ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.
|
|
- Gabriela Batista Graça
- 2 Há anos
- Visualizações:
Transcrição
1
2 2ª Fase Matemática
3 Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades e conteúdos normalmente presentes nas primeiras séries do Ensino Fundamental, especialmente leitura e compreensão de enunciados, raciocínio lógico e operações elementares. As questões intermediárias estão relacionadas às últimas séries do Ensino Fundamental e envolvem problemas de geometria elementar, aritmética e contagem. As últimas questões pretendem avaliar os conteúdos usuais do Ensino Médio. São propostos problemas mais elaborados e que exigem raciocínios mais sofisticados e o domínio de técnicas e conteúdos específicos. Um bom conhecimento das funções elementares, que são as funções estudadas no Ensino Fundamental e no Ensino Médio, e seus gráficos tem sido decisivo para o sucesso dos candidatos na prova de matemática. ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão 1 Caminhando sempre com a mesma velocidade, a partir do marco zero, em uma pista circular, um pedestre chega à marca dos metros às 8 horas, e aos metros às 8h15min. a) A que horas e minutos o referido pedestre começou a caminhar? b) Quantos metros tem a pista se o pedestre deu duas voltas completas em 1 hora e 40 minutos? Entre metros e metros, o pedestre percorreu metros tendo gasto, para isso, 15 minutos. Logo, percorreu 100 metros por minuto. a) Então, para sair do zero e chegar aos metros, o tempo será de 25 minutos. Como chegou aos metros às 8 horas, o horário de saída do marco zero foi às 7 horas e 35 minutos. : Começou a caminhar às 7 horas e 35 minutos. b) Se foram duas voltas completas em 1 hora e 40 minutos, ou seja, em 100 minutos, cada volta foi percorrida em 50 minutos. Como o pedestre percorre 100 metros por minuto, o comprimento da pista é de 50x100 = 5000 metros. : A pista tem metros de comprimento. Trata-se de uma questão simples, relacionada ao cotidiano dos candidatos. A maior incidência de erros foi na conversão de unidades e na interpretação de 8 h 15min como 8,15 horas. Também foram observadas imprecisões no uso de unidades. A porcentagem de notas máximas, nessa questão, foi 80 %. 159
4 Questão 2 Em uma empresa, 1/3 dos funcionários tem idade menor que 30 anos, 1/4 tem idade entre 30 e 40 anos e 40 funcionários têm mais de 40 anos. a) Quantos funcionários tem a referida empresa? b) Quantos deles têm pelo menos 30 anos? a) Sabe-se que 1/3 dos funcionários têm menos de 30 anos e 1/4 dos funcionários estão entre 30 e 40 anos. Como 1/3+1/4 = 7/12 podemos concluir que 5/12 dos funcionários têm mais de 40 anos. Esses 5/12 equivalem a 40 funcionários; logo 1/12 equivale a 8 funcionários, e portanto, 12/12 que representa o total dos empregados da empresa, equivalem a 12 x 8 = 96 funcionários. : A empresa tem um total de 96 funcionários. b) Apenas 1/3 dos funcionários da empresa tem menos de 30 anos, ou seja, 32 funcionários. Portanto, 64 funcionários têm pelo menos 30 anos. : São 64 funcionários com pelo menos 30 anos. Muitos candidatos não conseguiram entender o que significa ter pelo menos 30 anos. Foi possível notar uma grande variedade de tipos de raciocínio, a maioria deles corretos. Nessa questão, como já havia ocorrido na primeira fase, o costume infeliz de converter frações em decimais complicou as respostas e as notas de muitos candidatos. 160
5 Questão 3 Uma sala retangular medindo 3m por 4,25m deve ser ladrilhada com ladrilhos quadrados iguais. Supondo que não haja espaço entre ladrilhos vizinhos, pergunta-se: a) Qual deve ser a dimensão máxima, em centímetros, de cada um desses ladrilhos para que a sala possa ser ladrilhada sem cortar nenhum ladrilho? b) Quantos desses mesmos ladrilhos são necessários? a) A sala retangular mede 300 cm por 425 cm. Como os ladrilhos são quadrados e não devem ser cortados, cada lado do retângulo precisa ser divisível pelo comprimento do lado do ladrilho. E como o lado de cada ladrilho deve ter comprimento máximo, segue-se que o comprimento do lado do ladrilho é igual ao mdc (300, 425) = 25. : Cada ladrilho deve medir 25 cm por 25 cm. b) Para obter o número de ladrilhos que são necessários basta dividir a área da sala, que é de 300 x 425 = cm 2 pela área de cada ladrilho, que é de 25 x 25 = 625 cm 2. Então: /625 = 204. : São necessários 204 ladrilhos. Esta questão avalia: conversão de unidades, divisibilidade e áreas. Apareceram algumas conversões absurdas de unidades e erros grosseiros de aritmética elementar. 161
6 Questão 4 Uma transportadora entrega, com caminhões, 60 toneladas de açúcar por dia. Devido a problemas operacionais, em um certo dia cada caminhão foi carregado com 500kg a menos que o usual, tendo sido necessário, naquele dia, alugar mais 4 caminhões. a) Quantos caminhões foram necessários naquele dia? b) Quantos quilos transportou cada caminhão naquele dia? a) Sejam x e y, respectivamente, o número de caminhões e a carga de um, em toneladas, de modo que: x.y = 60. No dia especial, pelas informações dadas, temos: (x + 4). (y 0,5) = 60. Desenvolvendo esta equação e substituindo x.y = 60, temos: e substituindo chegamos à equação: 2y 2 -y-15=0, cujas raízes são: y=3 e. Como y não pode ser negativo, resta y=3 e, portanto, x=20. : Naquele dia especial foram necessários 24 caminhões. (4 pontos) b) Para transportar Kg em 24 caminhões, cada caminhão terá transportado, naquele dia, /24 = Kg. : Cada caminhão transportou Kg. (1 ponto) Muitos candidatos, mesmo tendo conseguido equacionar corretamente o problema, erraram em geral por descuido nas operações algébricas a resolução das equações e/ou a interpretação dos resultados. Questão 5 Um homem, de 1,80m de altura, sobe uma ladeira com inclinação de 30 o, conforme mostra a figura. No ponto A está um poste vertical de 5 metros de altura, com uma lâmpada no ponto B. Pede-se para: a) Calcular o comprimento da sombra do homem depois que ele subiu 4 metros ladeira acima. b) Calcular a área do triângulo ABC. 162
7 a) Seja x o comprimento da sombra. Então: ou seja x = 2,25 : O comprimento da sombra, naquele momento, é de 2,25 metros. b) A altura h do triângulo ABC, relativamente ao lado AC, é dada por: de onde tiramos que : A área do triângulo ABC é de O objetivo dessa questão é avaliar o conceito de semelhança de triângulos e o uso de trigonometria do triângulo retângulo, além de operações aritméticas com radicais. O uso desnecessário de aproximações foi, novamente, bastante comum. Questão 6 Em Matemática, um número natural a é chamado palíndromo se seus algarismos, escritos em ordem inversa, produzem o mesmo número. Por exemplo, 8, 22 e 373 são palíndromos. Pergunta-se: a) Quantos números naturais palíndromos existem entre 1 e 9.999? b) Escolhendo-se ao acaso um número natural entre 1 e 9.999, qual é a probabilidade de que esse número seja palíndromo? Tal probabilidade é maior ou menor que 2%? Justifique sua resposta. a) De 1 a 9 todos são palíndromos. De 10 a 99 são palíndromos apenas os números formados por 2 algarismos iguais, que são em número de 9. Entre 100 e 999, podemos escolher qualquer dígito de 1 a 9 para ser o primeiro algarismo, o que também determina o último algarismo e podemos escolher qualquer dígito de 0 a 9 para ser o segundo algarismo. Logo, temos 9 x 10 = 90 desses números. Entre e 9.999, podemos escolher os 9 dígitos de 1 a 9 para ser o primeiro e o quarto algarismo e os 10 dígitos de 0 a 9 para ser o segundo e o terceiro dígitos. Logo, teremos também 9 x 10 = 90 desses números sendo palíndromos. Total: = 198 números palíndromos entre 1 e : Entre 1 e existem 198 números palíndromos. 163
8 b) : A probabilidade é de que é menor que 2% Esta questão apresenta um problema típico de compreensão e contagem e inclui o conhecimento da noção básica de probabilidade, de porcentagem e comparação. Uma dificuldade para os candidatos foi interpretar a expressão entre 1 e ; a maioria considerou o intervalo fechado, como esperávamos, mas nem todos. Ambas as interpretações foram aceitas. Questão 7 Seis círculos, todos de raio 1cm, são dispostos no plano conforme mostram as figuras ao lado: a) Calcule a área do triângulo ABC. b) Calcule a área do paralelogramo MNPQ e compare-a com a área do triângulo ABC. a) De acordo com a figura, temos: portanto: De modo que o comprimento do lado do triângulo ABC é e sua altura pode ser calculada assim: A área do triângulo ABC é, então, dada por: e portanto: : A área A T do triângulo ABC é de 164
9 b) e, portanto. Então: e como, temos : Esta questão requer, para sua resolução, conhecimentos de geometria e trigonometria. Além disso, o desenvolvimento algébrico envolvendo radicais, exige muito cuidado. Foi considerada uma questão difícil e, conseqüentemente, as notas foram baixas com um grande número de zeros. Muitos candidatos insistem em aproximar raízes quadradas por números decimais, dificultando as operações e, principalmente, a comparação de resultados próximos. 165
10 Questão 8 Uma piscina, cuja capacidade é de 120m 3, leva 20 horas para ser esvaziada. O volume de água na piscina, t horas após o início do processo de esvaziamento, é dado pela função V (t) = a (b - t) 2 para 0 t 20 e V (t) = 0 para t 20. a) Calcule as constantes a e b. b) Faça o gráfico da função V (t) para t [0,30] a) Temos que a 0 pois, caso contrário, V(t) = 0 para todo t. Para t = 20, sabe-se que V(20) = a.(b 20) 2 = 0 ou seja b = 20. Para t = 0, temos: V(0) = a.(20 0) 2 = 400a = 120. Logo:. Então: V (t) = 0,3 (20 - t )² : a = 0,3 e b = 20 de modo que V (t) = 0,3 (20-t ) 2 b) Para fazer o gráfico de V(t) observemos que se trata de uma função quadrática, portanto o seu gráfico é uma parábola. Como a = 0,3 > 0, o gráfico é voltado para cima, como y = x 2. Sabemos também que os pontos (0,120), (10,30) e (20,0) pertencem ao gráfico de V(t) e que V(t) = 0 para 20 t 30. Aqui temos um problema do cotidiano que é modelado por uma função bem conhecida a função quadrática. Os parâmetros, que são as constantes a e b, devem ser calculados a partir das informações dadas no texto. Com relação ao gráfico pedido, o detalhe está na exigência de limitar o domínio ao intervalo [0, 30 ] e o candidato deveria deixar claro que no intervalo [20, 30 ] tem-se V(t) =
11 Questão 9 O sólido da figura ao lado é um cubo cuja aresta mede 2cm. a) Calcule o volume da pirâmide ABCD 1. b) Calcule a distância do vértice A ao plano que passa pelos pontos B, C e D 1. a) : O volume da pirâmide ABCD 1 é de 4/3 cm 3. b) A área do triângulo Então: : A distância de A ao plano que passa por B, C e D 1 é de cm. Aqui está um problema clássico de geometria no espaço, envolvendo o cálculo de áreas, volumes e distância de um ponto a um plano. Mesmo os candidatos que conhecem as fórmulas usuais da geometria tiveram dificuldade no item b provavelmente por não saber que a distância de um ponto a um plano é a medida do segmento de reta perpendicular ao plano. 167
12 α Questão 10 Considere o sistema linear abaixo, no qual a é um parâmetro real: a) Mostre que para a = 1 o sistema é impossível. b) Encontre os valores do parâmetro a para os quais o sistema tem solução única a) Para a = 1 o sistema dado se reduz a: É claro que se x + y + z = 1 então x + y + z 2. Logo, para a = 1, o sistema é impossível. : Para a = 1 o sistema é impossível. (1 ponto) b) Um S.L. 3x3 tem solução única se, e somente se, o determinante da matriz A dos coeficientes for diferente de zero, onde: Então det(a) = a (a 2 1) (a 1) + (1 a) = (a 1) [a (a+1) 2] = a 2 + a 2. Como a 2 + a 2 = 0 a = 1 ou a = 2, temos: : O S.L. tem solução única para a 1 e a 2. (4 pontos) 168
13 Muitos candidatos usaram resultados sobre sistemas lineares que são incompletos ou mesmo errados mas que aparecem freqüentemente em livros didáticos para o ensino Médio. O uso do processo de escalonamento de matrizes para a resolução de sistemas também trouxe dificuldades para candidatos e corretores. Aos Professores de Matemática do Ensino Médio recomendamos consultar o volume 47 e outros da Revista do Professor de Matemática, publicada pela Sociedade Brasileira de Matemática, onde está feita uma análise cuidadosa a respeito da resolução de sistemas lineares. Questão 11 Considere a equação 2 x + m2 2-x - 2m - 2 = 0, onde m é um número real. a) Resolva essa equação para m = 1. b) Encontre todos os valores de m para os quais a equação tem uma única raiz real. a) A equação dada 2 x + m2 2-x 2m 2 = 0 pode ser escrita como 2 2x + 4m (2m+2).2 x = 0. Para m = 1 ela se reduz a 2 2x 4.2 x + 4 = 0. Fazendo y = 2 x, temos: y 2 4y + 4 = 0 ou seja: (y 2) 2 = 0 cuja única raiz é y = 2. Como y = 2 x temos x = 1. : A única raiz da equação dada, para m = 1 é x = 1. (1 ponto) b) Vamos encontrar as raízes da equação: y 2 (2m + 2) y + 4m = 0, usando Bháskara: Se m = 1 então y = m + 1 e, portanto, x = 1 Se m > 1 então y = (m + 1) ± m 1 ou seja y 1 = m m 1 = 2m e y 2 = m + 1 (m 1) = 2. Como m > 1,2m > 2 e, portanto, y 1 y 2 e, como são ambos positivos, x 1 x 2. Então, no caso m > 1, teremos duas raízes reais distintas. Se m 1 < 0 então y = (m + 1) ± (1 m) ou seja y 1 = m m = 2 e y 2 = m m = 2m. Logo, se m 0 então teremos apenas uma raiz positiva (y 1 = 2) e a correspondente x 1 = 1. : Os valores de m para os quais a equação dada tem apenas uma raiz real são m = 1 e m 0. (4 pontos) 169
14 Esta questão, que não é fácil, exigiu do candidato um bom conhecimento da função exponencial e da função quadrática. Mesmo apresentando um resultado muito abaixo do esperado, evidenciado pela grande porcentagem de zeros, a questão foi importante para identificar e selecionar os candidatos que estavam realmente bem preparados. Questão 12 Sejam α, β e γ os ângulos internos de um triângulo. a) Mostre que as tangentes desses três ângulos não podem ser, todas elas, maiores ou iguais a 2. b) Supondo que as tangentes dos três ângulos sejam números inteiros positivos, calcule essas tangentes. Suponhamos que 0 < α β γ < 180 o. a) Se tan α 2 α > 60 o. E isto não pode ocorrer nos três ângulos de um triângulo. : Pelo menos um dos três ângulos deve ter tangente < 2. (1 ponto) b) Seja α tal que 0 < tan α < 2. Como tan α é, por hipótese, um número inteiro, segue-se que tan α = 1 α = 45 o. Como as tangentes de β e γ são números inteiros positivos, tais ângulos não podem ser retos. Logo, β + γ = 135 o tan(β+γ) = 1. Usando a fórmula da tangente da soma, temos: e, portanto, tan β + tan γ = tan β tan γ 1. Fazendo x = tan β 1 e y = tan γ chegamos à equação x + y = xy 1 (*) Devemos buscar as soluções inteiras positivas dessa equação: x + 1 = xy y = y(x 1) ou seja. Para que y seja inteiro, x 1 deve ser um 170
15 dos divisores de 2, a saber: (1) x 1 = 2 y = 0 (2) x 1 = 1 y = 1 (3) x 1 = 1 y = 3 (4) x 1 = 2 y = 2 Logo as soluções inteiras positivas da equação (*) são (2,3) e (3,2). : tan α = 1; tan β = 2 e tan γ = 3 (4 pontos) Esta foi, sem dúvida, a questão mais difícil da prova. Além de um bom domínio da trigonometria, ela envolve raciocínios cuidadosos e habilidade para a resolução de equações com soluções inteiras. 171
no de Questões A Unicamp comenta suas provas
Cad no de Questões A Unicamp comenta suas provas 99 SEGUNDA FASE 4 de Janeiro de 998 Matemática 0 prova de Matemática do Vestibular Unicamp procura identificar nos candidatos um conhecimento crítico e
começou a caminhar às 7h35min. gastou = 25 minutos. Então ele
MATEMÁTICA Caminhando sempre com a mesma velocidade, a partir do marco zero, em uma pista circular, um pedestre chega à marca dos 2 500 metros às 8 horas, e aos 000 metros às 8h5min. a) A que horas e minutos
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C
Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento
A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y
5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas
Matemática. Introdução. Questão 1. Resposta esperada. Exemplo acima da média
2ª Fase Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades e conteúdos
Considere um triângulo eqüilátero T 1
Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.
Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema
Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a
ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO
6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural
Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.
Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois
Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.
Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade
PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da
Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.
Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.
Obs.: São cartesianos ortogonais os sistemas de coordenadas
MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =
www.exatas.clic3.net
www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de
CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA
CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;
a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36
MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade
GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar
GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
Resolução da Prova da Escola Naval 2009. Matemática Prova Azul
Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova
CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.
Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.
UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?
UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe
ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática
ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas
Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.
PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.
Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado
ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a
Questão 2. Questão 1. Questão 3. Resposta. Resposta
Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões
PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.
CPV 82% de aprovação na ESPM
CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou
115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100
MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu
vestibular nacional UNICAMP 2ª Fase Matemática
vestibular nacional UNICAMP ª Fase Matemática INTRODUÇÃO A prova de matemática da segunda fase do vestibular da UNICAMP é elaborada de forma a identificar os candidatos com boa capacidade de leitura de
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM
A 'BC' e, com uma régua, obteve estas medidas:
1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,
QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.
Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B
Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,
MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA A prova de matemática deste ano mudou o perfil em relação aos anos anteriores, muito embora algumas características tenham sido mantidas, como a preocupação na contextualização
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE
INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.
( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18
Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:
UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA
1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva
RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14
FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,
Questão 1. Questão 2. Resposta
Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões
Lista de Exercícios - Integrais
Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)
2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea
2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as
Nesta aula iremos continuar com os exemplos de revisão.
Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).
Gabarito - Matemática - Grupos I/J
1 a QUESTÃO: (1,0 ponto) Avaliador Revisor Para a estréia de um espetáculo foram emitidos 1800 ingressos, dos quais 60% foram vendidos até a véspera do dia de sua realização por um preço unitário de R$
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,
Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B
1. Uma escola irá sortear duas pessoas dentre os seus 20 melhores alunos para representá-la em um encontro de estudantes no Canadá, país que possui dois idiomas oficiais, Inglês e Francês. Sabe-se que,
RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia.
RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 8 a Fase Professora Maria Antônia Gouveia. Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM /dezembro/20 MATEMÁTICA APLICADA 0. A Espaço Inteligente Empreendimentos Imobiliários fez o lançamento de um edifício, com conjuntos comerciais a R$.800,00
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES
QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÃO 01 1 Identificar a localização/movimentação de objeto, em mapas, croquis e outras representações gráficas.
Anexo B Relação de Assuntos Pré-Requisitos à Matrícula
Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO
n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1
FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1
Questão 1. Questão 2. Questão 3. Resposta. Resposta
Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro
FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA
FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo
COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Final. 2ª Etapa 2013. Ano: 6 Turma: 61
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 2ª Etapa 203 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 6 Turma: 6 Caro aluno, você está recebendo o conteúdo de recuperação.
TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.
Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou
COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES
COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,
a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.
OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª
Matriz Curricular de Matemática 6º ao 9º ano 6º ano 6º Ano Conteúdo Sistemas de Numeração Sistema de numeração Egípcio Sistema de numeração Romano Sistema de numeração Indo-arábico 1º Trimestre Conjunto
2. MÓDULO DE UM NÚMERO REAL
18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância
PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010
PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas
Canguru Matemático sem Fronteiras 2009
Duração: 1h30min Destinatários: alunos do 1 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão agrupadas em três níveis: Problemas
MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a
1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.
Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se
"Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor
APLICAÇÕES DA DERIVADA
Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,
As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos:
Exercício 01. Dada à hipérbole de equação 5x 2 4y 2 20x 8y 4 = 0 determine os focos e as equações das assintotas. Escrevendo a hipérbole da maneira convencional teríamos 5[x 2 4x + 4 4] 4[y 2 + 2y + 1]
FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.
FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se
a) Será que é possível produzir 7 kg de bolo do tipo A e 18 kg de bolo do tipo B? Justifique sua resposta.
ª Fase Matemática INTRODUÇÃO A prova de matemática da segunda fase do vestibular da UNICAMP é elaborada de forma a identificar candidatos com boa capacidade de leitura de textos, tabelas e gráficos, bom
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 0 DA UNICAMP-FASE. POR PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO Em uma determinada região do planeta, a temperatura média anual subiu de 3,35 ºC em 995 para
Geometria Área de Quadriláteros
ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos
Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO:
Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam da etiqueta
m dela vale R$ 500,00,
CLICK PROFESSOR Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Calcule: Se um carro mede cerca de 4 m, quantos carros, aproximadamente, há em uma rodovia com 3 pistas e que tem 6 km
ENEM 2012 MATEMÁTICA PROVA AMARELA
ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,
A A A A A A A A A A A A A A A
MTEMÁTIC ViajeBem é uma empresa de aluguel de veículos de passeio que cobra uma tarifa diária de R$ 60,00 mais R$,50 por quilômetro percorrido, em carros de categoria. lucar é uma outra empresa que cobra
Lista de Exercícios de Recuperação de MATEMÁTICA 2
Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.
Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)
Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações
Resoluções Prova Anglo
Resoluções Prova Anglo F- TIPO D-6 Matemática (P-2) Ensino Fundamental 6º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avali ar o desempenho dos alunos do 6 o ano
Prova Final 2012 1.ª chamada
Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento
Matemática INTRODUÇÃO. 1. "Pão por quilo divide opiniões em Campinas (Correio Popular, 21/10/2006). Resposta Esperada
2ª Fase Matemática INTRODUÇÃO A prova de matemática da segunda fase do vestibular da UNICAMP é elaborada de forma a identificar os candidatos com boa capacidade de leitura de textos, bom raciocínio abstrato
A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br
A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se
XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas
Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 0 pontos Na Tabela 1 temos a progressão mensal para o Imposto de Renda Pessoa Física 014 01. Tabela 1: Imposto de Renda Pessoa Física 014 01. Base
. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.
OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto
QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada
UFRJ- VESTIBULAR 2004 PROVA DE MATEMÁTICA.
UFRJ- VESTIBULAR 00 ROVA DE MATEMÁTICA Resolução e comentário pela rofessora Maria Antônia Conceição Gouveia Apresente suas soluções de forma clara, indicando, em cada caso, o raciocínio que conduziu à
Matemática SSA 2 REVISÃO GERAL 1
1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base
Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma
Módulo 2 Unidade 7 Função do 2 grau Para início de conversa... Imagine você sentado em um ônibus, indo para a escola, jogando uma caneta para cima e pegando de volta na mão. Embora para você a caneta só
Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo
Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Tema/Subtema Conteúdos Metas Nº de Aulas Previstas Org.Trat.Dados / Planeamento Estatístico Especificação do problema Recolha de dados População
(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.
(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse
As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:
1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico
PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.
PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I
1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos
Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *
Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira
Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a
Comentadas pelo professor: Vinicius Werneck Raciocínio Lógico 1- Prova: ESAF - 2012 - Receita Federal - Auditor Fiscal da Receita Federal Sabendo-se que o conjunto X é dado por X = {x R x² 9 = 0 ou 2x
Devemos escolher os números com os menores expoentes, cujas bases são comuns aos três desenvolvimentos em fatores primos.
1) O dono de um pequeno mercado comprou menos de 200 limões e, para vendê-los, poderá fazer pacotes contendo 12, ou 15, ou 18 limões em cada um deles, utilizando, dessa forma, todos os limões comprados.