Prof. Paulo Henrique Raciocínio Lógico

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "Prof. Paulo Henrique Raciocínio Lógico"

Transcrição

1 Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre os cuidados que devem ser tomados para evitar a dengue. Sabendo que dois quintos dos alunos escolhidos para realizar essa campanha são do sexo masculino, e que cada grupo formado contém um e apenas um aluno do sexo masculino, a quantidade de grupos de dois alunos é igual: A) ao dobro da quantidade de grupos de três alunos. B) à metade da quantidade de grupos de três alunos. C) à quantidade de grupos de três alunos. D) ao triplo da quantidade de grupos de três alunos. E) à terça parte da quantidade de grupos de três alunos. De acordo com os dados da questão, temos: D = total de grupos com 2 pessoas T = total de grupos com 3 pessoas Alunos = 2/5, logo alunas = 3/5 Bem, para descobrirmos o total dos alunos, devemos fazer: Total = 2. D + 3. T Aogra, aqui vai o olhômetro : como cada grupo tem apenas um aluno do sexo masculino, então a quantidade de grupos é igual a quantidade de alunos do sexo masculino. Então: Alunos = D + T E como 2/5 do total de alunos é homem, então: Alunos = 2. (2D + 3T) / 5 Juntando as duas equações, temos que: 2. (2D + 3T) / 5 = D + T 1 Eu Vou Passar e você?

2 4D + 6T = 5D + 5T 6T 5T = 5D 4D T = D Resposta: letra C (confere com o gabarito) 02. Sejam A e B os conjuntos dos números naturais múltiplos de 2 e 3, respectivamente, e C o conjunto formado pela interseção de A e B. Com respeito às proposições I, II e III, apresentadas a seguir, é correto afirmar que: I- Se x pertence a A então x+1 pertence a B. II- Se x pertence a C então x+6 pertence a C. III- Se x pertence a A e x+1 pertence a B então x+4 pertence a C. A) Apenas a proposição II é verdadeira. B) Apenas a proposição III é verdadeira. C) Todas as proposições são verdadeiras. D) Apenas a proposição I é falsa. E) Todas as proposições são falsas. Antes de analisarmos cada item, vamos encontrar os conjuntos A, B e C: A = {2, 4, 6, 8, 10, 12,...} B = {3, 6, 9, 12, 15, 18,...} O conjunto C, como intersecção de A e B, nada mais é que os múltiplos de 6. Assim: C = {6, 12, 18, 24, 30...} Agora, analisando cada item, temos: I traduzindo este item, os elementos de B serão os sucessivos de A. Isso acontece para x=2, pois x + 1 = 3. Porém, nem com todos os valores, isso acontece. Imagine x = 4, que pertence a A, então x + 1 = 5 deveria pertencer a B. Mas, não pertence!!! Logo, a proposição é falsa; 2 Eu Vou Passar e você?

3 II Como no conjunto C fazem parte os números múltiplos de 6, então a diferença entre seus elementos deve ser 6. Logo, se x, por exemplo, for igual 30 (múltiplo de 6), então x + 6 = 36, também múltiplo de 6. Proposição verdadeira; III Nesse caso, quando os elementos de A e B forem consecutivos (exemplo: 2 e 3, 8 e 9, 14 e 15,...), obrigatoriamente teremos um elemento no conjunto C sendo x + 4 (no exemplo, teremos 6, 12, 18,...) Proposição verdadeira. Resposta correta: letra D (confere com o gabarito). 03. Em uma das faces de uma moeda viciada é forjado o número zero, e na outra o número um. Ao se lançar a moeda, a probabilidade de se obter como resultado o número zero é igual a 2/3. Realizando-se cinco lançamentos independentes, e somandose os resultados obtidos em cada um desses lançamentos, a probabilidade da soma ser igual a um número par é: A) 121/243 B) 124/243 C) 119/243 D) 122/243 E) 125/243 Traduzindo: A questão nos pede 5 lançamentos e que a soma dos resultados deve ser par. Para que tenhamos uma soma par, devemos ter: 1) 5 moedas zero 2) 3 moedas zero e 2 moedas um 2) 1 moeda zero e 4 moedas um 3 Eu Vou Passar e você?

4 Agora, precisamos responder 2 perguntas: de quantas maneiras poderemos encontrar cada resultado e qual é a probabilidade de cada um! Para a 1ª pergunta, usaremos Análise Combinatória, em especial, PERMUTAÇÃO! E com repetição! Vixe, PH, complicou! Que nada! Quando temos a quantidade de posições (5) igual a quantidade de moedas (5), isso é Permutação. Como as moedas se repetem (0 ou 1), dizemos que é com repetição. O que diferencia a permutação normal é que, no denominador, colocaremos a quantidade de repetições em fatorial. Olha como fica: 1) para este caso, só existe 1 possibilidade, ou seja, todas as moedas devem ter valor 0; 2) P = 5! = ! = 10 3!. 2! 3!. 2 3) P = 5! = 5. 4! = 5 4! 4! Agora, calculemos as probabilidades: 1) 1. 2/3. 2/3. 2/3. 2/3. 2/3 = 32 / 343 2) 10. 2/3. 2/3. 2/3. 1/3. 1/3 = / 343 = 80 / 343 2) 5. 2/3. 1/3. 1/3. 1/3. 1/3 = 5. 2 / 343 = 10 / 343 Somando tudo, teremos: Probabilidade = ( ) / 343 = 122 / 343 Resposta: letra D (confere com o gabarito). 27. Os números naturais da seqüência X1, X2, X3, X4,...,XN seguem uma ordem lógica crescente. Sabendo que a soma e o produto dos três primeiros termos dessa seqüência valem, respectivamente, 12 e 48, e que a soma e o produto dos segundo, terceiro e quarto termos valem 18 e 192, respectivamente, o centésimo termo dessa seqüência é igual a: A) 160. B) Eu Vou Passar e você?

5 C) 240. D) 220. E) 180. Traduzindo o que a questão nos dá, temos: - a soma dos três primeiros termos é igual a 12 X1 + X2 + X3 = 12 - o produto dos três primeiros termos é igual a 48 X1. X2. X3 = 48 - a soma dos segundo, terceiro e quarto termos é igual a 18 X2 + X3 + X4 = 18 - o produto dos segundo, terceiro e quarto termos é igual a 192 X2. X3. X4 = 192 Façamos as seguintes continhas, uma de subtração, outra de divisão: Juntando as duas, temos que: 4X1 X1 = 6 3X1 = 6 X1 = 2 Logo: X4 = 4X1 X4 = 4. 2 = 8 Utilizando a Regra Geral de uma P.A. [a n = a 1 + (n - 1). r], encontraremos: a 4 = a 1 + (4-1). r 8 = 2 + 3r 3r = 6 r = 2 E agora, faz que nem o Baby Sauro: De novo, de novo... Só que agora para encontrarmos o centésimo termo: a 100 = a 1 + (100-1). r 5 Eu Vou Passar e você?

6 a 100 = a 100 = a 100 = 200 Resposta: letra B (confere com o gabarito). 28. Antônio, José e Paulo são professores de uma universidade da cidade de São Paulo. Paulo é Paraibano, e os outros dois são mineiro e paulista, não necessariamente nessa ordem. Os três professores são formados em engenharia, física e matemática, mas não se sabe quem é graduado em qual curso. Sabendo que o físico nunca mudou de cidade, e que o mineiro não é José e nem é engenheiro, é correto afirmar que: A) José é paulista e graduado em engenharia. B) Paulo não é engenheiro. C) Antônio é paulista e graduado em física. D) José é mineiro e graduado em matemática. E) Antônio é mineiro e graduado em matemática. Filhotes, apareceu não necessariamente nessa ordem, é a deixa para fazermos a tabelinha abaixo, de acordo com as informações da questão: José Paulo Antônio Agora, analisemos o que diz a questão: Paulo é Paraibano José N Paulo S N N Antônio N o mineiro não é José e nem é engenheiro José N N 6 Eu Vou Passar e você?

7 Paulo S N N Antônio N Encontramos que José é Paulista e como o físico nunca mudou de cidade e todos eles são professores de uma universidade da cidade de São Paulo, José é físico: José N S N N N S Paulo N S N N Antônio N N S N o mineiro não é José e nem é engenheiro José N S N N N S Paulo N S N N Antônio N N N S N Agora, a gente completa o resto: Resumindo: José N S N N N S Paulo S N N S N N Antônio N N S N S N - José é paulista e professor de física; - Paulo é paraibano e professor de engenharia; - Antônio é mineiro e professor de matemática. Resposta correta: letra E (confere com o gabarito) 29. Um sistema de sinalização visual é composto por dez bandeiras, sendo quatro vermelhas, três pretas e três brancas, as quais são hasteadas numa determinada ordem para gerar as mensagens desejadas. Sabe-se que apenas um centésimo das mensagens que podem ser geradas por este sistema é utilizado na prática. Deseja-se desenvolver um novo sistema de sinalização visual, composto apenas de bandeiras de cores distintas e que seja capaz de gerar, pelo menos, a quantidade de mensagens empregadas na prática. O número mínimo de bandeiras que se deve adotar no novo sistema é: A) 5. B) 4. C) Eu Vou Passar e você?

8 D) 3. E) 7. O começo é bem parecido com a questão 03. Temos que ordenar 10 bandeiras em 10 posições. O que é isso? PERMUTAÇÃO! Tem bandeiras repetidas? Sim! COM REPETIÇÃO! De quantas maneiras podemos hastear essas bandeiras? P = 10! = ! = = 4200 maneiras 4!. 3!. 3! 4! A questão fala em apenas um centésimo das mensagens que podem ser geradas por este sistema é utilizado na prática, então: Total = 4200 / 100 = 42 Assim, precisamos saber quantas bandeiras de cores distintas deverão ser usadas para que tenhamos mais de 42 possibilidades. Assim: - 3 bandeiras = P (3) = 3! = = 6-4 bandeiras = P (4) = 4! = = 24-5 bandeiras = P (5) = 5! = = 120 Resposta correta: letra A (confere com o gabarito). 30. Um professor entregou uma lista de exercícios contendo dez questões para ser resolvida por cada um dos vinte alunos de sua turma. Seis alunos conseguiram resolver todas as questões da lista, dez alunos resolveram oito questões e os demais resolveram apenas duas questões. Escolhendo-se aleatoriamente um aluno e uma questão da lista, a probabilidade da questão escolhida não ter sido resolvida é igual a: A) 13/50 B) 17/50 C) 23/50 D) 27/50 E) 37/ Eu Vou Passar e você?

9 Resumindo: 6 alunos 10 questões 20 alunos 10 alunos 8 questões 4 alunos 2 questões Para escolher um aluno aleatório E uma questão não resolvida, faremos os eventos (aluno e questão) separadamente e depois multiplicaremos seus resultados. Só um detalhe: os seis alunos que resolveram todas as questões não irão entrar nesse cálculo. Por quê??? Ora, como eles marcaram todas as questões, a probabilidade deles não terem respondido uma questão é ZERO. Então: P (ser 1 aluno dos 10) = 10/20 P (ser 1 das 2 questões não resolvidas) = 2/10 10 alunos 8 questões P (ser 1 aluno dos 10 E ser 1 das 2 questões não resolvidas) = 10/20. 2/10 = 20/200 = 5/50 P (ser 1 aluno dos 4) = 4/20 P (ser 1 das 8 questões não resolvidas) = 8/10 4 alunos 2 questões P (ser 1 aluno dos 4 E ser 1 das 8 questões não resolvidas) = 4/20. 8/10 = 32/200 = 8/50 Total das probabilidades = 5/50 + 8/50 = 13/50 Resposta correta: letra A (confere com o gabarito). 9 Eu Vou Passar e você?

RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE

RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE TABELA-VERDADE 01) A negação da afirmação se o cachorro late então o gato mia é: A) se o gato não mia então o cachorro não late. B) o cachorro não late e o gato não mia. C) o cachorro late e o gato não

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a Comentadas pelo professor: Vinicius Werneck Raciocínio Lógico 1- Prova: ESAF - 2012 - Receita Federal - Auditor Fiscal da Receita Federal Sabendo-se que o conjunto X é dado por X = {x R x² 9 = 0 ou 2x

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos? Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de

Leia mais

PONTO DOS CONCURSOS PROFESSOR: GUILHERME NEVES

PONTO DOS CONCURSOS PROFESSOR: GUILHERME NEVES Olá, pessoal! Tudo bem? Resolvi as questões de Raciocínio Lógico Matemático da prova para Escriturário do Banco do Brasil. Todas as questões estão perfeitas e todos os gabaritos fornecidos pela CESGRANRIO

Leia mais

Sistema de Numeração e Aritmética Básica

Sistema de Numeração e Aritmética Básica 1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos amigos concurseiros. Seguem breves comentários à prova de RLQ do ATA- MF. Não encontramos nenhuma questão passível de recurso. Mas, se vocês tiverem visualizado alguma coisa e quiserem debater

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

REVISÃO E AVALIAÇÃO DA MATEMÁTICA

REVISÃO E AVALIAÇÃO DA MATEMÁTICA 2 Aula 45 REVISÃO E AVALIAÇÃO DA 3 Vídeo Arredondamento de números. 4 Arredondamento de números Muitas situações cotidianas envolvendo valores destinados à contagem, podem ser facilitadas utilizando o

Leia mais

Prof. Pedro A. Silva

Prof. Pedro A. Silva Prof. Pedro A. Silva www.aplicms.com.br profpas@alanet.com.br CORREÇÃO DA PROVA DE RACIOCÍNIO LÓGICO DO CARGO DE AGENTE PENITENCIÁRIO FEDERAL - CADERNO 1 /2009 Questão 24 Uma professora formou grupos de

Leia mais

Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV

Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV Simulado 02 de Matemática Financeira Questões FGV 01. Determine o valor atual de um título descontado (desconto simples por fora) dois meses

Leia mais

Revisão de combinatória

Revisão de combinatória A UA UL LA Revisão de combinatória Introdução Nesta aula, vamos misturar os vários conceitos aprendidos em análise combinatória. Desde o princípio multiplicativo até os vários tipos de permutações e combinações.

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Resolverei neste ponto mais uma prova da FUNIVERSA. Desta vez é a prova para Economista do CEB Distribuição S/A realizada em fevereiro de 2010. Aproveito a oportunidade para falar dos cursos

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI

Leia mais

Exercícios de Fixação Pseudocódigo e Estruturas Básicas de Controle

Exercícios de Fixação Pseudocódigo e Estruturas Básicas de Controle Disciplina: TCC-00.7 Prog. de Computadores III Professor: Leandro Augusto Frata Fernandes Turma: A- Data: / / Exercícios de Fixação Pseudocódigo e Estruturas Básicas de Controle. Construa um algoritmo

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva: PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do

Leia mais

CENTRO DE ESTUDOS SUPERIORES DE ITACOATIARA

CENTRO DE ESTUDOS SUPERIORES DE ITACOATIARA PROVA ÚNICA ORIENTAÇÕES 1. Verifique se este bloco de prova contém um total de 20 questões numeradas, 1 a 20. Caso contrário, reclame ao Fiscal de sala, outro bloco. Não serão aceitas reclamações posteriores.

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região

Leia mais

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

SISTEMAS LINEARES CONCEITOS

SISTEMAS LINEARES CONCEITOS SISTEMAS LINEARES CONCEITOS Observemos a equação. Podemos perceber que ela possui duas incógnitas que são representadas pelas letras x e y. Podemos também notar que se e, a igualdade se torna verdadeira,

Leia mais

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia Empresa de Pesquisa Energética (EPE) 2014 Analista de Projetos da Geração de Energia Oi, pessoal! Vou resolver as quatro questões de Estatística (53 a 56) da prova elaborada pela banca Cesgranrio para

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio 36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times:

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times: Raciocínio Lógico- Vinicius Werneck 1. Em um campeonato de futebol, a pontuação acumulada de um time é a soma dos pontos obtidos em cada jogo disputado. Por jogo, cada time ganha três pontos por vitória,

Leia mais

SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2

SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2 SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2 1.1 Introdução... 2 1.2 Estrutura do IP... 3 1.3 Tipos de IP... 3 1.4 Classes de IP... 4 1.5 Máscara de Sub-Rede... 6 1.6 Atribuindo um IP ao computador... 7 2

Leia mais

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/2013 41. A idade média de todos

Leia mais

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos...

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos... Sumário Volta às aulas. Vamos recordar?... Números... 0 Um pouco da história dos números... Como os números são usados?... 2 Números e estatística... 4 Números e possibilidades... 5 Números e probabilidade...

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Técnico do TRT/4ª Região (Rio

Leia mais

QUESTÕES. t = 7, o valor de t é o número: SIMULADO. Olá pessoal! Como vocês estão?

QUESTÕES. t = 7, o valor de t é o número: SIMULADO. Olá pessoal! Como vocês estão? Olá pessoal! Como vocês estão? Nesse artigo apresento a vocês um simulado com questões de Raciocínio Lógico, Matemática e Matemática Financeira. Para os candidatos aos cargos de Auditor e Analista Tributário

Leia mais

Princípio da Casa dos Pombos I

Princípio da Casa dos Pombos I Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 7 Princípio da Casa dos Pombos I O princípio da casa dos pombos também é conhecido em alguns países (na Rússia,

Leia mais

Alguns exemplos de problemas resolvidos

Alguns exemplos de problemas resolvidos Alguns exemplos de problemas resolvidos Partilhamos contigo alguns problemas e respetivas resoluções que selecionámos, para ilustrar todo este desafiante processo de resolução de problemas. Vais reparar

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Introdução à Probabilidade e Estatística

Introdução à Probabilidade e Estatística Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes

Leia mais

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países. Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas

Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Professor: Arthur Lima AULA 05: RESUMO Caro aluno, Para finalizar nosso curso, preparei um resumo de toda a teoria vista nas

Leia mais

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Professor: Custódio Nascimento 1- Análise da prova Neste artigo, faremos a análise das questões de cobradas na prova

Leia mais

Aplicações de Combinatória e Geometria na Teoria dos Números

Aplicações de Combinatória e Geometria na Teoria dos Números Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como

Leia mais

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matemática Divisores e Múltiplos Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

Lista de Exercícios. Vetores

Lista de Exercícios. Vetores Lista de Exercícios Vetores LINGUAGEM DE PROGRAMAÇÃO PROF. EDUARDO SILVESTRI. WWW.EDUARDOSILVESTRI.COM.BR ATUALIZADO EM: 13/03/2007 Página 1/1 1. Faça um programa que crie um vetor de inteiros de 50 posições

Leia mais

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. 1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,

Leia mais

1 Probabilidade Condicional - continuação

1 Probabilidade Condicional - continuação 1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o

Leia mais

quociente razão. mesma área a partes de um tablete de chocolate

quociente razão. mesma área a partes de um tablete de chocolate 1 As sequências de atividades Vamos relembrar, Como lemos os números racionais?, Como escrevemos os números racionais?, As partes das tiras de papel, Comparando e ordenando números racionais na forma decimal

Leia mais

A Matemática do ENEM em Bizus

A Matemática do ENEM em Bizus A Matemática do ENEM em Bizus Neste primeiro artigo sobre a Matemática do ENEM, eu quero abordar a estratégia do conteúdo, tendo por base as provas anteriores e as tendências de abordagem. Quando confrontamos

Leia mais

Exercícios resolvidos sobre Definição de Probabilidade

Exercícios resolvidos sobre Definição de Probabilidade Exercícios resolvidos sobre Definição de Probabilidade Nesta Unidade de estudo, até este ponto você aprendeu definições de probabilidade e viu como os conceitos se aplicam a várias situações. Observe agora

Leia mais

A Matemática e o dinheiro

A Matemática e o dinheiro A Matemática e o dinheiro A UUL AL A Muita gente pensa que a Matemática, em relação ao dinheiro, só serve para fazer troco e para calcular o total a pagar no caixa. Não é bem assim. Sem a Matemática, não

Leia mais

Jeandervall. Roteamento

Jeandervall. Roteamento Roteamento Configurar um roteador parece um tanto quanto complicado, porem não é uma tarefa impossível. O detalhe é que é preciso tomar muita a atenção na ora de configurar as rotas. Recomenda-se que antes

Leia mais

Prova da segunda fase - Nível 1

Prova da segunda fase - Nível 1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

Excel Planilhas Eletrônicas

Excel Planilhas Eletrônicas Excel Planilhas Eletrônicas Capitulo 1 O Excel é um programa de cálculos muito utilizado em empresas para controle administrativo, será utilizado também por pessoas que gostam de organizar suas contas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA

Leia mais

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6 PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião,

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

Calculando probabilidades

Calculando probabilidades A UA UL LA Calculando probabilidades Introdução evento E é: P(E) = Você já aprendeu que a probabilidade de um nº deresultadosfavoráveis nº total de resultados possíveis Nesta aula você aprenderá a calcular

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

Avaliação 1 - MA12-2015.1 - Gabarito

Avaliação 1 - MA12-2015.1 - Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA1-015.1 - Gabarito Questão 01 [,00 pts ] Uma escola pretende formar uma comissão de 6 pessoas para organizar uma festa junina. Sabe-se

Leia mais

18/11/2005. Discurso do Presidente da República

18/11/2005. Discurso do Presidente da República Discurso do presidente da República, Luiz Inácio Lula da Silva, na cerimônia de entrega de certificado para os primeiros participantes do programa Escolas-Irmãs Palácio do Planalto, 18 de novembro de 2005

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 Este é o 7º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

Comentário da Prova da Caixa Econômica feito pelo Prof. Sérgio Altenfelder. www.cursoaprovacao.com.br

Comentário da Prova da Caixa Econômica feito pelo Prof. Sérgio Altenfelder. www.cursoaprovacao.com.br COMETÀRIO GERAL: Prova mediana para difícil. Nível de dificuldade 7. Em média quem estudou deve ter acertado 4 questões. Se a questão 2 for anulada, a nota média deverá ser 5. 1. Em uma urna há 5 bolas

Leia mais

JOSÉ DE SOUZA CASTRO 1

JOSÉ DE SOUZA CASTRO 1 1 JOSÉ DE SOUZA CASTRO 1 ENTREGADOR DE CARGAS 32 ANOS DE TRABALHO Transportadora Fácil Idade: 53 anos, nascido em Quixadá, Ceará Esposa: Raimunda Cruz de Castro Filhos: Marcílio, Liana e Luciana Durante

Leia mais

Conhecendo um pouco de matrizes e determinantes

Conhecendo um pouco de matrizes e determinantes Módulo 3 Unidade 29 Conhecendo um pouco de matrizes e determinantes Para início de conversa... Frequentemente em jornais, revistas e também na Internet encontramos informações numéricas organizadas na

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

PROCESSO SELETIVO 2007 / 2ª FASE EDUCAÇÃO PROFISSIONAL DE NÍVEL TÉCNICO E ENSINO MÉDIO REDAÇÃO

PROCESSO SELETIVO 2007 / 2ª FASE EDUCAÇÃO PROFISSIONAL DE NÍVEL TÉCNICO E ENSINO MÉDIO REDAÇÃO PROCESSO SELETIVO 2007 / 2ª FASE EDUCAÇÃO PROFISSIONAL DE NÍVEL TÉCNICO E ENSINO MÉDIO REDAÇÃO Escolha um dos 3 (três) temas abaixo e desenvolva um texto dissertativo-argumentativo com,no minimo, 15 (quinze)

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Considere o produto dos números naturais ímpares, 19 17 15... 3 1: Como pode ser reescrito utilizando fatorial? (a) 19! (b) 19! 20! (c) 19! 18 16... 2 (d) 19! 20 Exercício 2

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 1) C 6) A 11) D 16) C 2) D 7) C 12) C 17) D 3) E 8) B 13) E 18) A 4) E 9) B 14)

Leia mais

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1. REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA

Leia mais

ESCOLA MUNICIPAL DE ENSINO FUNDAMENTAL PROFª MARIA MARGARIDA ZAMBON BENINI. Plano de aula 6 21/05 e 28/05 de 2015 Atividades de reforço

ESCOLA MUNICIPAL DE ENSINO FUNDAMENTAL PROFª MARIA MARGARIDA ZAMBON BENINI. Plano de aula 6 21/05 e 28/05 de 2015 Atividades de reforço ESCOLA MUNICIPAL DE ENSINO FUNDAMENTAL PROFª MARIA MARGARIDA ZAMBON BENINI Plano de aula 6 21/05 e 28/05 de 2015 Atividades de reforço Bolsistas: Andressa Santos Vogel e Patricia Lombello Supervisora:

Leia mais

Computadores XII: Aprendendo a Somar A4 Texto 3

Computadores XII: Aprendendo a Somar A4 Texto 3 Computadores XII: Aprendendo a Somar A4 Texto 3 http://www.bpiropo.com.br/fpc20051017.htm Sítio Fórum PCs /Colunas Coluna: B. Piropo Publicada em 17/10/2005 Autor: B.Piropo Na coluna anterior, < http://www.forumpcs.com.br/viewtopic.php?t=131250

Leia mais

Artigo 02 Exercício Comentado - Débito e Crédito PROFESSORA: Ivana Agostinho

Artigo 02 Exercício Comentado - Débito e Crédito PROFESSORA: Ivana Agostinho Caro(a) aluno(a), Tudo bem? Hoje vamos resolver um exercício que aborda o mecanismo contábil do débito e do crédito, assunto que costuma dar um pouquinho de dor de cabeça nos iniciantes... Vou simplificar

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para

Leia mais

RELATÓRIO I Data: 23.04.2015

RELATÓRIO I Data: 23.04.2015 RELATÓRIO I Data: 23.04.2015 Discutir conteúdos trabalhados em sala de aula, sucessor, antecessor, oposto, simétrico, módulo, expressões numéricas envolvendo adição e subtração de números inteiros. 1)

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

SISTEMA CLÁSSICO DE REDUÇÃO

SISTEMA CLÁSSICO DE REDUÇÃO Page 1 of 6 SISTEMA CLÁSSICO DE REDUÇÃO Este documento irá ensinar-lhe como pode fazer um desdobramento reduzido, segundo o processo clássico (italiano) para qualquer sistema 5/50, em particular para o

Leia mais

PRINCÍPIO DA CASA DOS POMBOS

PRINCÍPIO DA CASA DOS POMBOS PRINCÍPIO DA CASA DOS POMBOS 1) Certa noite, Carlos Eduardo resolveu ir ao cinema, mas descobriu que não tinha meias limpas pra calçar. Foi então ao quarto do pai, que estava na escuridão. Ele sabia que

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais