas, porcentagens Site: matematicaconcursos.blogspot.com

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto. Conjuntos numéricos 1) Naturais N = {0,1,2,3, } 2) Inteiros Z = { -3, -2, -1, 0, 1, 2, } Z + {1, 2, 3, } a) Divisão inteira Na divisão inteira de um número a por d, obtém se quociente q e resto r, segundo

Leia mais

Grandezas proporcionais (II): regra de três composta

Grandezas proporcionais (II): regra de três composta Grandezas proporcionais (II): regra de três composta 1. Proporcionalidade composta Observe as figuras: A 4 2 B 5 A C 8 B 10 C Triângulo Base Altura Área 5 4 2 2 A = 5. 4 2 = 10 10 8 A = 10. 8 2 = 40 2

Leia mais

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa mensal proporcional a taxa oferecida?

1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa mensal proporcional a taxa oferecida? LISTA DE EXERCÍCIOS FUNDAMENTOS DA MATEMÁTICA Prof. Marcos Calil REGRA DE TRÊS SIMPLES E PORCENTAGEM 1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

Conjuntos numéricos e Sistemas

Conjuntos numéricos e Sistemas Conjuntos numéricos e Sistemas 1) (Cespe) Três números naturais a, b e c são tais que a + b + c = 131. Na divisão de a por b o quociente é 1 e o resto é 9, e na divisão de c por b, o quociente é 9 e o

Leia mais

Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Módulo Frações, o Primeiro Contato. 6 o ano/e.f. Módulo Frações, o Primeiro Contato Frações e suas Operações. o ano/e.f. Frações, o Primeiro Contato Frações e suas Operações. Exercícios Introdutórios Exercício. Simplifique as frações abaixo até obter

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012 2012-1 TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 1 Explicando o funcionamento da disciplina e a avaliação. Serão 2 aulas semanais onde os conteúdos serão abordados, explicados e exercitados.

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Aula 8. Acesse: http://fuvestibular.com.br/

Aula 8. Acesse: http://fuvestibular.com.br/ Acesse: http://fuvestibular.com.br/ Aula 8 A multiplicação nada mais é que uma soma de parcelas iguais. E a divisão, sua inversa, "desfaz o que a multiplicação faz". Quer ver? Vamos pensar nas questões

Leia mais

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples Disciplina: Matemática Ano / Série: 7 Professor (a): Rafael Machado Data: 11/2015 Nome: ----------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. a Lista de Exercícios (L0) Queridos alunos, chegamos à nossa última lista de exercícios! Nesta lista vocês trabalharão com razão, proporção e regra de três. Façam

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 10 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1 01. (PUC-PR) Dos gráficos abaixo, os que representam uma única função são: 06. (FGV-SP) O gráfico da função f(x) = mx + n passa pelos pontos ( 4, 2 ) e ( -1, 6 ). Assim o valor de m + n é: a) - 13/5 b)

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

(BB 2010/FCC) Um capital é aplicado, durante 8 meses, a uma taxa de juros simples de 15% ao ano, apresentando um montante igual a R$ 13.200,00 no final do prazo. Se este mesmo capital tivesse sido aplicado,

Leia mais

COLÉGIO MACHADO DE ASSIS. Turma: Data: / /

COLÉGIO MACHADO DE ASSIS. Turma: Data: / / Disciplina: Matemática Professor: Eduardo Nagel COLÉGIO MACHADO DE ASSIS Turma: Data: / / Aluno: ( ) Avaliação ( x ) Exercício / Revisão ( ) Recuperação Bim ª Chamada ( ) 1ª Prova ( ) ª Prova Estude e

Leia mais

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM Olá Caro Aluno, Você já reparou que, no dia a dia quantificamos, comparamos e analisamos quase tudo o que está a nossa volta? Vamos ampliar nossos conhecimentos sobre algumas dessas situações. O objetivo

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então 1. (Uerj 2015) Na imagem da etiqueta, informa-se o valor a ser pago por 0,256 kg de peito de peru. O SUS oferece 1,0 médico para cada grupo de x habitantes. Na região Norte, o valor de x é aproximadamente

Leia mais

Física. Resolução das atividades complementares. F1 Introdução à Física

Física. Resolução das atividades complementares. F1 Introdução à Física Resolução das atividades complementares Física F Introdução à Física p. 09? 0 m Efetue as transformações a seguir e dê a resposta em notação científica: a) m em cm? 0 cm c) cm em m b) m 3 em cm 3? 0 6

Leia mais

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido.

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Atividade extra Exercício 1 A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Se a balança abaixo se encontra em equilíbrio é correto afirmar que: Fonte: http//portaldoprofessorhmg.mec.gov.br

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

02. Um bit é a menor unidade de informação usada pela computação. Abaixo, observe outras unidades:

02. Um bit é a menor unidade de informação usada pela computação. Abaixo, observe outras unidades: Aula n ọ 01 01. Os conjuntos numéricos foram surgindo à medida que certas operações aritméticas não eram fechadas dentro dos conjuntos em que eram realizadas. Assim, por exemplo, oconjunto dos números

Leia mais

Lista de Exercícios de Recuperação do 1 Bimestre

Lista de Exercícios de Recuperação do 1 Bimestre Lista de Exercícios de Recuperação do 1 Bimestre Instruções gerais: Resolver os exercícios à caneta e em folha de papel almaço ou monobloco (folha de fichário). Copiar os enunciados das questões. Entregar

Leia mais

O que os clientes não sabem é que o preço de qualquer peça, após o desconto, ainda é maior do que o preço original

O que os clientes não sabem é que o preço de qualquer peça, após o desconto, ainda é maior do que o preço original Atividade extra Exercício 1 Em uma loja de roupas, os preços foram remarcados com um aumento de 40%. O gerente percebeu a queda nas vendas após a remarcação e decidiu anunciar um desconto de 20% em todas

Leia mais

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4 AULA 0 REGRA DE TRÊS. Sabendo-se que y z 8 e que / y/ z/, calcule. Se / y/ z/, temos: y z, como desejamos saber o valor de, vamos isolar: y em função de : y y y z em função de : z z z z Agora que conhecemos

Leia mais

a c (com a, b, c e d 0) é chamada de a b c d

a c (com a, b, c e d 0) é chamada de a b c d PROFESSOR: Sebastião Geraldo Barbosa MARÇO - 304 M A T E M Á T I C A C O M E R C I A L. RAZÕES E PROPORÇÕES.. RAZÃO: Razão de dois números a e b (com b 0) é o quociente de a por b. Indica-se b a ou a :

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

Aula 00 Curso: Raciocínio Lógico e Matemática Professor: Custódio Nascimento

Aula 00 Curso: Raciocínio Lógico e Matemática Professor: Custódio Nascimento Aula 00 Curso: Raciocínio Lógico e Matemática Professor: Custódio Nascimento APRESENTAÇÃO Caros alunos e alunas, Bem vindos ao curso online preparatório para o cargo de Auditor-Fiscal da Receita Federal

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU Movimento Retilíneo Uniforme (MRU) velocímetro do automóvel da figura abaixo marca sempre a mesma velocidade. Quando um móvel possui sempre a mesma velocidade e se movimenta sobre uma reta dizemos que

Leia mais

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido

Leia mais

Profs. Alexandre Lima e Moraes Junior www.pontodosconcursos.com.br 1

Profs. Alexandre Lima e Moraes Junior www.pontodosconcursos.com.br 1 Aula 12 Compreensão e elaboração da lógica das situações por meio de: raciocínio matemático (que envolvam, entre outros, conjuntos numéricos racionais e reais - operações, propriedades, problemas envolvendo

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente C

Gabarito Extensivo MATEMÁTICA volume 1 Frente C Gabarito Extensivo MATEMÁTICA volume 1 Frente C 01) B Helô Bicicleta São João Regina Ônibus São Pedro Ana Moto Santo Antonio Corretas I e II 0) Basta calcular o MMC entre 1, 34 e 84.3.5.7 = 40 Após 40

Leia mais

Progressão Geométrica- 1º ano

Progressão Geométrica- 1º ano Progressão Geométrica- 1º ano 1. Uma seqüência de números reais a, a 2, a 3,... satisfaz à lei de formação A n+1 = 6a n, se n é ímpar A n+1 = (1/3) a n, se n é par. Sabendo-se que a = 2, a) escreva os

Leia mais

a) ( ) 1200 b) ( ) 1800 c) ( ) 2700 d) ( ) 3600 e) ( ) 4500

a) ( ) 1200 b) ( ) 1800 c) ( ) 2700 d) ( ) 3600 e) ( ) 4500 01) A figura abaixo, é formada por um triângulo e um retângulo, usando-se 60 palitos iguais. Para cada lado do triângulo são necessários seis palitos. Se cada palito mede 5 cm de comprimento, qual é a

Leia mais

APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)...

APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)... AULA DEMONSTRATIVA 1. APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)... 3 2.1. EXERCÍCIOS RESOLVIDOS... 3 3. DIVISÃO PROPORCIONAL... 4 3.1. GRANDEZAS DIRETAMENTE PROPORCIONAIS... 4 4. REGRAS

Leia mais

mat fin 2008/6/27 13:15 page 53 #50

mat fin 2008/6/27 13:15 page 53 #50 mat fin 2008/6/27 13:15 page 53 #50 Aula 4 DESCONTO NA CAPITALIZAÇ ÃO SIMPLES O b j e t i v o s Ao final desta aula, você será capaz de: 1 entender o conceito de desconto; 2 entender os conceitos de valor

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio 36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,

Leia mais

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Apostila Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1. REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L10) a Colocarei aqui algumas explicações e exemplos de exercícios para que você possa fazer todos com segurança e tranquilidade, no entanto,

Leia mais

100 % valor correspondente a 100% outro % valor correspondente a outro %

100 % valor correspondente a 100% outro % valor correspondente a outro % PORCENTAGEM Porcentagem é a razão entre uma quantidade qualquer e 100. O símbolo % (por cento) indica a taxa percentual. 5 13 = 5%; = 13% 100 100 Observamos que a taxa pode ser escrita de forma percentual,

Leia mais

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente.

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente. Aluno (a): Disciplina MATEMÁTICA Professor ROLANDO Curso FUNDAMENTAL II ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 7º ANO Número: 1 - Conteúdo: Estudo de sistemas de equações do 1º grau Estudo da

Leia mais

Equacionando problemas

Equacionando problemas Reforço escolar M ate mática Equacionando problemas Dinâmica 2 1º Série 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Algébrico Simbólico Função polinomial do 1 grau Aluno

Leia mais

PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2014-01 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1

PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2014-01 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2014-01 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 Exercício 1 Apesar da existência do Sistema Internacional (SI) de Unidades, ainda existe a divergência

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

22.5.1. Data de Equivalência no Futuro... 22.5.2. Data de Equivalência no Passado... 2. 22.5. Equivalência de Capitais Desconto Comercial...

22.5.1. Data de Equivalência no Futuro... 22.5.2. Data de Equivalência no Passado... 2. 22.5. Equivalência de Capitais Desconto Comercial... Aula 22 Juros Simples. Montante e juros. Descontos Simples. Equivalência Simples de Capital. Taxa real e taxa efetiva. Taxas equivalentes. Capitais equivalentes. Descontos: Desconto racional simples e

Leia mais

Função Afim Função do 1º Grau

Função Afim Função do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do

Leia mais

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio.

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. 1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. Regra de três simples Regra de três simples é um processo prático para resolver problemas que envolvam quatro

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 25 DE OUTUBRO DE 2003 DURAÇÃO: 120 MINUTOS CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300 01) Uma empresa possui 1000 carros, sendo uma parte com motor a gasolina e o restante com motor flex (que funciona com álcool e com gasolina). Numa determinada época, neste conjunto de 1000 carros, 36%

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%.

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES ÁLGEBRA 7º ANO ENSINO FUNDAMENTAL =========================================================================================== 0- Calcule a razão entre:

Leia mais

O vídeo caberá no pendrive e será baixado em 400 segundos.

O vídeo caberá no pendrive e será baixado em 400 segundos. 1) Adriano possui um pendrive XingLing de N GB. Ele quer baixar um video da internet e salvá lo no pendrive, mas quer saber se o vídeo cabe no pendrive. Escreva um programa que pergunte a velocidade da

Leia mais

Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM

Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM PROGRAMAÇÃO DE COMPUTADORES I BCC70 204-02 Aula Prática 02 Exercício Codifique em Scilab as seguintes expressões matemáticas, armazenando-as em variáveis na memória conforme os exemplos. A sin(3.45) cos(2

Leia mais

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { }

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { } CURSO: ASTRONOMIA APLICADA À NAVEGAÇÃO PROFESSOR: ALEXANDRE RIBEIRO ANDRADE MÓDULO 1: MATEMÁTICA APLICADA NA ASTRONOMIA NÁUTICA Apostila 1: Sistema de Unidades utilizadas na Navegação e na Astronomia,

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Regra de três. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Regra de três. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 02 matemática Regra de três Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico Secretaria de Educação a

Leia mais

QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 7

QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 7 QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 7 1. (TRF 4ª região 2014 Analista Judiciário) Da duração total de um julgamento, 7 3 do tempo foi utilizado pelos advogados de defesa e acusação,

Leia mais

Duas grandezas são diretamente proporcionais quando, aumentando ou diminuindo uma delas, a outra grandeza aumenta ou diminui na mesma razão.

Duas grandezas são diretamente proporcionais quando, aumentando ou diminuindo uma delas, a outra grandeza aumenta ou diminui na mesma razão. Regra de três simples Introdução: São problemas onde relacionamos duas grandezas podendo ser diretamente ou inversamente proporcionais. Para a solução dos mesmos consiste em formar com três valores conhecidos

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Técnico do TRT/4ª Região (Rio

Leia mais

Aulas 8 e 9. Aulas 10 e 11. Colégio Jesus Adolescente. a n g l o

Aulas 8 e 9. Aulas 10 e 11. Colégio Jesus Adolescente. a n g l o Colégio Jesus Adolescente a n g l o Ensino Médio 1º Bimestre Disciplina Física Setor A Turma 1º ANO Professor Gnomo Lista de Exercício Bimestral SISTEMA DE ENSINO Aulas 8 e 9 1) Um autorama descreve uma

Leia mais

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7. Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes

Leia mais

GRANDEZAS. A sua nota na prova depende do número de questões que você acerta?

GRANDEZAS. A sua nota na prova depende do número de questões que você acerta? . UNIVERSIDADE CASTELO BRANCO CURSO DE MATEMÁTICA DISCIPLINA: Matemática Financeira - Negócios PROFESSOR: Ramon Silva de Freitas DATA: / / ALUNO: GRANDEZAS Você já pensou que: A sua nota na prova depende

Leia mais

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial Grandezas, Unidades de Medidas e Escala 1) (Enem) Um mecânico de uma equipe de corrida necessita que as seguintes medidas realizadas em um carro sejam obtidas em metros: a) distância a entre os eixos dianteiro

Leia mais

Lê-se como "mais" Ex: 2 + 3 = 5, significa que se somarmos 2 e 3 o resultado é 5. O sinal - também denota um número negativo.

Lê-se como mais Ex: 2 + 3 = 5, significa que se somarmos 2 e 3 o resultado é 5. O sinal - também denota um número negativo. MATEMÁTICA Prof. Pacher TRT-SC OPERADORES E SÍMBOLOS Símbolo Nome Significados e exemplos + adição Lê-se como "mais" Ex: 2 + 3 = 5, significa que se somarmos 2 e 3 o resultado é 5. - subtração / divisão

Leia mais

TEORIA DOS CONJUNTOS PLANO CARTESIANO. Matemática Professor: Mattheus Jucá REVISÃO ENEM

TEORIA DOS CONJUNTOS PLANO CARTESIANO. Matemática Professor: Mattheus Jucá REVISÃO ENEM TEORIA DOS CONJUNTOS 01. (ENEM Cancelado 2009) Uma pesquisa foi realizada para tentar descobrir, do ponto de vista das mulheres, qual é o perfil da parceira ideal procurada pelo homem do séc. XXI. Alguns

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

Matemática (UENF Grupo I)

Matemática (UENF Grupo I) 2 a fase exame discursivo 01/12/2002 Matemática (UENF Grupo I) Neste caderno você encontrará um conjunto de 05 (cinco) páginas numeradas seqüencialmente, contendo 10 (dez) questões de Matemática. Leia

Leia mais