RESOLUÇÃO Matemática APLICADA FGV Administração

Tamanho: px
Começar a partir da página:

Download "RESOLUÇÃO Matemática APLICADA FGV Administração - 08.12.13"

Transcrição

1 VESTIBULAR FGV /12/2013 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DISCURSIVO QUESTÃO 1 Considere, no espaço cartesiano bidimensional, os movimentos unitários N, S, L e O definidos a seguir, onde (a, b) R 2 é um ponto qualquer: N(a, b) = (a, b + 1) S(a, b) = (a, b 1) L(a, b) = (a + 1, b) O(a, b) = (a 1, b) Considere ainda que a notação XY(a, b) significa X(Y(a, b)), isto é, representa a combinação em sequência dos movimentos unitários X e Y, onde o movimento Y é executado primeiro e, a seguir, o movimento X. a) Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é: NS(a, b) = SN(a, b) = (a, b). b) Partindo do ponto (1, 4), quantos caminhos mínimos (isto é, com a menor quantidade possível de movimentos) diferentes podem ser percorridos, utilizando apenas os movimentos unitários definidos, para se chegar ao ponto ( 1, 7)? a) NS(a, b) = N(S(a, b)) = N(a, b 1) = (a, b 1 + 1) = (a, b) SN(a, b) = S(N(a, b)) = S(a, b + 1) = (a, b + 1 1) = (a, b) b) Para ir de A a B por um caminho mínimo deve-se aplicar o movimento unitário N três vezes e O duas vezes. O número de modos de compor um caminho mínimo é o número de permutações das letras NNNOO, portanto: 3, 2 5! 5 $ 4 P ! 2! 2 Respostas: a) demonstração acima. b) 10 caminhos mínimos.

2 QUESTÃO 2 Em uma competição de Matemática, a prova é do tipo múltipla-escolha com 25 questões. A pontuação de cada competidor é feita de tal maneira que cada questão: respondida corretamente vale 6 pontos; não respondida vale 1,5 ponto; respondida erradamente vale 0 (zero) ponto. a) É possível um competidor fazer exatamente 100 pontos? Se a resposta for afirmativa, mostre uma maneira; se não for, justifique a impossibilidade. b) Márcia fez mais de 100 pontos. Quantas questões, no mínimo, ela respondeu corretamente? a) Sendo x o número de questões respondidas corretamente, y o número de questões não respondidas e z o número de questões respondidas erradamente, com x, y e z números naturais, temos: x + y + z = 25 x + y + z = 25 x + y + z = 25 * & * & * 6x + 1, 5y = x + 3y = 200 3( 4x + y) = 200 Na 2 a equação, temos (4x + y) natural e, portanto, 3(4x + y) é um múltiplo de 3. Como 200 não é um múltiplo de 3, não é possível um competidor fazer exatamente 100 pontos. b) x + y + z = 25 * 6x + 1, 5y > 100 6x + 1,5(25 x z) > 100 4,5x 1,5z > 62,5 9x 3z > 125 9x > z 125 z x > Como z 0, x mín é o menor inteiro que supera, portanto é 14. Nesse caso, são 14 acertos, 11 não 9 respondidas e nenhuma errada, totalizando ,5 11 = 100,5 pontos. Respostas: a) demonstração acima. b) 14 questões.

3 QUESTÃO 3 A figura mostra um semicírculo cujo diâmetro AB, de medida R, é uma corda de outro semicírculo de diâmetro 2R e centro O. a) Calcule o perímetro da parte sombreada. b) Calcule a área da parte sombreada. a) ( per) 1 1 R 5πR 2 somb = $ πr + 2 ( per) 6 2 $ π & 2 somb = R 1 2 R 3 R π b) S R S 3 somb = $ πf p > π H & somb = f p 4 6 Respostas: a) 5πR 6 b) R 2 c 4 π 3 m 6 QUESTÃO 4 Um sorvete de casquinha consiste de uma esfera (sorvete congelado) de raio 3 cm e um cone circular reto (casquinha), também com 3 cm de raio. Se o sorvete derreter, ele encherá a casquinha completa e exatamente. Suponha que o sorvete derretido ocupe 80% do volume que ele ocupa quando está congelado. Calcule a altura da casquinha ,8 V esf = V cone & 0, 8 $ π $ 3 = π $ 3 $ h & h = 0, 8 $ 4 $ 3 = 9, Resposta: 9,6 cm

4 QUESTÃO 5 Seja f uma função que, a cada número complexo z, associa f(x) = iz, onde i é a unidade imaginária. Determine os complexos z de módulo igual a 4 e tais que f(z) = z, onde z é o conjugado de z. z = x + yi, x e y reais z = 4 & x 2 + y 2 = 16 f(z) = z & i(x + yi) = x yi & y + xi = x yi & y = x Então: x 2 + ( x) 2 = 16 & x 2 = 8 & x =! 2 2 Logo, z = i ou z = i. Resposta: Os complexos são i e i. QUESTÃO 6 a) Lançam-se ao ar 3 dados equilibrados, ou seja, as probabilidades de ocorrer cada uma das seis faces são iguais. Qual é a probabilidade de que apareça soma 9? Justifique a resposta. b) Um dado é construído de tal modo que a probabilidade de observar cada face é proporcional ao número que ela mostra. Se lançarmos o dado, qual é a probabilidade de obter um número primo? a) Número de ternas possíveis: = 216 A soma 9 ocorre nas 25 ternas abaixo: 1, 2, 6 2,1,6 3, 1, 5 4, 1, 4 5,1,3 6, 1, 2 1, 3, 5 2, 2, 5 3, 2, 4 4, 2, 3 5, 2, 2 6, 2, 1 1, 4, 4 2, 3, 4 3, 3, 3 4, 3, 2 5, 3, 1 1, 5, 3 2,4, 3 3, 4, 2 4, 4, 1 1, 6, 2 2, 5, 2 3, 5, 1 2, 6, 1 25 Portanto, P(Soma 9) = 216 b) P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 e P(1) = k, temos: k + 2k + 3k + 4k + 5k + 6k = 1 & k Logo, P(primo) = 2k + 3k + 5k = 10k = 21 Respostas: 25 a) b) 21

5 QUESTÃO 7 Observe a notícia abaixo e utilize as informações que julgar necessárias. a) Suponha que a partir de 2010 os índices de perdas no varejo, no Brasil e nos EUA, possam ser expressos por funções polinomiais do 1 grau, y = ax + b, em que x = 0 representa o ano 2010, x = 1 o ano 2011, e assim por diante, e y representa o índice de perdas expresso em porcentagem. Determine as duas funções. b) Em que ano a diferença entre o índice de perdas no varejo, no Brasil, e o índice de perdas no varejo, nos EUA, será de 1%, aproximadamente? Dê como solução os dois anos que mais se aproximam da resposta. a) Brasil: em 2010 temos x = 0 e y = 1,75. em 2011 temos x = 1 e y = 1,76. 1, 75 = a $ 0 + b Daí, * 1, 76 = a $ 1+ b * a 0, 01 b 1, 75 Logo, y = 0,01x + 1,75. EUA: em 2010 temos x = 0 e y = 1,49 em 2011 temos x = 1 e y = 1,40. 1, 49 = a $ 0 + b Daí, * 1, 40 = a $ 1+ b Logo, y = 0,09x + 1,49. * a 0, 09 b 1, 49 b) A diferença é: 0,01x + 1,75 ( 0,09x + 1,49) = 1 0,10x + 0,26 = 1 x = 7,4 Como 7 < 7,4 < 8, os anos que mais se aproximam da resposta são 2017 (x = 7) e 2018 (x = 8). Respostas: a) Brasil: y = 0,01x + 1,75 EUA: y = 0,09x + 1,49 b) 2017 e 2018.

6 QUESTÃO 8 Conta a lenda: Havia um rei que tinha costume de dar liberdade a um prisioneiro no dia do seu aniversário. Em certa ocasião levou três condenados a um quarto escuro, no qual havia três chapéus brancos e dois chapéus negros. Contou aos prisioneiros quantos chapéus havia e a cor de cada um. Colocou um chapéu em cada prisioneiro, depois os tirou do quarto e levou-os a um lugar onde cada um pudesse ver o chapéu dos outros dois, mas não o seu. Perguntou ao prisioneiro A a cor do seu chapéu e ele não soube responder. O mesmo aconteceu com o prisioneiro B. Finalmente, fez a mesma pergunta ao prisioneiro C, que era totalmente cego e havia escutado as respostas dos outros dois. Não necessito enxergar para saber que meu chapéu é branco. Foi colocado em liberdade assim que todos observaram que havia acertado a resposta. a) Faça uma tabela em que apareçam todas as possibilidades das cores dos chapéus colocados nos prisioneiros. b) Explique por que o condenado C somente podia estar com o chapéu branco. a) A B C 1 b b b 2 b b n 3 b n b 4 b n n 5 n b b 6 n b n 7 n n b b = branco n = negro b) O prisioneiro A viu dois chapéus brancos ou um branco e um negro, pois não sabe a cor do dele. O prisioneiro B vê o chapéu do cego; se fosse negro, ele saberia que o dele é branco, porque A teria visto um chapéu negro e um branco. Como B não sabe responder, o chapéu do cego não é negro, é branco. Respostas: a) tabela acima. b) explicação acima.

7 QUESTÃO 9 a) Para medir a largura x de um rio sem necessidade de cruzá-lo, foram feitas várias medições como mostra a figura abaixo. Calcule a largura x do rio. b) Demonstre que a distância do vértice B ao baricentro M de um triângulo é o dobro da distância do ponto E ao baricentro M. a) Considerando BED t = 90, temos que: ACB EDB AC AB x 24 = & = & x = 19,2 ED EB 2 2, 5 b) ADE ABC AD DE AD DE DE 1 = & = & = AB BC 2AD BC BC 2 DEM CBM DE EM 1 EM = & = & BM = 2EM CB BM 2 BM Respostas: a) 19,2 m b) demonstração acima

8 QUESTÃO 10 a) Um sábio da Antiguidade propôs o seguinte problema aos seus discípulos: Uma rã parte da borda de uma lagoa circular de 7,5 metros de raio e se movimenta saltando em linha reta até o centro. Em cada salto, avança a metade do que avançou no salto anterior. No primeiro salto avança 4 metros. Em quantos saltos chega ao centro? b) O mesmo sábio faz a seguinte afirmação em relação à situação do item A: Se o primeiro salto da rã é de 3 metros, ela não chega ao centro. Justifique a afirmação. a) Como ,5 = 7,5, bastam 4 saltos b) 3,,,... é PG com a = 3 e q =. Temos: a = 1 = = q Como 6 < 7,5, ela não chega ao centro. Respostas: a) 4 saltos. b) Justificativa acima.

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1. EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B Questão TIPO DE PROVA: A Um taxista inicia o dia de traalho com o tanque de comustível de seu carro inteiramente cheio. Percorre 35 km e reaastece, sendo necessários 5 litros para completar o tanque. Em

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Em um paralelogramo, as medidas de dois ângulos

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 17/dezembro/006 RACIOCÍNIO MATEMÁTICO 01. Em uma pesquisa de mercado feita com 50 entrevistados, todos responderam o seguinte questionário: I. Assinale

Leia mais

UFRJ- VESTIBULAR 2004 PROVA DE MATEMÁTICA.

UFRJ- VESTIBULAR 2004 PROVA DE MATEMÁTICA. UFRJ- VESTIBULAR 00 ROVA DE MATEMÁTICA Resolução e comentário pela rofessora Maria Antônia Conceição Gouveia Apresente suas soluções de forma clara, indicando, em cada caso, o raciocínio que conduziu à

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária, i = z: módulo do número z Re(z): parte real do número z Im(z): parte imaginária do número z det

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

SEMELHANÇA DE FIGURAS GEOMÉTRICAS PLANAS

SEMELHANÇA DE FIGURAS GEOMÉTRICAS PLANAS Página 1 SEMELHANÇA DE FIGURAS GEOMÉTRICAS PLANAS Um conceito muito utilizado em Geometria é a ideia de figuras semelhantes. Ele vem sendo utilizado desde a Antiguidade. Uma ampliação, uma redução e até

Leia mais

EXAME DISCURSIVO 2ª fase

EXAME DISCURSIVO 2ª fase EXAME DISCURSIVO 2ª fase 30/11/2014 MATEMÁTICA Caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.

Leia mais

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 PROVA DE MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO POR: PROFA. MARIA ANTÔNIA GOUVEIA QUESTÃO 21 ; O valor da expressão ( )( ; ; ) ; para x 101 é: a) 100; b) 10; c) 10,1;

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5.

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5. 41. Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

Questão 01. Questão 02

Questão 01. Questão 02 PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Sabendo

Leia mais

12) A círculo = π r 2. 1 13) A lateral cone = π.r.g. 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 1 13) A lateral cone = π.r.g. 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA (Prova AMARELA). INTRODUÇÃO A prova de Matemática do Vestibular 04 foi elaborada com o intuito de contemplar todos os tópicos do programa, associando convenientemente a parte teórica com as

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2011 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

FRENTE 1 ÁLGEBRA MÓDULO 28 DISPOSITIVO DE BRIOT-RUFFINI TEOREMA DO RESTO MATEMÁTICA E

FRENTE 1 ÁLGEBRA MÓDULO 28 DISPOSITIVO DE BRIOT-RUFFINI TEOREMA DO RESTO MATEMÁTICA E FRENTE ÁLGEBRA MATEMÁTICA E Nas questões de a, calcular o quociente e o resto das divisões dos polinômios, utilizando o Dispositivo de Briot-Ruffini.. x x + 6x + por x MÓDULO 8 DISPOSITIVO DE BRIOT-RUFFINI

Leia mais

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS.

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS. ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS ÁLGEBRA I: 003 a 013 Funções: definição de função; funções definidas por

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IBMEC 0/junho/007 NÁLISE QUNTITTIV E LÓGIC OBJETIV. Numa lanchonete, um salgado e um refrigerante custam, respectivamente, X e Y reais. Pedro, que comprou X salgados

Leia mais

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre

Leia mais

no de Questões A Unicamp comenta suas provas

no de Questões A Unicamp comenta suas provas Cad no de Questões A Unicamp comenta suas provas 99 SEGUNDA FASE 4 de Janeiro de 998 Matemática 0 prova de Matemática do Vestibular Unicamp procura identificar nos candidatos um conhecimento crítico e

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

www.exatas.clic3.net

www.exatas.clic3.net www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de

Leia mais

Resolução do Exame de acesso ao PROFMAT

Resolução do Exame de acesso ao PROFMAT Grupo PET-Matemática UFCG Resolução do Exame de acesso ao PROFMAT 2012 wwwdmeufcgedubr/pet/ Grupo PET Matemática - UFCG: Alan, André, Arthur, Felipe, Geovany, Juarez, Juliérika, Matheus, Michell, Paulo,

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

x se x = n se x e n< x< n+ 1, n que associa a cada número real x o maior inteiro não superior a x.

x se x = n se x e n< x< n+ 1, n que associa a cada número real x o maior inteiro não superior a x. RELATÓRIO VESTIBULAR UFS/03 MATEMÁTIA (Prova AMARELA). INTRODUÇÃO As questões foram elaboradas visando incluir todos os tópicos do programa, com ênfase nos conceitos e suas conexões entre os diversos campos

Leia mais

Volumes parte 02. Isabelle Araujo

Volumes parte 02. Isabelle Araujo olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de

Leia mais

REVISÃO 1ª FASE UFU Vestibular 2012/2 Exercícios para a Semana de 08 a 22 de julho 2012 MATEMÁTICA prof. HAWLEY RESOLUÇÃO DAS QUESTÕES

REVISÃO 1ª FASE UFU Vestibular 2012/2 Exercícios para a Semana de 08 a 22 de julho 2012 MATEMÁTICA prof. HAWLEY RESOLUÇÃO DAS QUESTÕES REVISÃO ª FASE UFU Vestibular 0/ Exercícios para a Semana de 08 a de julho 0 MATEMÁTICA prof HAWLEY RESOLUÇÃO DAS QUESTÕES QUESTÃO Sendo p o valor da parcela caso a geladeira seja paga em n parcelas, do

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura

Leia mais

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 009 1 a Fase Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

MATEMÁTICA ANO: 2013 IFPB QUESTÃO 01

MATEMÁTICA ANO: 2013 IFPB QUESTÃO 01 MATEMÁTICA ANO: 2013 IFPB QUESTÃO 01 Os Jogos Olímpicos foram criados pelos gregos por volta de 2500 a.c. e foram retomados por iniciativa do Barão de Coubertin no final do século XIX. Em 1960, foram disputados

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 151865 - AGRUPAMENTO DE ESCOLAS DE CINFÃES Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 1. A figura ao lado representa o polígono da

Leia mais

EUSTÁQUIO GOMES DE CARVALHO JÚNIOR IDENTIFICAÇÃO DE ERROS NA RESOLUÇÃO DE QUESTÕES DE VESTIBULARES COMETIDOS POR PRÉ-VESTIBULANDOS

EUSTÁQUIO GOMES DE CARVALHO JÚNIOR IDENTIFICAÇÃO DE ERROS NA RESOLUÇÃO DE QUESTÕES DE VESTIBULARES COMETIDOS POR PRÉ-VESTIBULANDOS EUSTÁQUIO GOMES DE CARVALHO JÚNIOR IDENTIFICAÇÃO DE ERROS NA RESOLUÇÃO DE QUESTÕES DE VESTIBULARES COMETIDOS POR PRÉ-VESTIBULANDOS Dissertação apresentada ao Curso de Especialização em Matemática da Universidade

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Caderno de Provas MATEMÁTICA Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul ou preta. Escreva o seu nome completo e o número do seu

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM /dezembro/20 MATEMÁTICA APLICADA 0. A Espaço Inteligente Empreendimentos Imobiliários fez o lançamento de um edifício, com conjuntos comerciais a R$.800,00

Leia mais

QUESTÕES DISCURSIVAS Questão 1

QUESTÕES DISCURSIVAS Questão 1 QUESTÕES DISCURSIVAS Questão 1 Parabéns! Você foi aprovado no vestibular da FGV e durante os quatro primeiros semestres do curso stacou-se com boas notas. Agora, no final do quinto semestre, tenta conseguir

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR - INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA Utilize as informações a seguir para as questões e. Uma estação de trens é constituída

Leia mais

XXVIII Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVIII Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Segunda Fase Nível Beta 1 Questão 1 Dentre todos os losangos cuja soma das medidas das diagonais é igual a L centímetros, determine: (a) o losango de maior área possível e a medida

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova ATRFB 2009 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova ATRFB 2009 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 31- A afirmação: João não chegou ou Maria está atrasada equivale logicamente a: a) Se João não chegou, Maria está atrasada. b) João chegou e Maria não está atrasada. c) Se

Leia mais

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4 UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro.

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro. Matemática 1 17. Uma revista semanal de larga circulação apresentou matéria contendo o seguinte texto: O governo destinou 400.000 reais para a vacinação de 25 milhões de cabeças de gado, ou seja, um centavo

Leia mais

(A) (B) (C) (D) (E) RESPOSTA: (A)

(A) (B) (C) (D) (E) RESPOSTA: (A) 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Espelhos Esféricos Gauss 2013

Espelhos Esféricos Gauss 2013 Espelhos Esféricos Gauss 2013 1. (Unesp 2012) Observe o adesivo plástico apresentado no espelho côncavo de raio de curvatura igual a 1,0 m, na figura 1. Essa informação indica que o espelho produz imagens

Leia mais

MATEMÁTICA FURG COPERVE PROCESSO SELETIVO 2010

MATEMÁTICA FURG COPERVE PROCESSO SELETIVO 2010 FURG COPERVE PROCESSO SELETIVO 00 MATEMÁTICA ) Em uma Instituição de Ensino Superior, um aluno do curso de Engenharia Metalúrgica anotou suas médias bimestrais nas disciplinas: Cálculo I (CI), Álgebra

Leia mais

SOLUÇÕES (B) 4 (B) 43 (C) 13 (D) 27 (E) 63

SOLUÇÕES (B) 4 (B) 43 (C) 13 (D) 27 (E) 63 EXAME DE ACESSO PROFMAT - 2014 SOLUÇÕES Questão 1. (Teorema de Pitágoras) Uma pirâmide de base quadrada tem todas as suas arestas congruentes, de medida 8. A altura da pirâmide (em relação à base quadrada)

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ECONOMIA Profa. Maria Antônia C. Gouveia QUESTÃO 0 Laura caminha pelo menos km por dia. Rita também caminha todos os dias, e a soma das distâncias diárias

Leia mais

Circunferência e Círculos

Circunferência e Círculos Circunferência e Círculos 1. (Unifor 2014) Os pneus de uma bicicleta têm raio R e seus centros distam R. Além disso, a reta t passa por P e é tangente à circunferência do pneu, formando um ângulo α com

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

Aplicações de Combinatória e Geometria na Teoria dos Números

Aplicações de Combinatória e Geometria na Teoria dos Números Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais