Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema:"

Transcrição

1 1. Considere que, em uma empresa, 50% dos empregados possuam nível médio de escolaridade e 5%, nível superior. Guardadas essas proporções, se 80 empregados dessa empresa possuem nível médio de escolaridade, então a quantidade de empregados com nível superior é igual a: (A) 8. (B) 10. (C) 15. (D) 20. (E) 5. Alternativa A A questão informa que 80 funcionários possuem nível médio de escolaridade, e que esse valor representa 50% do total. Logo, a empresa possui 160 funcionários. Desses, 5% possuem nível superior, que representam 8 funcionários (0,05 x 160). 2. Considerando-se que 3 caixas de encomenda do tipo 2B e 3 caixas de encomenda do tipo flex correios custem, ao todo, R$ 12,00 e que 5 caixas do tipo 2B e 10 do tipo flex correios custem, ao todo, R$ 28,00, é correto afirmar que uma caixa do tipo 2B custa (A) R$ 2,40. (B) R$ 3,15. (C) R$ 3,20. (D) R$ 1,20. (E) R$ 2,00. Alternativa A Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema: A primeira equação do sistema possui todos os coeficientes múltiplos de três e pode ser simplificada por esse fator. Isolando F na primeira equação, tem-se que F = 4 C. Substituindo esse resultado na equação dois: Portanto, o preço da caixa 2B é de R$ 2,40. 5C + 10 (4 C) = 28 5C C = 28-5C = -12 C = 2,4 3. Se o perímetro de um terreno em forma de retângulo é igual a 180 m e se um dos lados desse retângulo mede 10 m a mais que o outro, então a área do terreno é igual a (A) m 2. (B) m 2. (C) m 2. (D) m 2. (E) m 2. Alternativa E A área de um retângulo é o produto dos seus lados. A questão informa que se um lado do retângulo tiver valor l, o outro lado será l+10. O perímetro do retângulo é 180m, o que representa a soma de seus lados, matematicamente: l +10 l + l + l = l + 20 = 180 l 4 l = 160 l = 40 metros Os lados desse retângulo são 40 metros e 50 metros e sua área é metros quadrados (40 x 50).

2 4. Em 2008, nos 200 anos do Banco do Brasil, os Correios lançaram um selo comemorativo com uma tiragem de unidades. No selo, cujo formato é de um retângulo medindo 40 mm 30 mm, a estampa ocupa um retângulo que mede 35 mm 25 mm. Dadas essas condições, é correto afirmar que a área do retângulo da estampa é (A) superior a 90% da área do retângulo do selo. (B) inferior a 75% da área do retângulo do selo. (C) superior a 75% e inferior a 80% da área do retângulo do selo. (D) superior a 80% e inferior a 85% da área do retângulo do selo. (E) superior a 85% e inferior a 90% da área do retângulo do selo. Alternativa B A área do retângulo maior é dada pelo produto de 40mm e 30mm, que resulta em 1.200mm 2. A estampa é um retângulo que possui área dada pelo produto entre 35mm e 25mm e resulta em 875mm 2. Dessa forma, a estampa corresponde a 72,9% da área do selo (875/1200). 5. O piso de uma sala retangular, medindo 3,52 m 4,16 m, será revestido com ladrilhos quadrados, de mesma dimensão, inteiros, de forma que não fique espaço vazio entre ladrilhos vizinhos. Os ladrilhos serão escolhidos de modo que tenham a maior dimensão possível. Se, para assentar os ladrilhos, são utilizados 2 kg de argamassa por m 2 e se a argamassa é vendida em sacos de 3 kg, então a quantidade necessária de sacos de argamassa para completar o serviço é igual a (A) 9. (B) 10. (C) 6. (D) 7. (E) 8. Alternativa B A sala possui 14,64m 2 de área. São necessários dois quilos de argamassa por metro quadrado, logo, para esta sala serão necessários 29,28kg de argamassa. Como o saco de argamassa possui 3kg do produto, deve-se comprar 10 sacos para realizar a obra. Sobrará um pouco de argamassa, porém se forem adquiridos apenas 9 sacos, faltará produto para executar a obra. 6. Das correspondências que deveria entregar, o carteiro Carlos passou delas para o carteiro Jorge; dessas, Jorge 7/10 repassou para o carteiro Marcos. 3/5 Nesse caso, com relação à quantidade de correspondências que Carlos deveria entregar, a quantidade que coube a Marcos é igual a: (A) 3/10 (B) 2/5 (C) 21/50 (D) 10/15 (E) 1/10 Marcos terá que entregar três quintos dos sete décimos das cartas de Carlos, matematicamente: Portanto, Marcos terá que entregar vinte e um cinquenta avos do total de cartas de Carlos.

3 7. Se a agência dos Correios de uma pequena cidade presta, diariamente, 40 atendimentos em média, e se, em razão de festas na cidade, a média de atendimentos diários passar a 52, então, nesse caso, haverá um aumento percentual de atendimentos de (A) 40%. (B) 52%. (C) 90%. (D) 12%. (E) 30%. Alternativa E O número de atendimento que era de 40 atendimentos diários sofreu um aumento e passou a ser 52 atendimentos diários. Denotando o fator de aumento por A, pode-se escrever que: Um fator de aumento 1,3 representa um aumento de 30%. 40 x A = 52 A = 52/40 A = 1,3 Texto para as duas próximas questões Em 2010, entre 2% e 6% da população de uma cidade com habitantes enviaram, por ocasião das festividades natalinas, cartões de felicitações a parentes e amigos. Sabe-se que cada habitante enviou, no máximo, um cartão. 8. Considerando-se que 25% dos referidos cartões tenham sido enviados a moradores de cidades do estado de São Paulo, é correto afirmar que o número que expressa a quantidade de cartões enviada a esse estado está entre (A) 900 e (B) e (C) e (D) 100 e 500. (E) 500 e 900. Alternativa D O menor número de cartão ocorre se exatamente 2% da população enviar cartões; como a população é de habitantes seriam enviados 600 cartões (0,02 x ). Desses, 25% tem destino o estado de São Paulo, ou seja, 150 cartões (0,25 x 600). O maior número de cartão ocorre se exatamente 6% da população enviar cartões; como a população é de habitantes seriam enviados cartões (0,06 x ). Desses, 25% tem destino o estado de São Paulo, ou seja, 450 cartões (0,25 x 1.800). Portanto, o número de cartões enviados é um número maior ou igual a 150 e menor ou igual a 450. Essa possibilidade está inserida na alternativa D, que mostra que o número de cartões deve ser maior que cem e menor que quinhentos.

4 9. Considerando-se que 45 dos cartões enviados pela população da referida cidade tenham sido devolvidos ao remetente, por erro no endereçamento, e que esse número corresponda a 5% dos cartões enviados, é correto afirmar que a porcentagem de habitantes que enviaram cartões de felicitações é igual a (A) 6%. (B) 2%. (C) 3%. (D) 4%. (E) 5%. O enunciado da questão informa que 45 cartões representam 5% do total enviado. Sendo assim, é possível determinar a quantidade total (T) de cartões por uma simples proporção: Como cada habitante da cidade enviou apenas um cartão a quantidade de pessoas que escreveram para celebrar o natal é igual ao número de cartões enviados, ou seja, 900 pessoas. Essas pessoas representam 3% da população total, o que pode ser obtido com uma proporção simples. 10. Considere que, das correspondências que um carteiro deveria entregar em determinado dia, 5/8 foram entregues pela manhã, 1/5 à tarde e 14 ficaram para ser entregues no dia seguinte. Nessa situação, a quantidade de correspondências entregue pelo carteiro naquele dia foi igual a (A) 98. (B) 112. (C) 26. (D) 66. (E) 82. Alternativa D No primeiro dia o carteiro entregou a fração de: Faltaram entregar quatorze correspondências, que representam 7/40 do total de cartas, pois já foram entregues 33/40. Portanto, denominando o total de cartas por T, pode-se escrever que: Dessas 80 cartas apenas 14 ficaram para serem entregues no outro dia. Assim, 66 cartas (80 14) foram entregues no primeiro dia.

5 11. Vários jornais e revistas anunciaram, nos últimos meses, que o preço do quilo de picanha, corte preferido para o preparo de um bom churrasco, subiu 42%. Nesse caso, se um consumidor de picanha decidir manter o mesmo gasto mensal com a compra desse alimento, ele deverá diminuir o consumo em: (A) mais de 40% e menos de 44%. (B) mais de 44% e menos de 48%. (C) mais de 28% e menos de 32%. (D) mais de 32% e menos de 36%. (E) mais de 36% e menos de 40%. Supondo que o gasto mensal seja P reais. Com o aumento no valor do quilo da picanha esse valor passaria a ser 1,42P, porém, para manter o mesmo preço, o consumidor deverá comprar menos produto, ou seja, esse valor sofrerá um desconto devido a menor quantidade de carne comprada, de tal forma que o valor retorne ao original P. Denominando de D a redução que deve ocorrer no consumo da carne, tem-se que: D x 1,42P = P 1,42D = 1 D = 1/1,42 D = 0,70 O fator de desconto de 0,70 representa um desconto de 30%, pois se é necessário comprar apenas 70% de carne ocorreu uma redução de 30%. 12. Considere que sejam cobrados R$ 5,00 para o envio de uma carta comercial simples e uma carta comercial registrada, ambas de até 20 g, e R$ 11,10 para o envio de 3 cartas comerciais simples e 2 registradas, todas de até 20 g. Nessa situação, a diferença entre o preço cobrado para o envio de uma carta comercial registrada e o cobrado para o envio de uma carta comercial simples, ambas de até 20 g, é de (A) R$ 2,60. (B) R$ 2,70. (C) R$ 2,80. (D) R$ 2,90. (E) R$ 2,50. A questão se resolve através de um sistema. Denominando o valor da carta comercial simples por S e da carta comercial registrada por R, pode-se escrever baseado nas informações do enunciado que: Isolando S na equação (I): Substituindo o resultado na equação (II): A carta registrada custa R$ 3,90, portanto a carta simples custa R$ 1,10, pois a soma do valor das duas deve resultar em cinco reais. Dessa forma, a diferença entre o preço de ambas cartas é de R$ 2,80.

6 13. As remunerações brutas mensais isto é, sem qualquer desconto dos empregados de determinada empresa são calculadas com base na soma das seguintes quantidades: salário fixo, no valor de R$ 2.400,00, correspondente a 160 horas trabalhadas no mês; horas extras, definidas como a remuneração correspondente à quantidade de horas e(ou) fração de hora que ultrapassar as 160 horas exigidas, multiplicada pelo valor de cada hora completa, que é igual a R$ 15,00. Com base nessa situação hipotética e considerando-se que, em determinado mês, a remuneração bruta de um empregado dessa empresa foi igual a R$ 2.750,00, é correto afirmar que, nesse mês, esse empregado trabalhou durante 183 horas e (A) 20 minutos. (B) 25 minutos. (C) 30 minutos. (D) 10 minutos. (E) 15 minutos. Alternativa A Por ter trabalhado 183 horas, o trabalhador ganhou os R$ 2.400,00 relativo às 160 horas e mais R$ 345,00 relativo às 23 horas extras a R$ 15,00 cada. Porém, o salário que esse trabalhador recebeu foi de R$ 2.750,00, ou seja, recebeu R$ 5,00 a mais que a soma do salário com as horas extras. Esse valor a mais é proveniente de uma hora extra não completa. Como o valor da hora extra é de R$ 15,00 e o trabalhador recebeu apenas R$ 5,00, significa que ele trabalhou um terço de hora, ou seja, 20 minutos a mais. 14. Sabendo-se que todos os ângulos dos vértices do terreno ilustrado na figura acima medem 90º e que o metro quadrado do terreno custa R$ 120,00, é correto afirmar que o preço desse terreno é: (A) superior a R$ 9.900,00 e inferior a R$ ,00. (B) superior a R$ ,00. (C) inferior a R$ 9.500,00. (D) superior a R$ 9.500,00 e inferior a R$ 9.700,00. (E) superior a R$ 9.700,00 e inferior a R$ 9.900,00. Alternativa D Para determinar a área total do terreno deve-se repartir o mesmo em três retângulos, conforme figura abaixo:

7 A Área 1 tem valor de 60m 2 (10 x 6), a Área2 mede 8m 2 (4x2) e a Área3 possui de 12m 2 (6x2), totalizando uma área de 80m 2 ( ). Como o valor de cada metro quadrado é de R$ 120,00, então o valor do terreno será de R$ 9.600,00 (80 x 120). 15. Na compra de 2 frascos de tira-manchas, cada um deles ao custo de R$ 9,00; 6 frascos de limpador multiuso, cada um deles ao custo de R$ 2,00; 4 litros de desinfetante, cada um deles ao custo de R$ 1,50; e de 6 unidades de esponja dupla face, cada uma delas ao custo de R$ 2,00; um cliente pagou com 3 notas de R$ 20,00, tendo recebido R$ 19,20 de troco. Nesse caso, o cliente recebeu desconto de (A) 13%. (B) 14%. (C) 15%. (D) 16%. (E) 12%. O preço que o cliente pagou foi de 3 x 20 reais subtraído do troco que foi de 19,20, assim: A soma dos preços dos produtos é: Preço pago = 3 x 20 19,20 = R$ 40,80. Soma dos preços = 2 x x x 1,5 + 6 x 2 = R$ 48,00. A porcentagem que o desconto de R$ 7,20 (48,00 40,80) representa pode ser obtida através de uma simples proporção: O cliente recebeu um desconto de 15%.

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

CADERNO DE EXERCÍCIOS 1E

CADERNO DE EXERCÍCIOS 1E CADERNO DE EXERCÍCIOS 1E Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Porcentagem H15 H8 2 Subtração e divisão com números decimais 3 Multiplicação e adição

Leia mais

Matemática. Aula: 02/10. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Aula: 02/10. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Aula: 02/10 Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

PORCENTAGENS www.aplicms.com.br PROF. PEDRO A. SILVA

PORCENTAGENS www.aplicms.com.br PROF. PEDRO A. SILVA PORCENTAGENS Razão centesimal Chamamos de razão centesimal a toda razão cujo conseqüente (denominador) seja igual a. 6 270 2, 5 ; e Outros nomes usamos para uma razão centesimal são razão porcentual e

Leia mais

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem Exercícios de Matemática para Concurso Público Razão e proporção Porcentagem 1. (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 030, segundo o Plano Nacional

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a Comentadas pelo professor: Vinicius Werneck Raciocínio Lógico 1- Prova: ESAF - 2012 - Receita Federal - Auditor Fiscal da Receita Federal Sabendo-se que o conjunto X é dado por X = {x R x² 9 = 0 ou 2x

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTIA DA UNIAMP VESTIULAR 011 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 1 Recentemente, um órgão governamental de pesquisa divulgou que, entre 006 e 009, cerca de 5, milhões de brasileiros

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

O que os clientes não sabem é que o preço de qualquer peça, após o desconto, ainda é maior do que o preço original

O que os clientes não sabem é que o preço de qualquer peça, após o desconto, ainda é maior do que o preço original Atividade extra Exercício 1 Em uma loja de roupas, os preços foram remarcados com um aumento de 40%. O gerente percebeu a queda nas vendas após a remarcação e decidiu anunciar um desconto de 20% em todas

Leia mais

INTRODUÇÃO À MATEMÁTICA FINANCEIRA

INTRODUÇÃO À MATEMÁTICA FINANCEIRA INTRODUÇÃO À MATEMÁTICA FINANCEIRA SISTEMA MONETÁRIO É o conjunto de moedas que circulam num país e cuja aceitação no pagamento de mercadorias, débitos ou serviços é obrigatória por lei. Ele é constituído

Leia mais

Módulo 6 Porcentagem

Módulo 6 Porcentagem Professor: Rômulo Garcia machadogarcia@gmail.com Conteúdo Programático: Razões e proporções, divisão proporcional, regras de três simples e compostas, porcentagens Site: matematicaconcursos.blogspot.com

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Vestibular 1ª Fase Resolução das Questões Objetivas

Vestibular 1ª Fase Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções

Leia mais

A) 1 B) 26 C) 3 D) 4 E) 5 A) 9 B) 9 C) 4 D) 3 E) 8

A) 1 B) 26 C) 3 D) 4 E) 5 A) 9 B) 9 C) 4 D) 3 E) 8 MATEMÁTCA 0. A Empresa Pernambuco S/A revende uma determinada peça automotiva. A gerência comercial da empresa aplica a seguinte regra para venda do produto: a diferença entre o preço de venda e o preço

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 20 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO Uma forma de medir o percentual de gordura corporal

Leia mais

Os juros podem ser capitalizados segundo dois regimes: simples ou compostos.

Os juros podem ser capitalizados segundo dois regimes: simples ou compostos. 1/7 3. Modelos de capitalização simples 4. Modelos de capitalização composta Conceitos básicos A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos

Leia mais

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Professor: Custódio Nascimento 1- Análise da prova Neste artigo, faremos a análise das questões de cobradas na prova

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Professor Manuel MATEMÁTICA FINANCEIRA 01. (UNEB-2008) O proprietário de um imóvel contratou uma imobiliária para vendê-lo, pagando-lhe 5% do valor obtido na transação. Se a imobiliária recebeu R$ 5.600,00,

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK) 000 IT_023672 As balanças podem ser utilizadas para medir a massa dos alimentos nos supermercados. A reta numérica na figura seguinte representa os valores, em quilograma, de uma balança. 0 1 2 3 A partir

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Conceitos básicos A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos de bens de consumo. Consiste em empregar procedimentos

Leia mais

Processo Seletivo 2009-2

Processo Seletivo 2009-2 Processo Seletivo 2009-2 GRUPO 2 UNIVERSIDADE FEDERAL DE GOIÁS PRÓ-REITORIA DE GRADUAÇÃO CENTRO DE SELEÇÃO UFG CADERNO DE QUESTÕES 14/06/2009 Matemática SÓ ABRA QUANDO AUTORIZADO LEIA ATENTAMENTE AS INSTRUÇÕES

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 1) C 6) A 11) D 16) C 2) D 7) C 12) C 17) D 3) E 8) B 13) E 18) A 4) E 9) B 14)

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

Matemática Financeira

Matemática Financeira A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos de bens de consumo. Consiste em empregar procedimentos matemáticos para simplificar a

Leia mais

NOME : Data : / / 9º Ano

NOME : Data : / / 9º Ano NOME : Data : / / 9º Ano 1ª LISTA AVANÇADA MATEMÁTICA 1) (OBM) No desenho ao lado, três cubos iguais estão apoiados sobre uma mesa. Cada cubo tem as faces numeradas por 0, 1, 3, 4, 5, 9, onde cada número

Leia mais

U U +E U U E Sendo E e U dois algarismos não nulos e distintos, a soma E + U é igual a

U U +E U U E Sendo E e U dois algarismos não nulos e distintos, a soma E + U é igual a Resoluções comentadas das questões de Raciocínio Lógico-Matemático da prova para escriturário do Banco do Brasil Realizada pela Cesgranrio em 15/03/2015 11. Observe a adição: U U +E U U E Sendo E e U dois

Leia mais

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS Nome: Ano: 3º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº 02 Assunto: JUROS E PORCENTAGENS 1) Porcentagem Definição: É uma fração que indica a participação de uma quantidade sobre um todo.

Leia mais

% de usuários. essa resposta

% de usuários. essa resposta PROVA DE MATEMÁTICA E FINANCEIRA BANCO DO BRASIL 007 - A numeração segue a ordem do caderno YANQUE. ENUNCIADO PRINCIPAL Segurança: de que forma você cuida da segurança da informação de sua empresa? Resultado

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

PESQUISA DE POTENCIAL DE COMPRAS PARA O NATAL

PESQUISA DE POTENCIAL DE COMPRAS PARA O NATAL PESQUISA DE POTENCIAL DE COMPRAS PARA O NATAL Macapá-AP, Dezembro de 2014 RESULTADOS DA PESQUISA O Instituto de Pesquisa e Desenvolvimento do Comércio do Estado do Amapá (IPDC), ligado a Fecomércio Amapá,

Leia mais

4000 litros. 9min = 2400 litros 15 min. 80%. 200 litros = 160 litros. A quantidade total de água necessária, após a redução é de 2 560 litros.

4000 litros. 9min = 2400 litros 15 min. 80%. 200 litros = 160 litros. A quantidade total de água necessária, após a redução é de 2 560 litros. MATEMÁTICA 1 c Para manter funcionando um chuveiro elétrico durante um banho de 15 minutos e um forno de microondas durante 5 minutos, as quantidades de água que precisam passar pelas turbinas de certa

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

CAIXA ECONOMICA FEDERAL

CAIXA ECONOMICA FEDERAL JUROS SIMPLES Juros Simples comercial é uma modalidade de juro calculado em relação ao capital inicial, neste modelo de capitalização, os juros de todos os períodos serão sempre iguais, pois eles serão

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 7 Ọ ANO EM 2015. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 7 Ọ ANO EM 2015. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (ENEM) Na literatura de cordel, os textos são impressos, em

Leia mais

Lista de Exercícios 10 Matemática Financeira

Lista de Exercícios 10 Matemática Financeira Lista de Exercícios 10 Matemática Financeira Razão Chama-se de razão entre dois números racionais a e b, ao quociente entre eles. Indica-se a razão de a para b por a/b ou a:b. Exemplo: Na sala da 6ª B

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA Caro aluno, Disponibilizo abaixo a resolução das questões de MATEMÁTICA da prova para o cargo de Técnico Bancário do Banco da Amazônia (BASA) 2015. Caso você entenda

Leia mais

SIMPLES UNIVERSAL aumenta a carga tributária das empresas de Representação Comercial. A melhor opção continua sendo o lucro presumido

SIMPLES UNIVERSAL aumenta a carga tributária das empresas de Representação Comercial. A melhor opção continua sendo o lucro presumido SIMPLES UNIVERSAL aumenta a carga tributária das empresas de Representação Comercial A melhor opção continua sendo o lucro presumido Por Pedro Paulo Garcia de Carvalho Procuradoria - Core-MG Advogado e

Leia mais

1ª Resolução A A soma das medidas dos quatro ângulos do quadrilátero ABCD é igual a 360º:

1ª Resolução A A soma das medidas dos quatro ângulos do quadrilátero ABCD é igual a 360º: Atenção: A banca responsável pela elaboração da prova de Matemática Aplicada cometeu um engano no enunciado da primeira questão: os dados apresentados são incompatíveis com o enunciado do problema. Preocupados,

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então 1. (Uerj 2015) Na imagem da etiqueta, informa-se o valor a ser pago por 0,256 kg de peito de peru. O SUS oferece 1,0 médico para cada grupo de x habitantes. Na região Norte, o valor de x é aproximadamente

Leia mais

A realização de um grande sonho

A realização de um grande sonho Reforço escolar M ate mática A realização de um grande sonho Dinâmica 7 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras

Leia mais

SIGNIFICADO DAS PORCENTAGENS Dizer que 10% (lê-se: dez por cento) dos brasileiros são analfabetos é igual a dizer

SIGNIFICADO DAS PORCENTAGENS Dizer que 10% (lê-se: dez por cento) dos brasileiros são analfabetos é igual a dizer Olá pessoal! Este é o nosso segundo encontro. Nele faremos uma revisão de porcentagem. Assunto muito querido pela banca FCC, Vamos começar. PORCENTAGEM TEORIA A expressão por cento significa por cada cem,

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

Lista de Exercícios 3 Estrutura Condicional

Lista de Exercícios 3 Estrutura Condicional 1 Lista de Exercícios 3 Estrutura Condicional 1. A nota final de um estudante é calculada a partir de três notas atribuídas respectivamente a um trabalho de laboratório, a uma avaliação semestral e a um

Leia mais

Sistema de Numeração e Aritmética Básica

Sistema de Numeração e Aritmética Básica 1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para

Leia mais

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 1. Com um automóvel que faz uma média de consumo de 12 km por litro, um motorista A gasta em uma viagem R$ 143,00 em combustível, abastecendo ao preço de R$ 2,60

Leia mais

Deixo para ajudar nos seus estudos 15 testes resolvidos e comentados. Ótimos estudos e conte conosco sempre.

Deixo para ajudar nos seus estudos 15 testes resolvidos e comentados. Ótimos estudos e conte conosco sempre. TESTES DE MATEMÁTICA FINANCEIRA RESOLVIDOS Deixo para ajudar nos seus estudos 15 testes resolvidos e comentados. Ótimos estudos e conte conosco sempre. Prof Pacher Testes 1. (ESAF) Admita-se que uma duplicata

Leia mais

Lista de Revisão do Enem 3ª Semana

Lista de Revisão do Enem 3ª Semana Porcentagem Estatística Lista de Revisão do Enem 3ª Semana 01. (Enem 2014) Um cliente fez um orçamento com uma cozinheira para comprar 10 centos de quibe e 15 centos de coxinha e o valor total foi de R$

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

Juros Simples. www.siteadministravel.com.br

Juros Simples. www.siteadministravel.com.br Juros Simples Juros simples é o acréscimo percentual que normalmente é cobrado quando uma dívida não foi pago na data do vencimento. Financiamento de casa própria A casa própria é o sonho de muitas famílias,

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 04 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (OBEMEP- ADAPTADO) Laura e sua avó Ana acabaram de descobrir que,

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA PORCENTAGEM MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA Quando é dito que 40% das pessoas entrevistadas votaram no candidato A, esta sendo afirmado que, em média, de cada pessoas, 40 votaram no candidato

Leia mais

Amigos, amigos, negócios à parte!

Amigos, amigos, negócios à parte! Reforço escolar M ate mática Amigos, amigos, negócios à parte! Dinâmica 4 2º Série 2º Bimestre Aluno DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 2ª Numérico Aritmético Matemática Financeira Primeira

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0,

Leia mais

Questão do ENEM 1. Conclusão. Questão do ENEM 4. Caso o posto X encerre suas atividades, teremos: 1º caso (dois octógonos e um de outro tipo)

Questão do ENEM 1. Conclusão. Questão do ENEM 4. Caso o posto X encerre suas atividades, teremos: 1º caso (dois octógonos e um de outro tipo) Questão do ENEM 1 Consideremos uma combinação de dois tipos diferentes de ladrilhos em que um deles é, necessariamente, um octógono regular. Temos dois casos para análise: 1º caso (dois octógonos e um

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Prova do Nível 1 (resolvida)

Prova do Nível 1 (resolvida) Prova do Nível (resolvida) ª fase 0 de novembro de 0 Instruções para realização da prova. Verifique se este caderno contém 0 questões e/ou qualquer tipo de defeito. Se houver algum problema, avise imediatamente

Leia mais

EXERCÍCIOS IV SÉRIES DE PAGAMENTOS IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais

EXERCÍCIOS IV SÉRIES DE PAGAMENTOS IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais e mensais de $ 1.000,00 cada uma, dentro do conceito de termos vencidos, sabendo-se que

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

Algoritmos e Linguagens de Programação

Algoritmos e Linguagens de Programação Estrutura Sequencial Lista de Exercícios 01 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior IMPORTANTE: Lembre-se! As respostas apresentadas a seguir não são únicas. Ou seja, existem

Leia mais

BANCO DO BRASIL - 2015 Questão 11. Resolução:

BANCO DO BRASIL - 2015 Questão 11. Resolução: Observe a adição: BANCO DO BRASIL - 2015 Questão 11 Sendo E e U dois algarismos não nulos e distintos, a soma E + U é igual a (A) 13 (B) 14 (C) 15 (D) 16 (E) 17 Temos: U + U + 10E + U = 10U + E 3 U + 10E

Leia mais

MATEMÁTICA COMERCIAL

MATEMÁTICA COMERCIAL I.1 Introdução à Porcentagem Um amigo diz a outro: O meu aluguel subiu R$ 200,00 O outro responde: Só, o meu subiu R$ 400,00. MATEMÁTICA COMERCIAL Em valores absolutos, o que respondeu por último teve

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA FINANCEIRA MAT 191 PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA FINANCEIRA MAT 191 PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA FINANCEIRA MAT 191 PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO LISTA 2 1) Um título, com valor de face igual a $1.000,00,

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA

MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA A prova de matemática deste ano mudou o perfil em relação aos anos anteriores, muito embora algumas características tenham sido mantidas, como a preocupação na contextualização

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm 1 Um estudante tinha de calcular a área do triângulo C, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento 'C' paralelo a C, a altura C' H do triângulo 'C' e, com uma régua, obteve

Leia mais

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. 1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

ATIVIDADES DE MATEMÁTICA 8ª A/B

ATIVIDADES DE MATEMÁTICA 8ª A/B ATIVIDADES DE MATEMÁTICA 8ª A/B 1. Se toda a espécie humana atual fosse formada por apenas 100 famílias, 7 dessas famílias estariam consumindo 80% de toda a energia gerada no planeta. a) Quanto por cento,

Leia mais

MA12 - Unidade 10 Matemática Financeira Semana 09/05 a 15/05

MA12 - Unidade 10 Matemática Financeira Semana 09/05 a 15/05 MA12 - Unidade 10 Matemática Financeira Semana 09/05 a 15/05 Uma das importantes aplicações de progressões geométricas é a Matemática Financeira. A operação básica da matemática nanceira é a operação de

Leia mais

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Apostila Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1 Soluções integrais Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo Soluções do Capítulo 1 Basta somar os valores, lembrando que seta para baixo indica valor

Leia mais

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos:

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Nome: nº: 6º ano: do Ensino Fundamental Professores: Edilaine e Luiz Carlos TER Área e perímetro O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Área do quadrado: Lado x Lado

Leia mais

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

Resolução. = a = 700 cm = 7m; = b = 400 cm = 4 m; perímetro = 2 (7 + 4) = 22; 14 x 22 = 308; área = 7 x 4 = 28; 20 x 28 = 560; 308 + 560 = 868

Resolução. = a = 700 cm = 7m; = b = 400 cm = 4 m; perímetro = 2 (7 + 4) = 22; 14 x 22 = 308; área = 7 x 4 = 28; 20 x 28 = 560; 308 + 560 = 868 1 A figura abaixo é uma representação plana de certo apartamento, feita na escala 1: 00, ou seja, 1 cm na representação plana corresponde a 00 cm na realidade. Vão ser colocados rodapé e carpete no salão.

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos amigos concurseiros. Seguem breves comentários à prova de RLQ do ATA- MF. Não encontramos nenhuma questão passível de recurso. Mas, se vocês tiverem visualizado alguma coisa e quiserem debater

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

A Matemática e o dinheiro

A Matemática e o dinheiro A Matemática e o dinheiro A UUL AL A Muita gente pensa que a Matemática, em relação ao dinheiro, só serve para fazer troco e para calcular o total a pagar no caixa. Não é bem assim. Sem a Matemática, não

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matemática Comprimento ou Perímetro Um exemplo claro do uso do conhecimento matemático nessas simples situações é quando precisamos saber

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B Questão TIPO DE PROVA: A Um taxista inicia o dia de traalho com o tanque de comustível de seu carro inteiramente cheio. Percorre 35 km e reaastece, sendo necessários 5 litros para completar o tanque. Em

Leia mais

DISCURSIVAS SÉRIE AULA AULA 01

DISCURSIVAS SÉRIE AULA AULA 01 ANÁLISE MATEMÁTICA BÁSICA DISCURSIVAS SÉRIE AULA AULA 01 H40120M 4800 35 M120 1200M) H80 M MATEMÁTICA V M H 1) (Unicamp SP) M120H 50 A média aritmética das idades de um grupo de 120 pessoas é de 40 anos.

Leia mais