Equação do Segundo Grau

Tamanho: px
Começar a partir da página:

Download "Equação do Segundo Grau"

Transcrição

1 Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0, é: a) b) 1 c) 1 d) 1/ e) 1/. (G1 - ifce 014) Determinando-se, na equação x 6x , a soma das raízes, obtémse a) 5. b) 4. c). d). e) (Ufg 014) Uma loja vende Q caixas de um certo tipo de buchas plásticas por R$ 480,00. Para acabar com o estoque dessas buchas, a loja anuncia um desconto de R$ 8,00 no preço de cada caixa, de modo que o preço de Q caixas dessas buchas ainda é R$ 480,00. Diante do exposto, calcule o valor de Q. 5. (G1 - cftrj 014) Para qual valor de a a equação x ax x ax 1 0 tem duas raízes reais e iguais? a) 1 b) 0 c) 1 d) 6. (Espm 014) Se as raízes da equação igual a: a) 5 b) 4 c) 4 x 5x 4 0 são m e n, o valor de 1 1 é m n d) 7 4 e) 5 Página 1 de 10

2 7. (Unifor 014) Uma indústria de cimento contrata uma transportadora de caminhões para fazer a entrega de 60 toneladas de cimento por dia em Fortaleza. Devido a problemas operacionais diversos, em certo dia, cada caminhão foi carregado com 500 kg a menos que o usual, fazendo com que a transportadora nesse dia contratasse mais 4 caminhões para cumprir o contrato. Baseado nos dados acima se pode afirmar que o número de caminhões usado naquele dia foi: a) 4 b) 5 c) 6 d) 7 e) 8 8. (G1 - cftmg 01) Se o produto de dois números naturais pares consecutivos é igual a 60, então a soma deles é a). b) 4. c) 6. d) (G1 - utfpr 01) O(s) valor(es) de m para que a equação uma raiz real é(são): a) 0. b) 4. c) 1. d). e) inexistente para satisfazer esta condição. x mx 0 tenha apenas 10. (Uepg 01) Sendo p e q as raízes da função assinale o que for correto. 01) O valor de a é um número inteiro. 0) O valor de a está entre 0 e 0. 04) O valor de a é um número positivo. 08) O valor de a é um número menor que ) O valor de a é um número fracionário. y x 5x a, onde 1 1 4, p q 11. (Enem PPL 01) Uma fábrica utiliza sua frota particular de caminhões para distribuir as 90 toneladas de sua produção semanal. Todos os caminhões são do mesmo modelo e, para aumentar a vida útil da frota, adota-se a política de reduzir a capacidade máxima de carga de cada caminhão em meia tonelada. Com essa medida de redução, o número de caminhões necessários para transportar a produção semanal aumenta em 6 unidades em relação ao número de caminhões necessários para transportar a produção, usando a capacidade máxima de carga de cada caminhão. Qual é o número atual de caminhões que essa fábrica usa para transportar a produção semanal, respeitando-se a política de redução de carga? a) 6 b) 0 c) 19 d) 16 e) (Fuvest 01) Um empreiteiro contratou um serviço com um grupo de trabalhadores pelo valor de R$ ,00 a serem igualmente divididos entre eles. Como três desistiram do trabalho, o valor contratado foi dividido igualmente entre os demais. Assim, o empreiteiro pagou, a cada um dos trabalhadores que realizaram o serviço, R$ 600,00 além do combinado no acordo original. a) Quantos trabalhadores realizaram o serviço? b) Quanto recebeu cada um deles? Página de 10

3 1. (G1 - cftmg 01) As raízes da equação x + mx + n = 0 são reais e simétricas. Nessas condições, m e n são números reais de modo que a) m = 0 e n > 0. b) m = 0 e n < 0. c) m < 0 e n > 0. d) m > 0 e n > (Espm 01) As raízes da equação α β αβ α β é: a) 9 b) 49 c) 1 d) 5 e) (Unisinos 01) As soluções da equação a) - 4 e -1. b) - 4 e 1. c) - 4 e. d) - 1 e. e) 1 e. x 7x 18 0 são α e β. O valor da expressão x x 4 0 são 16. (G1 - utfpr 01) Fulano vai expor seu trabalho em uma feira e recebeu a informação de que seu estande deve ocupar uma área retangular de 1 m e perímetro igual a 14 m. Determine, em metros, a diferença entre as dimensões que o estande deve ter. a). b) 1,5. c). d),5. e) (Unioeste 01) Um quintal tem a forma de um retângulo tal que a medida de um de seus lados é o triplo da medida do outro e seu perímetro em metros é igual à sua área em metros quadrados. Neste caso, quanto mede o maior lado do quintal? a) m. b) 4 m. c) 8 m. d) 6 m. e) 18 m. 18. (G1 - cftmg 01) O módulo da menor raiz da equação a) 0,0008. b) 0,008. c) 0,08. d) 0,8. 8 x é Página de 10

4 19. (G1 - ifce 01) Se x 1 e x são as raízes da equação x 5x + p = 0, onde p é um número real, e sabendo-se que, x 1 x pode-se concluir corretamente que a) p =. b) p = 8/5. c) p = 0. d) p =. e) p = (Uespi 01) Para qual valor real e positivo de a, a soma dos quadrados das raízes da equação x ax 1 é igual a 5? a) 7 b) 6 c) 5 d) 4 e) 1. (G1 - utfpr 01) Renata apresentou a sua amiga a seguinte charada: Um número x cujo quadrado aumentado do seu dobro é igual a 15. Qual é a resposta correta desta charada? a) x = ou x = 5. b) x = ou x = 5. c) x = ou x = 5. d) x = ou x = 5. e) apenas x =.. (G1 - ifpe 01) Sérgio está fazendo um regime alimentar. Numa conversa com seu amigo Olavo, este lhe perguntou: Com quantos quilogramas você está agora?. Como os dois são professores de matemática, Sérgio lhe respondeu com o desafio: A minha massa atual é um número que, diminuído de sete vezes a sua raiz quadrada dá como resultado o número 44. Assinale a alternativa que apresenta a massa atual do Prof. Sérgio, em quilogramas. a) 100 b) 110 c) 115 d) 11 e) 15. (G1 - ifal 01) Assinale a alternativa que complete a frase: A equação do º grau x 5x =... a) admite duas raízes inteiras. b) admite uma raiz natural. c) não admite raízes reais. d) admite duas raízes naturais. e) admite duas raízes negativas. 4. (G1 - ifba 01) Considere a equação do º grau, em x, dada por 5x +bx+c=0. Se as raízes dessa equação são r1=-1 e r=/5, então o produto b. c é igual a: a) 1 b) 5 c) - 5 d) 6 e) (G1 - epcar (Cpcar) 011) Se 4 1 y y y 1, então a) 0 < a < 1 b) 1 a * a é raiz da equação na incógnita y, c) a 5 d) a Página 4 de 10

5 Gabarito: Resposta da questão 1: [C] Considerando a equação produto x 1 x 5 x 5x 6 0, temos; x 1 0 x 1 (Não possui raízes reais) x 5 0 x 5 x 5 x 5 ( 5) 1 x 5x 6 0 x x ou x 1 Portanto, a soma de suas raízes inteiras será 5 ( 5) 5. Resposta da questão : [D] 1 1 x x ou x 1, logo o valor da maior das raízes da equação x + x + 1 = 0, é 4 1. Resposta da questão : [C] A soma das raízes S de uma equação do segundo grau é dada por: b S a 6 Resposta da questão 4: Seja p o preço de uma caixa. Temos Qp 480 Q 10. (Q )(p 8) 480 p 48 Portanto, Q 10. Resposta da questão 5: [C] x ax x ax 1 0 (x ) (ax ax 1) 0 (x ) (ax ) 0 Para que x = seja raiz dupla devemos ter a 0 a 1. Página 5 de 10

6 Resposta da questão 6: [A] Sendo a, b 5 e c 4, das relações entre coeficientes e raízes, vem b 1 1 n m a b ( 5) 5. m n mn c c 4 4 a Resposta da questão 7: [A] Sejam n e q, respectivamente, o número de caminhões utilizado e a capacidade de cada caminhão. Tem-se que n q (n 4) (q 500) q 15 n 500. Desse modo, vem n q n (15 n 500) n 4n n 0. Portanto, o resultado pedido é Resposta da questão 8: [D] Sejam n e n dois números naturais pares consecutivos cujo produto é 60. É fácil ver que n 18. Logo, a soma pedida é n 8. Resposta da questão 9: [D] Considerando o valor do Delta nulo, temos: m 1 = 0 m 1 m Obs.: uma equação do segundo grau com discriminante nulo apresenta duas raízes reais e iguais. Resposta da questão 10: = p q 4 (p q) 4 p q p q p q O triplo da soma das raízes é igual ao quádruplo do produto das raízes ( 5) a a 1 4a 7 a a 6, Página 6 de 10

7 [01] Falsa, 6,75 não é inteiro. [0] Verdadeira, 0 < 6,75 < 0. [04] Verdadeira, 6,75 > 0. [08] Verdadeira, 6,75 < 10. [16] Verdadeira, pois a = 7/4. Resposta da questão 11: [A] Sejam n e c, respectivamente o número de caminhões e a capacidade máxima de cada 1 caminhão. Logo, como n c 90 e (n 6) (c ) 90, segue-se que n 6n Daí, como n é natural, só pode ser n 0 e, portanto, o resultado pedido é Resposta da questão 1: n = número inicial de trabalhadores. Cada trabalhador deveria receber n Como três desistiram e os demais receberam cada 600 reais a mais referente ao valor que caberia aos três desistentes, temos a equação: (n ) 6.(n ) 6n 18n 4 0 n n Resolvendo a equação acima, temos: n = 9 ou n = 6 (não convém). a) Portanto, 6 (9 ) trabalhadores realizaram o serviço. b) Cada um deles recebeu reais. 6 Resposta da questão 1: [B] Se as raízes são simétricas, então sua soma é igual a zero, isto é, disso, como as raízes são reais, deve-se ter 4 1 n 0 n 0. Resposta da questão 14: [B] Pelas Relações de Girard, obtemos α β αβ α β αβ ( α β) ( α β) ( α β) ( αβ 1) 7 ( 6 1) e 6. Logo, m 0 m 0. Além 1 Página 7 de 10

8 Resposta da questão 15: [B] Basta aplicar a fórmula para a resolução da equação do º grau. 4.1.( 4) 5 x 4 x.1 x 1 Portanto, as soluções são - 4 e 1. Resposta da questão 16: [E] Para que o perímetro do retângulo seja 14, as dimensões deverão ser x e 7 x. Como a área (A) é 1, podemos escrever: x 7 x 1 x 7x 1 0 x 7 4 x 7x 1 0 x Portanto a diferença entre suas dimensões é 4 1. Resposta da questão 17: [C] Medidas dos lados: x e x Perímetro: P = x + x + x + x = 8x Área: x Fazendo A = P, temos: x = 8x x = 0 (não convém) ou x = 8/ Portanto, x =.(8/) = 8. Resposta da questão 18: [A] 8 x x x 0,0008 ou x 0,0008. Portanto, 0,0008 0, Página 8 de 10

9 Resposta da questão 19: [E] x1 x p p 4. x1 x x1 x p p Resposta da questão 0: [A] Suponhamos que a equação seja x ax 1 0. Se e são as raízes da equação, então queremos calcular o valor real positivo de a para o qual α β 5. Das relações entre coeficientes e raízes, segue que Portanto, como α β ( α β) α β, vem α β a e 1. α β 5 ( α β) α β 5 Observação: ( a) 1 5 a 49 a 7. Resposta da questão 1: [D] x + x = 15 x + x 15 = 0 x ax 1 é uma expressão. Resolvendo a equação do segundo grau, temos: 64 8 x x.1 6 x 10 x 5 Resposta da questão : [D] x = massa de Sérgio. De acordo com o problema, temos: x 7. x 44 0 x 7x 44 0 Resolvendo a equação temos: x = 11 ou x =- 4 (não convém) Portanto, a massa de Sérgio será: x = 11 = 11 kg Página 9 de 10

10 Resposta da questão : [B] Resolvendo a equação acima, temos: x x ou x, logo, admite uma raiz natural. 4 Resposta da questão 4: [E] b b r1 r 1 b c c r 1. r 1 c a 5 5 Portanto, b c 6. Resposta da questão 5: [B] 4 1 y y y y y y y 1 y y y y y y y 4y 4y 5 4y 5y 0 y.(4y 5) 0 y 0(não convém) ou y 1,5(convém) 4 Verificação: Portanto, a = 1,5 e (verdade) a. Página 10 de 10

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau Exercícios de Matemática para Concurso Público Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau. (G - utfpr 05) A soma de dois números é 64, se um é o triplo do outro

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

x 5x 6 a) b) 1,6 01. Qual é o número cujo dobro somado com sua quinta parte é igual a 121?

x 5x 6 a) b) 1,6 01. Qual é o número cujo dobro somado com sua quinta parte é igual a 121? Nome: ºANO / CURSO TURMA: DATA: / / 0 Professor: Paulo 0. Qual é o número cujo dobro somado com sua quinta parte é igual a? 0. Para impressionar Pedro, Lucas propôs a seguintebrincadeira: - Escolha um

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau Inequação do Primeiro Grau 1. (Unicamp 015) Seja a um número real positivo e considere as funções afins f(x) ax 3a e g(x) 9 x, definidas para todo número real x. a) Encontre o número de soluções inteiras

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Enem 2013) Na aferição de um novo semáforo, os tempos são ajustados de modo que, em cada ciclo completo (verde-amarelo-vermelho), a luz amarela permaneça acesa por 5 segundos, e o tempo em que a luz

Leia mais

Exercícios de Matemática Equações de Segundo Grau

Exercícios de Matemática Equações de Segundo Grau Exercícios de Matemática Equações de Segundo Grau 2. (Ita 2001) O conjunto de todos os valores de m para os quais a função TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos

Leia mais

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem Exercícios de Matemática para Concurso Público Razão e proporção Porcentagem 1. (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 030, segundo o Plano Nacional

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto Todas as questões encontram-se comentadas na videoaula do canal maismatemática, disponível para visualização gratuita no seguinte link: https://www.youtube.com/watch?v=tlsqgpe7td8 NÍVEL BÁSICO 1. (G1 -

Leia mais

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então 1. (Uerj 2015) Na imagem da etiqueta, informa-se o valor a ser pago por 0,256 kg de peito de peru. O SUS oferece 1,0 médico para cada grupo de x habitantes. Na região Norte, o valor de x é aproximadamente

Leia mais

RESUMO TEÓRICO. Operações Elementares não alteram a solução de um sistema e fazem parte dos processos de busca de tal solução.

RESUMO TEÓRICO. Operações Elementares não alteram a solução de um sistema e fazem parte dos processos de busca de tal solução. RESUMO TEÓRICO IDÉIAS DOS CONCEITOS: Sistemas Lineares como composição de várias equações lineares, que devem ser satisfeitas simultaneamente. De um modo geral, tais equações modelam restrições encontradas

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 7 Ọ ANO EM 2015. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 7 Ọ ANO EM 2015. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (ENEM) Na literatura de cordel, os textos são impressos, em

Leia mais

Potenciação. 2. (G1 - epcar (Cpcar) 2013) O oposto do número real. está

Potenciação. 2. (G1 - epcar (Cpcar) 2013) O oposto do número real. está Potenciação 1. (Ufrgs 01) Um adulto humano saudável abriga cerca de 100 bilhões de bactérias, somente em seu trato digestivo. Esse número de bactérias pode ser escrito como 9 10 11 1 1 a) 10. b) 10. c)

Leia mais

UFMS - PRÓ ENEM Matemática Estatística e Médias

UFMS - PRÓ ENEM Matemática Estatística e Médias 1. (Ufsm 01) O Brasil é o quarto produtor mundial de alimentos, produzindo mais do que o necessário para alimentar sua população. Entretanto, grande parte da produção é desperdiçada. O gráfico mostra o

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

PA Progressão Aritmética

PA Progressão Aritmética PA Progressão Aritmética 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a) 3,0 m. b),0

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Conjuntos. Determine quantas pessoas responderam a essa pesquisa. a) 200 b) 250 c) 320 d) 370 e) 530

Conjuntos. Determine quantas pessoas responderam a essa pesquisa. a) 200 b) 250 c) 320 d) 370 e) 530 Conjuntos 1. (Espcex (Aman) 2014) Uma determinada empresa de biscoitos realizou uma pesquisa sobre a preferência de seus consumidores em relação a seus três produtos: biscoitos cream cracker, wafer e recheados.

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3 MATEMÁTICA NÚMEROS COMPLEXOS 1. U. Católica Dom Bosco-MS O valor do número real x para que o conjugado do número complexo (x + i)(1 + xi) seja igual a i é: a) b) 1 c) 1 d) e) 1. UFCE Considere o número

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada Exercícios de Matemática para Concurso Público Média Aritmética (simples) Média Ponderada 1. (Uema 201) Em um seletivo para contratação de estagiários, foram aplicadas duas provas: uma de Conhecimentos

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

COLÉGIO MONS. JOVINIANO BARRETO

COLÉGIO MONS. JOVINIANO BARRETO GABARITO ª CHAMADA 3ª ETAPA MATEMÁTICA COLÉGIO MONS. JOVINIANO BARRETO 5 ANOS DE HISTÓRIA ENSINO E DISCIPLINA Rua Frei Vidal, 161 São João do Tauape/Fone/Fax: 37-195 www.jovinianobarreto.com.br º ANO Nº

Leia mais

esse determinante se anula. Tomemos a matriz ampliada do sistema, com a 2 :

esse determinante se anula. Tomemos a matriz ampliada do sistema, com a 2 : 1. Sobre o sistema de equações lineares apresentado abaixo, analise as proposições a seguir, sendo a um parâmetro real. x y z x ay z 1 x y z 3 ( ) Se a, então o sistema admite infinitas soluções. ( ) O

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

A) 1 B) 26 C) 3 D) 4 E) 5 A) 9 B) 9 C) 4 D) 3 E) 8

A) 1 B) 26 C) 3 D) 4 E) 5 A) 9 B) 9 C) 4 D) 3 E) 8 MATEMÁTCA 0. A Empresa Pernambuco S/A revende uma determinada peça automotiva. A gerência comercial da empresa aplica a seguinte regra para venda do produto: a diferença entre o preço de venda e o preço

Leia mais

Espelhos Esféricos Gauss 2013

Espelhos Esféricos Gauss 2013 Espelhos Esféricos Gauss 2013 1. (Unesp 2012) Observe o adesivo plástico apresentado no espelho côncavo de raio de curvatura igual a 1,0 m, na figura 1. Essa informação indica que o espelho produz imagens

Leia mais

Equações do segundo grau

Equações do segundo grau Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

Programação. Folha Prática 3. Lab. 3. Departamento de Informática Universidade da Beira Interior Portugal 2015. Copyright 2010 All rights reserved.

Programação. Folha Prática 3. Lab. 3. Departamento de Informática Universidade da Beira Interior Portugal 2015. Copyright 2010 All rights reserved. Programação Folha Prática 3 Lab. 3 Departamento de Informática Universidade da Beira Interior Portugal 2015 Copyright 2010 All rights reserved. LAB. 3 3ª semana EXPRESSÕES E INSTRUÇÕES 1. Revisão de conceitos

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER ANÁLISE Quantitativa e Lógica Utilize as informações a seguir para as questões 01 e 02. Uma estação de trens é constituída por dois galpões cujas fachadas têm a forma de dois semicírculos que se tangenciam,

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Determine a capacidade total do tanque de combustível da caminhonete. Justifique sua resposta.

Determine a capacidade total do tanque de combustível da caminhonete. Justifique sua resposta. 1. (Fuvest 01) Um empreiteiro contratou um serviço com um grupo de trabalhadores pelo valor de R$ 10.800,00 a serem igualmente divididos entre eles. Como três desistiram do trabalho, o valor contratado

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema:

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema: 1. Considere que, em uma empresa, 50% dos empregados possuam nível médio de escolaridade e 5%, nível superior. Guardadas essas proporções, se 80 empregados dessa empresa possuem nível médio de escolaridade,

Leia mais

Módulo de Juros e Porcentagem. Juros Simples e Compostos. Sétimo Ano

Módulo de Juros e Porcentagem. Juros Simples e Compostos. Sétimo Ano Módulo de Juros e Porcentagem Juros Simples e Compostos Sétimo Ano Juros Simples e Compostos 1 Eercícios Introdutórios Eercício 1. Um investidor quer aplicar a quantia de R$ 800, 00 por 3 meses, a uma

Leia mais

//Leitura de Variáveis System.out.print("Digite a temperatura atual: "); temp = leia.nextfloat();

//Leitura de Variáveis System.out.print(Digite a temperatura atual: ); temp = leia.nextfloat(); Bacharelado em Ciência e Tecnologia BC-0505 Processamento da Informação Lista de Exercícios Nº 02 Algoritmos Computacionais Estruturas de Seleção Soluções de Referência em Java ATENÇÃO- Para cada um dos

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

Questão 1. Questão 3. Questão 2. alternativa D. alternativa C. alternativa A

Questão 1. Questão 3. Questão 2. alternativa D. alternativa C. alternativa A Questão 1 Paulo comprou um automóvel fle ue pode ser abastecido com álcool ou com gasolina. O manual da montadora informa ue o consumo médio do veículo é de km por litro de álcool ou 1 km por litro de

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r Sequências. (Uem 03) Seja r um número inteiro positivo fixado. Considere a sequência numérica a definida por r e assinale o que for correto. an an a 0) A soma dos 50 primeiros termos da sequência (a, a,

Leia mais

Problemas de função do 1º grau

Problemas de função do 1º grau Problemas de função do º grau. (Ucs 204) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total, em reais, das vendas que ele efetuar durante o mês. Em um mês em que suas vendas

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B Questão TIPO DE PROVA: A Um taxista inicia o dia de traalho com o tanque de comustível de seu carro inteiramente cheio. Percorre 35 km e reaastece, sendo necessários 5 litros para completar o tanque. Em

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

LISTA BÁSICA MATEMÁTICA

LISTA BÁSICA MATEMÁTICA LISTA BÁSICA Professor: ARGENTINO FÉRIAS: O ANO DATA: 0 / 06 / 0 MATEMÁTICA 6 0 6 +, + 4 é:. O valor de ( ) ( ) ( ) a) b) c) 7 d) 9 e). Considere a epressão numérica a) 9 b) 0 c) 8,00 d) 69 e) 9,00000

Leia mais

MATEMÁTICA. 10 10 t = = t = anos

MATEMÁTICA. 10 10 t = = t = anos MATEMÁTICA 9 d Seja n um número qualquer, inteiro e positivo. Se n é par, divida-o por ; se n é ímpar, multiplique-o por e adicione ao resultado. Esse procedimento deve ser repetido até que se obtenha

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Progressão Aritmética

Progressão Aritmética Progressão Aritmética 1. (G1 - cftrj 14) Disponha os números 1,,, 4,, 6, 7, 8 e 9 nas casas do tabuleiro abaixo de modo que: o número 9 ocupe a casa central, os números da primeira linha sejam todos ímpares

Leia mais

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Formulação A programação linear lida com problemas nos quais uma função objectivo linear deve ser optimizada (maximizada ou minimizada)

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1). 1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor

Leia mais

Roda de Samba. Série Matemática na Escola

Roda de Samba. Série Matemática na Escola Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

LISTA DE EXERCÍCIOS SISTEMAS LINEARES 2º EM 2015 Prof. MARCO POLO

LISTA DE EXERCÍCIOS SISTEMAS LINEARES 2º EM 2015 Prof. MARCO POLO LISTA DE EXERCÍCIOS SISTEMAS LINEARES 2º EM 2015 Prof. MARCO POLO 01.(GV) Como se sabe, no jogo de basquete existe uma linha chamada linha dos três pontos. Cada arremesso convertido de dentro dessa linha

Leia mais

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Circunferência e Círculos

Circunferência e Círculos Circunferência e Círculos 1. (Unifor 2014) Os pneus de uma bicicleta têm raio R e seus centros distam R. Além disso, a reta t passa por P e é tangente à circunferência do pneu, formando um ângulo α com

Leia mais

Soluções dos Exercícios do Capítulo 5

Soluções dos Exercícios do Capítulo 5 A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 5 5.1. Menor do que o dobro, pois na segunda metade da corrida não foi cobrada a bandeirada. Algebricamente: se f(x) = ax + b então

Leia mais

Prova do Nível 1 (resolvida)

Prova do Nível 1 (resolvida) Prova do Nível (resolvida) ª fase 0 de novembro de 0 Instruções para realização da prova. Verifique se este caderno contém 0 questões e/ou qualquer tipo de defeito. Se houver algum problema, avise imediatamente

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais