Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a
|
|
- Pedro Henrique Castilhos Nobre
- 2 Há anos
- Visualizações:
Transcrição
1 Comentadas pelo professor: Vinicius Werneck Raciocínio Lógico 1- Prova: ESAF Receita Federal - Auditor Fiscal da Receita Federal Sabendo-se que o conjunto X é dado por X = {x R x² 9 = 0 ou 2x 1 = 9} e o que o conjunto Y é dado por Y = {y R 2y + 1 = 0 e 2y² y 1 = 0}, onde R é o conjunto dos números reais, então pode-se afirmar que: a) X Y = {-3; -0,5; 1; 3; 5}. b) X - Y = {-3; 3}. c) X Y = {-3; -0,5; 3; 5}. d) Y = {-0,5; 1}. e) Y = {-1}. 2- Prova: ESAF Receita Federal - Auditor Fiscal da Receita Federal Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a a) 2 cos² 15. b) 4 cos² 15. c) 2 sem² 30. d) 2 cos² 30. e) 4 sem² 15º. 3- Prova: ESAF Receita Federal - Auditor Fiscal da Receita Federal As matrizes, A, B, C e D são quadradas de quarta ordem. A matriz B é igual a 1/2 da matriz A, ou seja: B = 1/2 A. A matriz C é igual a matriz transposta de B, ou seja: C = Bt. A matriz D é definida a partir da matriz C; a única diferença entre essas duas matrizes é que a matriz D tem como primeira linha a primeira linha de C multiplicada por 2. Sabendo-se que o determinante da matriz A é igual a 32, então a soma dos determinantes das matrizes B, C e D é igual a a) 6. 1
2 b) 4. c) 12. d) 10. e) Prova: ESAF Receita Federal - Auditor Fiscal da Receita Federal Considere o sistema de equações lineares dado por: Sabendo-se que o sistema tem solução única para r 0 e r 1, então o valor de x é igual a a) 2 r. b) -2 r c) 1 r d) -1 r e) 2r. 5- Prova: ESAF Receita Federal - Auditor Fiscal da Receita Federal Os catetos de um triângulo retângulo medem, respectivamente, z metros e (w 2) metros. Sabendo-se que o ângulo oposto ao cateto que mede (w 2) metros é igual a um ângulo de 45, então o perímetro desse triângulo, em metros, é igual a a) z 2 (w 2). b) z w (2 2). c) z w (2 + 2). d) (z + w) (z + w 2). e) z (2 + 2). 6- Prova: ESAF Receita Federal - Auditor Fiscal da Receita Federal Uma sequência de números k1, k2, k3, k4,...,kn é denominada Progressão Geométrica - PG - de n termos quando, a partir do segundo termo, cada termo dividido pelo imediatamente anterior for igual a uma constante r denominada razão. Sabe-se que, adicionando uma constante x a cada um dos termos da 2
3 sequência (p - 2); p; e (p + 3) ter-se-á uma PG. Desse modo, o valor de x, da razão e da soma dos termos da PG são, respectivamente, iguais a a) (6 - p); 2/3; 21. b) (p +6); 3/2; 19. c) 6; (6 p); 21. d) (6 - p); 3/2; 19. e) (p - 6); p; Prova: FCC AL-PE - Analista Legislativo - Direito Tributário, Financeiro e Cidadania João, Pedro e Luís têm x, y e z reais, ainda que não necessariamente nessa ordem. Em uma conversa entre essas três pessoas, João disse a quem tem y reais que o outro tem x reais. Luís disse a quem tem x reais que nenhum dos três tem totais iguais de reais. Se todos dizem a verdade, e Pedro é o que tem menos reais, então, necessariamente será positivo o resultado da conta a) z - y. b) x - y - z. c) x + y - z. d) z - x e) x - y. 8- FCC Órgão: AL-PE Prova: Analista Legislativo Quatro tipos de doces diferentes são embalados em caixas de mesmo formato e aparência, a não ser pelo rótulo indicativo do tipo de doce nela contido. Por equívoco, os rótulos das quatro caixas foram trocados de forma que nenhum deles corresponde ao doce nela contido. Por meio do uso do raciocínio lógico, o menor número de caixas 3
4 que precisam ser abertas para que se possa ter certeza do conteúdo contido nas quatro caixas é a 2. b 1. c 0. d 4. e FCC TRF - 3ª REGIÃO - Analista Judiciário - Informática - Banco de Dados Diante, apenas, das premissas Nenhum piloto é médico, Nenhum poeta é médico e Todos os astronautas são pilotos, então é correto afirmar que a) algum poeta não é astronauta. b) algum poeta é astronauta e algum piloto não é médico. c) algum astronauta é médico. d) todo poeta é astronauta. e) nenhum astronauta é médico. 10 FCC TRT - 2ª REGIÃO (SP) - Analista Judiciário - Área Judiciária Efetuando as multiplicações 2 2, 4 4, 6 6, 8 8,..., temos uma sequência de números representada a seguir pelos seus quatro primeiros elementos: (4, 16, 36, 64,... ). Seguindo a mesma lógica, o 1000 elemento dessa sequência será e o 1001 elemento será Dessa forma, o 1002 elemento será 4
5 a) b) c) d) e) FCC TRF - 3ª REGIÃO - Analista Judiciário - Informática - Banco de Dados Um tabuleiro de xadrez possui 64 casas. Se fosse possível colocar 1 grão de arroz na primeira casa, 4 grãos na segunda, 16 grãos na terceira, 64 grãos na quarta, 256 na quinta, e assim sucessivamente, o total de grãos de arroz que deveria ser colocado na 64a casa desse tabuleiro seria igual a a) b) c) d) e) CESPE CADE - Nível Superior - Conhecimentos Básicos Em uma escola, uma pesquisa, entre seus alunos, acerca de práticas esportivas de futebol, voleibol e natação revelou que cada um dos entrevistados pratica pelo menos um desses esportes. As quantidades de alunos entrevistados que praticam esses esportes estão mostrados na tabela abaixo. Com base nas informações e na tabela acima, julgue os próximos itens. Mais de 130 dos alunos praticam apenas 2 dessas atividades esportivas Certo Errado 5
6 13- CESPE CADE - Nível Superior - Conhecimentos Básicos Em uma escola, uma pesquisa, entre seus alunos, acerca de práticas esportivas de futebol, voleibol e natação revelou que cada um dos entrevistados pratica pelo menos um desses esportes. As quantidades de alunos entrevistados que praticam esses esportes estão mostrados na tabela abaixo. Com base nas informações e na tabela acima, julgue os próximos itens. Entre os alunos, 20 praticam voleibol e natação, mas não jogam futebol Certo Errado 14- CESPE CADE - Nível Superior - Conhecimentos Básicos Em uma escola, uma pesquisa, entre seus alunos, acerca de práticas esportivas de futebol, voleibol e natação revelou que cada um dos entrevistados pratica pelo menos um desses esportes. As quantidades de alunos entrevistados que praticam esses esportes estão mostrados na tabela abaixo. Com base nas informações e na tabela acima, julgue os próximos itens. Escolhendo-se um aluno ao acaso, entre os entrevistados, a probabilidade de ele praticar natação é inferior a 10%. Certo Errado 6
7 15- Prova: CESPE CADE - Nível Superior - Conhecimentos Básicos A figura acima ilustra parte de um jogo de tabuleiro com 100 casas, numeradas de 1 a 100, em que a centésima é denominada casa de chegada. O movimento das peças é determinado pelo jogo de um dado de seis faces numeradas de 1 a 6. Os jogadores vão se alternando no lançamento do dado e movimentando suas peças até que cheguem à casa de número 100. Para movimentar a sua peça, o jogador deverá lançar o dado e respeitar as seguintes regras: Se o número obtido no lançamento do dado for superior a 3, o jogador deverá andar uma quantidade de casas igual a esse número; Se o número obtido no lançamento do dado for inferior a 4, o jogador deverá andar uma quantidade de casas igual ao dobro desse número. Um jogador poderá atingir a casa de chegada com exatamente 24 lançamentos do dado Certo Errado 16- Prova: CESPE CADE - Nível Superior - Conhecimentos Básicos A figura acima ilustra parte de um jogo de tabuleiro com 100 casas, numeradas de 1 a 100, em que a centésima 7 é denominada casa de chegada. O movimento das peças é determinado pelo jogo de um dado de seis faces
8 numeradas de 1 a 6. Os jogadores vão se alternando no lançamento do dado e movimentando suas peças até que cheguem à casa de número 100. Para movimentar a sua peça, o jogador deverá lançar o dado e respeitar as seguintes regras: Se o número obtido no lançamento do dado for superior a 3, o jogador deverá andar uma quantidade de casas igual a esse número; Se o número obtido no lançamento do dado for inferior a 4, o jogador deverá andar uma quantidade de casas igual ao dobro desse número. É possível que um jogador atinja a casa de chegada com 16 lançamentos do dado. Certo Errado 17- Prova: CESPE CADE - Nível Superior - Conhecimentos Básicos A figura acima ilustra parte de um jogo de tabuleiro com 100 casas, numeradas de 1 a 100, em que a centésima é denominada casa de chegada. O movimento das peças é determinado pelo jogo de um dado de seis faces numeradas de 1 a 6. Os jogadores vão se alternando no lançamento do dado e movimentando suas peças até que cheguem à casa de número 100. Para movimentar a sua peça, o jogador deverá lançar o dado e respeitar as seguintes regras: Se o número obtido no lançamento do dado for superior a 3, o jogador deverá andar uma quantidade de casas igual a esse número; 8
9 Se o número obtido no lançamento do dado for inferior a 4, o jogador deverá andar uma quantidade de casas igual ao dobro desse número. Com um lançamento do dado, a probabilidade de que o resultado obtido permita que o jogador avance quatro casas com a sua peça é superior a 0,3 Certo Errado 18- CESPE MDIC - Analista Técnico Administrativo P1: Os clientes europeus de bancos suíços estão regularizando sua situação com o fisco de seus países. P2: Se os clientes brasileiros de bancos suíços não fazem o mesmo que os clientes europeus, é porque o governo do Brasil não tem um programa que os incite a isso. Considerando que as proposições P1 e P2 apresentadas acima sejam premissas de um argumento, julgue os itens a seguir, relativos à lógica de argumentação. O argumento formado pelas premissas P1 e P2 e pela conclusão Os clientes brasileiros de bancos suíços não estão regularizando sua situação com o fisco de seu país. é um argumento válido. Certo Errado 19- CESPE MDIC - Analista Técnico Administrativo P1: Os clientes europeus de bancos suíços estão regularizando sua situação com o fisco de seus países. P2: Se os clientes brasileiros de bancos suíços não fazem o mesmo que os clientes europeus, é porque o governo do Brasil não tem um programa que os incite a isso. Considerando que as proposições P1 e P2 apresentadas acima sejam premissas de um argumento, julgue os itens a seguir, relativos à lógica de argumentação. O argumento formado pelas premissas P1 e P2 e pela conclusão Os clientes brasileiros de bancos suíços estão em situação irregular com o fisco de seu país. é um argumento válido 9
10 Certo Errado 20- CESPE MDIC - Analista Técnico Administrativo João, Pedro e Luís têm x, y e z reais, ainda que não necessariamente nessa ordem. Em uma conversa entre essas três pessoas, João disse a quem tem y reais que o outro tem x reais. Luís disse a quem tem x reais que nenhum dos três tem totais iguais de reais. Se todos dizem a verdade, e Pedro é o que tem menos reais, então, necessariamente será positivo o resultado da conta a) z - y. b) x - y - z. c) x + y - z. d) z - x e) x - y. Respostas: 10
11
12 3-12
13 4-13
14 5-14
15 6- Os números inicialmente fornecidos são p 2, p e p + 3, somando uma constante x a cada um deles, temos p + x 2, p + x e p + x + 3. Substituindo v = p + x temos: v 2, v e v + 3. Assim: v/v 2 = v + 3/ v Resolvendo acharemos uma equação de segundo grau, cuja raiz positiva é 6, assim: v = 6 Lembrando que v = p + x x = 6 - p A PG fica: v 2 = 6 2 = 4 v = 6. 15
16 v + 3 = = 9 A razão da PG é igual à divisão entre dois termos seguidos: r = 6 / 4 = 1,5 A soma dos termos da PG fica: = 19. Letra D. 7- Do enunciado temos: João disse a quem tem Y reais que o outro tem X reais. Ou seja, João tem Z reais, logo após, Luís disse a quem tem x reais que nenhum dos três tem totais iguais de reais., assim, Se João tem Z reais, o único que pode ter X reais é Pedro, ficando Luís com Y reais Como Pedro é o que tem menos reais, X é o menor valor entre Y e Z. Assim, qualquer número maior subtraído de um menor, com certeza o resultado será positivo. Y X > 0 e Z X > 0 Letra D. 8- De acordo com o enunciado, todos os rótulos não correspondem aos doces contidos nelas, e queremos abrir o menor números de caixas possíveis. Como são 4 caixas, vamos enumerá-las de 1 a 4, quando abro a primeira caixa, descubro o primeiro doce que se encontrava na caixa errada, quando vou para a segunda caixa descubro outro doce que estava trocado, logo, nas duas caixas 3 e 4 restantes, como as mesmas estão com os doces trocados (aí está a pegadinha da questão) eu tenho certeza que o doce contido na caixa 3 pertence a caixa 4 e o da caixa 4 corresponde a caixa 3. Dessa forma, eu só preciso abrir 2 caixas para saber as informações necessárias para corrigir os rótulos. Letra A. 9- De acordo com o enunciado, Nenhum piloto é médico e logo depois, o enunciado afirma nos afirma 16
17 que Todos os astronautas são pilotos assim, como nenhum piloto é médico, e todos os astronautas são pilotos, concluísse que nenhum astronauta é médico. Letra E. 10 Percebemos que a sequência é formada pelos quadrados dos números pares, a partir do número 2, assim, de acordo com o enunciado, 1000 elemento dessa sequência será e o 1001 elemento será Logo: O n que elevou ao quadrado para resultar em foi o então, o 1000º número será 2000, o 1001º número será 2002 e o 1002º número será Concluímos que, para calcular o 1002º número, multiplicaremos 2004 por ele mesmo: 2004 x 2004= Letra E
18 13-18
19 14- Vamos primeiramente construir o diagrama de Venn para a questão: Agora que temos o diagrama de Venn, observamos que o total de alunos entrevistados foram de = 712. Assim, sabemos que a probabilidade de ocorrer um evento A, é igual a razão entre o N de casos favoráveis e o N de casos possíveis, logo: Logo a resposta é ERRADO. 15- Para que o jogador ganhe, ele deverá percorrer 100 casas, assim, vamos fazer algumas suposições: i) Suponha que um dos jogadores realize 20 lançamentos, e que em todos ele tire no dado o número 4. Logo ele percorrerá de acordo com a regra 20 x 4 = 80. ii) Agora suponha que ele realize as outras 4 jogadas e em todas, tire o número 5 no dado, logo ele percorrerá 4 x 5 = 20. Somando i) e ii) temos 24 jogadas totalizando = 100 casas percorridas. Uma segunda solução seria dividir o N de casas pelo N de jogadas: 100/24 = 4,16. Logo o valor encontrado é inferior frente a possibilidade de pontos máximos por rodada a ser tirado, que no caso é 6. 19
20 Sendo assim possível atingir a casa de chegada com exatamente 24 lançamentos do dado com alguma combinação exata. Logo a resposta é Certo. 16- Para que o jogador ganhe, ele deverá percorrer 100 casas, assim, vamos fazer as seguintes suposições: i) Suponha que um dos jogadores realize 16 lançamentos, e que em todos, ele tire no dado o número 6. Logo ele percorrerá de acordo com a regra 16 x 6 = 96. ii) Em uma segunda suposição, o jogador poderia ter tirado a melhor sorte no caso dois da regra, assim: 16 x (3 x 2) = 96. Logo, percebemos que mesmo ele tendo a melhor sorte nos dois casos da regra, ele não conseguirá percorreras 100 casas necessárias com apenas 16 jogadas. A resposta é Errado Consideraremos as premissas como verdades e a conclusão como falsa, e verificaremos se é possível a existência dessa situação. Se for possível, então o argumento é inválido. 20
21 Vamos esquematizar a questão, vamos tomar as premissas abaixo verdadeiras, onde B= brasileiros, P = programa e E =Europeus: P1: E é Verdade P2: ~B ~P é Verdade Conclusão C: ~B é falso Logo: P1: E (V) P2: ~B ~P (V) C: ~B Essa conclusão é a primeira parte da P2 e ela pode ser F que a premissa continua sendo V, então o argumento é inválido. A resposta é Errado. 19- Nesta questão, deveremos presta a atenção na interpretação do enunciado, dizer que uma pessoa está se regularizando não significa dizer que ela está irregular e sim que ela não está passando por um processo de regularização, logo, a conclusão não tem relação com as premissas, fazendo o argumento ser inválido. A resposta é Errado. 20- Do enunciado temos: 21
22 João disse a quem tem Y reais que o outro tem X reais. Ou seja, João tem Z reais, logo após, Luís disse a quem tem x reais que nenhum dos três tem totais iguais de reais., assim, Se João tem Z reais, o único que pode ter X reais é Pedro, ficando Luís com Y reais Como Pedro é o que tem menos reais, X é o menor valor entre Y e Z. Assim, qualquer número maior subtraído de um menor, com certeza o resultado será positivo. Y X > 0 e Z X > 0 Letra D. 22
Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental
a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.
2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira
Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times:
Raciocínio Lógico- Vinicius Werneck 1. Em um campeonato de futebol, a pontuação acumulada de um time é a soma dos pontos obtidos em cada jogo disputado. Por jogo, cada time ganha três pontos por vitória,
Prof. Paulo Henrique Raciocínio Lógico
Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre
. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.
OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto
QUESTÕES. t = 7, o valor de t é o número: SIMULADO. Olá pessoal! Como vocês estão?
Olá pessoal! Como vocês estão? Nesse artigo apresento a vocês um simulado com questões de Raciocínio Lógico, Matemática e Matemática Financeira. Para os candidatos aos cargos de Auditor e Analista Tributário
Prova de Raciocínio Lógico Edição Junho 2006
Prova de Raciocínio Lógico Edição Junho 2006 1. Considere a seguinte seqüência, da esquerda para a direita: Dentre as alternativas abaixo, o próximo elemento que obedece à regra de formação até então seguida
MATEMÁTICA FINANCEIRA CARREIRAS FISCAIS 1
CAPÍTULO 1 JUROS SIMPLES MATEMÁTICA FINANCEIRA CARREIRAS FISCAIS 1 1.1) DEFINIÇÃO No cálculo dos juros simples, os rendimentos ou ganhos J em cada período t são os mesmos, pois os juros são sempre calculados
Este material traz a teoria necessária à resolução das questões propostas.
Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem
CURSO ONLINE RACIOCÍNIO LÓGICO
AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas
AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?
Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de
PIBID-MATEMÁTICA Jogo: Vai e vem das equações
PIBID-MATEMÁTICA Jogo: Vai e vem das equações Regras: Número de participantes: A sala toda irá participar, sendo dividida em 4 grupos que competirão entre si. Objetivo: solucionar situações-problemas envolvendo
www.exatas.clic3.net
www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de
Calculando probabilidades
A UA UL LA Calculando probabilidades Introdução evento E é: P(E) = Você já aprendeu que a probabilidade de um nº deresultadosfavoráveis nº total de resultados possíveis Nesta aula você aprenderá a calcular
x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?
Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões
UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?
UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe
Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.
Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos
Prova Final 2012 1.ª chamada
Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento
Solução da prova da 1 a fase OBMEP 2008 Nível 1
OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,
QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.
Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados
RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14
FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES
Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o
Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio
Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI
Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento
Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Professor: Custódio Nascimento 1- Análise da prova Neste artigo, faremos a análise das questões de cobradas na prova
Matemática Financeira - Vinícius Werneck, professor do QConcursos.com
Matemática Financeira - Vinícius Werneck, professor do QConcursos.com 1- Q236904 - Prova: CESGRANRIO - 2012 - Caixa - Técnico Bancário Disciplina: Matemática Financeira Assuntos: Amortização; Sistema Francês
FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.
FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se
Relações Métricas nos. Dimas Crescencio. Triângulos
Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem
Atenção: Material do grupo do. adquiriu com outra pessoa, foi vítima de um falso rateio e em
Atenção: Material do grupo do Roger Rodrigues se você adquiriu com outra pessoa, foi vítima de um falso rateio e em breve não receberá mais material. Aula 03 Raciocínio Lógico p/ INSS - Técnico do Seguro
Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.
Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu
1) Na figura abaixo, a reta r tem equação x+3y-6=0 e a reta s passa pela origem e tem coeficiente angular 3
) Na figura abaixo, a reta r tem equação x+y-6=0 e a reta s passa pela origem e tem coeficiente angular. A área do triângulo OAB, em unidades de área, é igual a: a) b) c) d)4 (correta) e)5 O(0,0) 0 6 0
( y + 4) = 16 16 = 0 y + 4 = 0 y = 4
UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas
XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental)
Instruções: XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental) Folha de Perguntas A duração da prova é de 3h30min. O tempo
b) A quantidade mínima de peças que a empresa precisa vender para obter lucro.
Avaliação Trimestral Amanda Marques Adm-Manhã 1. Uma empresa produz um tipo de peça para automóveis. O custo de produção destas peças é dado por um custo fixo de R$10,00 mais R$5,00 por peça produzida.
a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.
OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1
Simulado OBM Nível 1. Gabarito Comentado
Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)
COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES
COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D
Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,
Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema:
1. Considere que, em uma empresa, 50% dos empregados possuam nível médio de escolaridade e 5%, nível superior. Guardadas essas proporções, se 80 empregados dessa empresa possuem nível médio de escolaridade,
(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).
Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,
Módulo VIII. Probabilidade: Espaço Amostral e Evento
1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.
QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 4
QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 4 1. (Banco do Brasil 2011 Escriturário) Certa máquina gasta 20 segundos para cortar uma folha de papelão de formato retangular em 6 pedaços
QUESTÕES ÁREAS DE POLÍGONOS
QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Técnico do TRT/4ª Região (Rio
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C
Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região
3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS
Nome: Ano: 3º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº 02 Assunto: JUROS E PORCENTAGENS 1) Porcentagem Definição: É uma fração que indica a participação de uma quantidade sobre um todo.
2. MÓDULO DE UM NÚMERO REAL
18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância
CPV seu Pé Direito no INSPER
CPV seu Pé Direito no INSPER INSPER Resolvida 5/novembro/0 Prova A (Verde) ANÁLISE quantitativa e lógica 0 Por um terminal de ônibus passam dez diferentes linhas A mais movimentada delas é a linha : quatro
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas
---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA
MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros
Exercícios Teóricos Resolvidos
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar
FRAÇÕES DE UMA QUANTIDADE
FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE PREPARANDO O BOLO DICAS Helena comprou 4 ovos. Ela precisa de dessa quantidade para fazer o bolo de aniversário de Mariana. De quantos ovos Helena vai
MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números
MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações
Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas
Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Professor: Arthur Lima AULA 05: RESUMO Caro aluno, Para finalizar nosso curso, preparei um resumo de toda a teoria vista nas
O coeficiente angular
A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir
13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau
MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,
% de usuários. essa resposta
PROVA DE MATEMÁTICA E FINANCEIRA BANCO DO BRASIL 007 - A numeração segue a ordem do caderno YANQUE. ENUNCIADO PRINCIPAL Segurança: de que forma você cuida da segurança da informação de sua empresa? Resultado
Sistema de Numeração e Aritmética Básica
1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,
PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA
PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor
CURSO FREE PMES PREPARATÓRIO JC
CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l
Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.
1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
Bem, produto interno serve para determinar ângulos e distâncias entre vetores e é representado por produto interno de v com w).
Produto Interno INTRODUÇÃO Galera, vamos aprender agora as definições e as aplicações de Produto Interno. Essa matéria não é difícil, mas para ter segurança nela é necessário que o aluno tenha certa bagagem
MATEMÁTICA ENEM 2009
MATEMÁTICA ENEM 2009 19 de setembro PROF. MARCELO CÓSER Essa apresentação pode ser baixada em http://www.marcelocoser.com.br. 01) (UFRJ) Uma operadora de celular oferece dois planos no sistema pós-pago.
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES
Caríssimos amigos concurseiros. Seguem breves comentários à prova de RLQ do ATA- MF. Não encontramos nenhuma questão passível de recurso. Mas, se vocês tiverem visualizado alguma coisa e quiserem debater
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.
UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00
Questões de raciocínio lógico Aula 2
Questões de raciocínio lógico Aula 2 Tópicos abordados: Lógica da argumentação Diagramas lógicos Emerson Marcos Furtado* 1. (ESAF-adap.) Pedro toca piano se e somente se Vítor toca violino. Ora, Vítor
Quantificadores. Quantificador Universal. Quantificador Existencial. Seja um conjunto não vazio e ) uma propriedade associada aos elementos.
Quantificadores Seja um conjunto não vazio e ) uma propriedade associada aos elementos. Quantificador Universal Se é verdade que todos os elementos de possuem tal propriedade, podemos afirmar que: Todo
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de
1. (TTN ESAF) Um capital de R$ 14.400,00, aplicado a 22% ao ano, rendeu R$ 880,00 de juros. Durante quanto tempo esteve empregado?
1. (TTN ESAF) Um capital de R$ 14.400,00, aplicado a 22% ao ano, rendeu R$ 880,00 de juros. Durante quanto tempo esteve empregado? a) 3 meses e 3 dias b) 3 meses e 8 dias c) 2 meses e 23 dias d) 3 meses
Calculando o desalinhamento da contraponta
Calculando o desalinhamento da contraponta A UU L AL A Tornear peças cônicas é uma atividade bastante comum na área da Mecânica. Para fazer isso, o torneiro tem duas técnicas a sua disposição: ele pode
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª
15 + 17 + 19 +... + 35 + 37 = 312
MATEMÁTICA 1 Para uma apresentação de dança, foram convidadas 31 bailarinas. Em uma de suas coreografias, elas se posicionaram em círculos. No primeiro círculo, havia 15 bailarinas. Para cada um dos círculos
FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA
FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo
André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO
Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as
CPV 82% de aprovação na ESPM
CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou
EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14
EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta
Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 20 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO Uma forma de medir o percentual de gordura corporal
MATEMÁTICA FINANCEIRA
Professor Manuel MATEMÁTICA FINANCEIRA 01. (UNEB-2008) O proprietário de um imóvel contratou uma imobiliária para vendê-lo, pagando-lhe 5% do valor obtido na transação. Se a imobiliária recebeu R$ 5.600,00,
ANDRÉ REIS RACIOCÍNIO LÓGICO E MATEMÁTICO. 2ª Edição DEZ 2014
ANDRÉ REIS RACIOCÍNIO LÓGICO E MATEMÁTICO TEORIA QUESTÕES DE PROVAS DE CONCURSOS DA EBSERH AOCP GABARITADAS 20 QUESTÕES DE PROVAS DE CONCURSOS DA EBSERH AOCP RESOLVIDAS 2 EXERCÍCIOS RESOLVIDOS Teoria e
RESOLUÇÃO Matemática APLICADA FGV Administração - 08.12.13
VESTIBULAR FGV 2014 08/12/2013 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DISCURSIVO QUESTÃO 1 Considere, no espaço cartesiano bidimensional, os movimentos unitários N, S, L e O
TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:
TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e
115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100
MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu
1ª Parte Questões de Múltipla Escolha
MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo
CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.
Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.
A 'BC' e, com uma régua, obteve estas medidas:
1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B
Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,
ENEM 2012 MATEMÁTICA PROVA AMARELA
ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,
www.pontodosconcursos.com.br
Olá pessoal! Resolverei neste artigo as primeiras questões da prova do Banco do Brasil realizado em 010 pela FCC. Estamos lançando no Ponto um curso de exercícios específico para este concurso de 011 (edital
Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.
Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de
EQUAÇÕES E INEQUAÇÕES DE 1º GRAU
1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,
Considere um triângulo eqüilátero T 1
Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.
Aula 00 Curso: Matemática Financeira Professor: Custódio Nascimento
Prof. Ricardo Soncim - Aula 00 Aula 00 Curso: Matemática Financeira Professor: Custódio Nascimento APRESENTAÇÃO Curso: Matemática Financeira p/ ICMS RJ Futuros Auditores Fiscais da Receita Estadual do
Matemática, Raciocínio Lógico e suas Tecnologias
Matemática, Raciocínio Lógico e suas Tecnologias 21. (UFAL 2008) Uma copiadora pratica os preços expressos na tabela a seguir: Número de cópias Preço unitário (em reais) 1 a 10 0,20 11 a 50 0,15 51 a 200