COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

Tamanho: px
Começar a partir da página:

Download "COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES"

Transcrição

1 COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012

2 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que, na transformação de unidades de superfície, cada unidade de superfície é 100 vezes maior que a unidade imediatamente inferior: MEDIDAS DE VOLUMES: Na transformação de unidades de volume, no sistema métrico decimal, devemos lembrar que cada unidade de volume é vezes maior que a unidade imediatamente inferior. MEDIDAS DE CAPACIDADE ( LITROS): Na transformação de unidades de capacidade, no sistema métrico decimal, devemos lembrar que cada unidade de capacidade é 10 vezes maior que a unidade imediatamente inferior. MEDIDAS DE MASSA: Transformação de Unidades. Cada unidade de massa é 10 vezes maior que a unidade imediatamente inferior.

3 MEDIDAS DE DISTÂNCIAS ( COMPRIMENTO) Transformação de Unidades MEDIDAS DE TEMPO Múltiplos e Submúltiplos do Segundo Quadro de unidades Múltiplos: Minutos hora dia min h d 60 s 60 min = s 24 h = min = s São submúltiplos do segundo: Décimo de segundo Centésimo de segundo Milésimo de segundo Cuidado: Nunca escreva 2,40h como forma de representar 2 h 40 min. Pois o sistema de medidas de tempo não é decimal. Observe: Exercícios de Medidas de Comprimento 1) Complete a tabela fazendo as transformações: 3 km= m 3,5 m= cm 12 m = dm 7,21m= cm 4 cm= mm 2) Quanto vale em metros: a) 3,6 km m b) 6,8 hm - 0,34 dam c) 16 dm + 54,6 cm mm d) 2,4 km + 82 hm + 12,5 dam e) 82,5 hm + 6 hm

4 Exercícios de Medidas de Capacidade 1) Sabendo que 1Kl tem 1000 l, quanto kl tem: a) 37 l = b) 3750 l = c) l = 2) Transforme as medidas, escrevendo-as na tabela abaixo: a) 0,936 kl em dl b) 7,8 hl em l c) 502 ml em l Quilolitro hectolitro decalitro litro decilitro centilitro mililitro kl hl dal l dl cl ml 3) Complete a tabela com os valores equivalentes em litros: Quilolitro hectolitro decalitro litro decilitro centilitro mililitro kl hl dal l dl cl ml Exercícios de Medidas de Massa 1) Leia a medida em grama e monte a tabela eabaixo: Quilograma hectograma decagrama grama decigrama centigrama miligrama Kg hg dag g dg cg mg a) 9 5, b) 0, c) , 5 d) 1 3 2) Efetue as seguintes transformações: a) 2,5 mg em g b) 9,56 dg em mg c) 0,054 hg em cg Exercícios de Medidas de Superfície Efetue as seguintes transformações: a) 5 m² em dm² b) 12 km² em dam² c) 13,34 dam² em m² d) 457 dm² em m² e) 655 dam² em km² Exercícios de Medidas de Tempo a) Uma hora tem quantos segundos? b) Um dia tem quantos segundos? c) Uma semana tem quantas horas? d) Quantos minutos são 3h45min? h) Quantos segundos têm 35 min? i) Quantos segundos têm 2h53min? j) Quantos minutos têm 12 horas?

5 Exercícios de Medidas de Volume Dê a representação simplificada das seguintes medidas: a) doze centímetros cúbicos. b) três metros cúbicos e quinze decímetros cúbicos. c) seis centímetros cúbicos e doze milímetros cúbicos. d) quinze hectômetros cúbicos e cem metros cúbicos. Efetue as seguintes transformações a) 6m³ em dm³ d) 0,95 dm³ em mm³ e) 500 dam³ em m³ f) 8,132 km³ em hm³ b) 50 cm³ em mm³ c) 3,632 m³ em mm³ Como se lê uma fração As frações recebem nomes especiais quando os denominadores são 2, 3, 4, 5, 6, 7, 8, 9 e também quando os denominadores são 10, 100, 1000,... um meio dois quintos um terço quatro sétimos um quarto sete oitavos um quinto quinze nonos um sexto um décimo um sétimo um centésimo um oitavo um milésimo um nono oito milésimos Classificação das frações Fração própria: o numerador é menor que o denominador: Fração imprópria: o numerador é maior ou igual ao denominador.

6 Fração aparente: o numerador é múltiplo do denominador. Frações equivalentes Frações equivalentes são frações que representam a mesma parte do todo. Exemplo: são equivalentes Para encontrar frações equivalentes devemos multiplicar o numerador e o denominador por um mesmo número natural, diferente de zero. Exemplo: obter frações equivalentes à fração. Portanto as frações são algumas das frações equivalentes a. Simplificação de frações Uma fração equivalente a, com termos menores, é. A fração foi obtida dividindo-se ambos os termos da fração pelo fator comum 3. Dizemos que a fração é uma fração simplificada de. A fração não pode ser simplificada, por isso é chamada de fração irredutível. A fração nenhum fator comum não pode ser simplificada porque 3 e 4 não possuem Números fracionários Seria possível substituir a letra X por um número natural que torne a sentença abaixo verdadeira? 5. X = 1 Substituindo X, temos: X por 0 temos: 5.0 = 0 X por 1 temos: 5.1 = 5. Portanto, substituindo X por qualquer número natural jamais encontraremos o produto 1. Para resolver esse problema temos que criar novos números. Assim, surgem os números fracionários. Toda fração equivalente representa o mesmo número fracionário. Portanto, uma fração (n diferente de zero) e todas frações equivalentes a ela representam o mesmo número fracionário. Resolvendo agora o problema inicial, concluímos que X =, pois.

7 Adição e subtração de números fracionários Temos que analisar dois casos: 1º) denominadores iguais Para somar frações com denominadores iguais, basta somar os numeradores e conservar o denominador. Para subtrair frações com denominadores iguais, basta subtrair os numeradores e conservar o denominador. Observe os exemplos: 2º) denominadores diferentes Para somar frações com denominadores diferentes, uma solução é obter frações equivalentes, de denominadores iguais ao mmc dos denominadores das frações. Exemplo: somar as frações. Obtendo o mmc dos denominadores temos mmc(5,2) = 10. (10:5).4 = 8 (10:2).5 = 25 Resumindo: utilizamos o mmc para obter as frações equivalentes e depois somamos normalmente as frações, que já terão o mesmo denominador, ou seja, utilizamos o caso 1. Multiplicação e divisão de números fracionários Na multiplicação de números fracionários, devemos multiplicar numerador por numerador, e denominador por denominador, assim como é mostrado nos exemplos abaixo: Na divisão de números fracionários, devemos multiplicar a primeira fração pelo inverso da segunda, como é mostrado no exemplo abaixo:

8 Potenciação e radiciação de números fracionários Na potenciação, quando elevamos um número fracionário a um determinado expoente, estamos elevando o numerador e o denominador a esse expoente, conforme os exemplos abaixo: Na radiciação, quando aplicamos a raiz quadrada a um número fracionário, estamos aplicando essa raiz ao numerador e ao denominador, conforme o exemplo abaixo: Radiciação Potenciação de Radicais Observando as potencias, temos que: De modo geral, para se elevar um radical a um dado expoente, basta elevar o radicando àquele expoente. Exemplos: Divisão de Radicais Segundo as propriedades dos radicais, temos que: De um modo geral, na divisão de radicais de mesmo índice, mantemos o índice e dividimos os radicais: Exemplos: : = Se os radicais forem diferentes, devemos reduzi-los ao mesmo índice e depois efetue a operação. Exemplos:

9 Considere a fração: Racionalização de denominadores que seu denominador é um número irracional. Vamos agora multiplicar o numerador e o denominador desta fração por, obtendo uma fração equivalente: Observe que a fração equivalente possui um denominador racional. A essa transformação, damos o nome de racionalização de denomindores. A racionalização de denominadores consiste, portanto, na obtenção de um fração com denominador racional, equivalente a uma anterior, que possuía um ou mais radicais em seu denominador. Para racionalizar o denominador de uma fração devemos multiplicar os termos desta fração por uma expressão com radical, denominado fator racionalizante, de modo a obter uma nova fração equivalente com denominador sem radical. Principais casos de racionalização: 1º Caso: O denominador é um radical de índice 2: Exemplos: é o fator racionalizante de, pois. = = a 2º Caso: O denominador é um radical de índice diferente de 2. Exemplos: é o fator racionalizante de é o fator racionalizante de é o fator racionalizante de é o fator racionalizante de Potência com expoente racional Observe as seguintes igualdades: ou Igualmente podemos transformar uma potência com expoente fracionário em um radical. De modo geral, definimos:, com a R,m,n, N, a >0, n>0, m>0 Podemos também transformar um radical com expoente fracionário:

10 Propriedade das potências com expoentes racionais As propriedades das potências com expoentes racionais são as mesmas para os expoentes inteiros. Sendo a e b números reais e positivos e os expoentes números racionais, temos que: Exemplo: Equações de primeiro grau (com uma variável) Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a - b - c = 0 Não são equações: = (Não é uma sentença aberta) x - 5 < 3 (Não é igualdade) (não é sentença aberta, nem igualdade) A equação geral do primeiro grau: ax+b = 0 onde a e b são números conhecidos e a > 0, se resolve de maneira simples: subtraindo b dos dois lados, obtemos: ax = -b dividindo agora por a (dos dois lados), temos:

11 Considera a equação 2x - 8 = 3x -10 A letra é a incógnita da equação. A palavra incógnita significa " desconhecida". Na equação acima a incógnita é x; tudo que antecede o sinal da igualdade denomina-se 1º membro, e o que sucede, 2º membro. Qualquer parcela, do 1º ou do 2º membro, é um termo da equação. Equação do 1º grau na incógnita x é toda equação que pode ser escrita na forma ax=b, sendo a e b números racionais, com a diferente de zero. Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é uma equação do 2º grau com a = 6, b = -1 e c = -1. 7x 2 - x = 0 é uma equação do 2º grau com a = 7, b = -1 e c = 0. x 2-36 = 0 é um equação do 2º grau com a = 1, b = 0 e c = -36. Nas equações escritas na forma ax² + bx + c = 0 (forma normal ou forma reduzida de uma equação do 2º grau na incógnita x) chamamos a, b e c de coeficientes. a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Equação completas e Incompletas Uma equação do 2º grau é completa quando b e c são diferentes de zero. Exemplos: x² - 9x + 20 = 0 e -x² + 10x - 16 = 0 são equações completas. Uma equação do 2º grau é incompleta quando b ou c é igual a zero, ou ainda quando ambos são iguais a zero.

12 Exemplos: x² - 36 = 0 (b = 0) x² - 10x = 0 (c = 0) 4x² = 0 (b = c = 0) Discriminante Denominamos discriminante o radical b 2-4ac que é representado pela letra grega (delta). Podemos agora escrever deste modo a fórmula de Bhaskara: De acordo com o discriminante, temos três casos a considerar: 1º Caso: O discriminante é positivo. O valor de é real e a equação tem duas raízes reais diferentes, assim representadas: Exemplo: Para quais valores de k a equação x² - 2x + k- 2 = 0 admite raízes reais e desiguais? Solução Para que a equação admita raízes reais e desiguais, devemos ter Logo, os valores de k devem ser menores que 3. 2º Caso: O discriminante é nulo O valor de é nulo e a equação tem duas raízes reais e iguais, assim representadas: Exemplo: Determine o valor de p, para que a equação x² - (p - 1) x + p-2 = 0 possua raízes iguais. Solução Para que a equação admita raízes iguais é necessário que.

13 Logo, o valor de p é 3. 3º Caso: O discriminante é negativo. O valor de não existe em IR, não existindo, portanto, raízes reais. As raízes da equação são número complexos. Exemplo: Para quais valores de m a equação 3x² + 6x +m = 0 não admite nenhuma raiz real? Solução Para que a equação não tenha raiz real devemos ter Logo, os valores de m devem ser maiores que 3. Resumindo Dada a equação ax² + bx + c = 0, temos: Para, a equação tem duas raízes reais diferentes. Para, a equação tem duas raízes reais iguais. Para, a equação não tem raízes reais. Exemplo 1: Aplicações do Teorema de Pitágoras Sendo a, b e c as medidas dos comprimentos dos lados de um triângulo, indica, justificando, aqueles que são retângulos: a) a = 6; b = 7 e c = 13; b) a = 6; b = 10 e c = 8.

14 Resolução: "Se num triângulo as medidas dos seus lados verificarem o Teorema de Pitágoras então pode-se concluir que o triângulo é retângulo". Então teremos que verificar para cada alínea se as medidas dos lados dos triângulos satisfazem ou não o Teorema de Pitágoras. a) Logo o triângulo não é retângulo porque não satisfaz o Teorema de Pitágoras. b) Logo o triângulo é retângulo porque satisfaz o Teorema de Pitágoras. Exemplo 2: Calcula o valor de x em cada um dos triângulos retângulos: a) b)

15 Resolução: a) Aplicando o Teorema de Pitágoras temos: b) Aplicando o Teorema de Pitágoras temos: Exemplo 3: Calcula as áreas das seguintes figuras. a) b)

16 Resolução: a) b) Exemplo 4: a) Qual era a altura do poste?

17 Resolução: h = = 9 Resposta: A altura do poste era de 9 m. Exemplo 5: b) Qual é a distância percorrida pelo berlinde. Resolução: Resposta: A distância percorrida pelo berlinde é de: 265 cm = 2,65 m. EXERCÍCIOS: 1) Os lados de um triângulo medem 10 cm, 24 cm e 26 cm, pode-se afirmar que esse triângulo é retângulo? Justifique a resposta.

18 2) O Rui antes de ir para a Escola passa pela casa da Teresa, percorrendo o caminho indicado na figura ao lado. Que distância percorreria a menos se fosse diretamente para a Escola? 3) A TV de plasma do Rui mede 112 cm de comprimento e a respectiva diagonal mede 175 cm. Qual é a altura do aparelho? 4) O comprimento da diagonal do quadrado de perímetro 24 cm é:

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL Unidades de Medida A necessidade de contar e mensurar as coisas sempre se fez presente no nosso dia a dia. Na prática, cada país ou região criou suas próprias unidades de medidas. A falta de padronização

Leia mais

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo.

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo. MEDIDAS LINEARES Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/299.792.458 segundo. Nome e símbolo As unidades do Sistema Internacional podem ser escritas

Leia mais

Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan

Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan Matemática CONVERSÃO DE UNIDADES Apresentamos a tabela de conversão de unidades do sistema Métrico Decimal Medida de Grandeza Fator Múltiplos

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pela Universidade Federal do Paraná (UFPR). Graduado em Matemática pela UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 1992.

Leia mais

Operação com Números racionais

Operação com Números racionais Operação com Números racionais 1 Significado das frações a) Parte do todo Exemplo 1: 3 = três partes de seis partes, onde seis 6 partes é o todo. Exemplo 8: a) b) b) Divisão Exemplo 2: 6 3 = 6 3 Exemplo

Leia mais

Medida de comprimento; Medida de massa; Medida de capacidade; Medida de tempo.

Medida de comprimento; Medida de massa; Medida de capacidade; Medida de tempo. Medida de comprimento; Medida de massa; Medida de capacidade; Medida de tempo. Medidas de comprimento Quando necessitamos medir a altura de uma pessoa, tamanho de uma mesa, comprar uma barra de cano ou

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

Regras de Conversão de Unidades

Regras de Conversão de Unidades Unidades de comprimento Regras de Conversão de Unidades A unidade de principal de comprimento é o metro, entretanto existem situações em que essa unidade deixa de ser prática. Se quisermos medir grandes

Leia mais

I.INTRODUÇÃO A MATEMÁTICA.

I.INTRODUÇÃO A MATEMÁTICA. I.INTRODUÇÃO A MATEMÁTICA. 1. HISTÓRIA DA MATEMÁTICA Matemática é uma ciência que foi criada a fim de contar e resolver problemas com uma razão de existirem, foi criada a partir dos primeiros seres racionais

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

Educadora: Daiana Araújo C. Curricular:Ciências Naturais Data: / /2013 Estudante: 9º Ano. Unidade principal

Educadora: Daiana Araújo C. Curricular:Ciências Naturais Data: / /2013 Estudante: 9º Ano. Unidade principal Educadora: Daiana Araújo C. Curricular:Ciências Naturais Data: / /2013 Estudante: 9º Ano Medidas de massa Quilograma A unidade fundamental de massa chama-se quilograma. Apesar de o quilograma ser a unidade

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC)

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC) Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Instalador e Reparador de Redes de Computadores MATEMÁTICA

Leia mais

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios Grandezas e Medidas no CAp UFRJ Introdução Exercícios 1) Indique três aspectos diferentes que podem ser medidos num carro. Para cada aspecto identificado, informe a grandeza e a unidade de medida correspondente

Leia mais

MATEMÁTICA BÁSICA E CALCULADORA

MATEMÁTICA BÁSICA E CALCULADORA DISCIPLINA MATEMÁTICA FINANCEIRA PROFESSOR SILTON JOSÉ DZIADZIO APOSTILA 01 MATEMÁTICA BÁSICA E CALCULADORA A matemática Financeira tem como objetivo principal estudar o valor do dinheiro em função do

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Números Inteiros Números Naturais Desde os tempos mais remotos, o homem sentiu a necessidade de verificar quantos elementos figuravam em um conjunto. Antes que soubessem contar, os pastores verificavam

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matemática Sistema Métrico Decimal Definição: O SISTEMA MÉTRICO DECIMAL é parte integrante do Sistema de Medidas. É adotado no Brasil tendo

Leia mais

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

Conteúdo Programático Anual MATEMÁTICA

Conteúdo Programático Anual MATEMÁTICA MATEMÁTICA 1º BIMESTRE 5ª série (6º ano) CALCULANDO COM NÚMEROS NATURAIS 1. Idéias associadas à adição 2. Idéias associadas à subtração 3. Idéias associadas à multiplicação 4. Idéias associadas à divisão

Leia mais

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

ISO 9001:2000 SISTEMA INTERNACIONAL DE UNIDADES - SI. www.ipem.sp.gov.br

ISO 9001:2000 SISTEMA INTERNACIONAL DE UNIDADES - SI. www.ipem.sp.gov.br ISO 9001:2000 www.ipem.sp.gov.br SISTEMA INTERNACIONAL DE UNIDADES - SI ORIGENS DO SISTEMA UNIDADES DE BASE MÚLTIPLOS E SUBMÚLTIPLOS GRAFIA DOS NOMES E SÍMBOLOS ORIGENS UNIDADES ANTIGAS o homem como medida

Leia mais

Matemática. R&A Editora Cursos e Materiais Didáticos Ltda.(setor gráfico) Printed in Brazil

Matemática. R&A Editora Cursos e Materiais Didáticos Ltda.(setor gráfico) Printed in Brazil 3ª Edição - 2002 R&A Editora Autor: Professor Joselias Santos da Silva Revisão: Silvio Luis Motta Editoração Eletrônica: Valquíria Farias dos Santos Capa: Studio Color Company - ( 3326.8366 Projeto Gráfico:

Leia mais

MATEMÁTICA PARA CONCURSOS

MATEMÁTICA PARA CONCURSOS MATEMÁTICA PARA CONCURSOS Sumário Números Naturais ------------------------------------------- 03 Conjuntos numéricos: racionais e reais ------------------- 05 Divisibilidade -------------------------------------------------

Leia mais

Complemento para. Cód.: 0735-3ª Edição. Apostila do Metrô/SP

Complemento para. Cód.: 0735-3ª Edição. Apostila do Metrô/SP Complemento - 1 Complemento para Apostila do Metrô/SP Cód.: 0735-3ª Edição Matemática 1. Equações e Sistemas de Duas Equações com Duas Incógnitas do Primeiro Grau...03 2. Unidades de Medidas...10 3. Perímetros

Leia mais

MÓDULO 1. Os Métodos da Física:

MÓDULO 1. Os Métodos da Física: MÓDULO 1 O QUE É FÍSICA? Física é o ramo da ciência que estuda as propriedades das partículas elementares e os fenômenos naturais e provocados, de modo lógico e ordenado. Os Métodos da Física: Todas as

Leia mais

Prof ª.: Adriana Agronegócio Tópicos de Matemática Elementar. Medidas

Prof ª.: Adriana Agronegócio Tópicos de Matemática Elementar. Medidas Prof ª.: Adriana Agronegócio Tópicos de Matemática Elementar Medidas Em nossa vida, frequentemente realizamos medidas e fazemos uso delas. Por exemplo: um motorista pede 30 litros de gasolina; você mede

Leia mais

Conjuntos Numéricos. Por meio do diagrama podemos verificar que: Introdução

Conjuntos Numéricos. Por meio do diagrama podemos verificar que: Introdução Conjuntos Numéricos Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades, criava novos números para atendê-las. Os conjuntos

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA PLANOS DE CURSO PARA 6º E 7º ANOS Campina Grande, 2011 -

Leia mais

Matemática Financeira RECORDANDO CONCEITOS

Matemática Financeira RECORDANDO CONCEITOS 1 Matemática Financeira RECORDANDO CONCEITOS Propriedades da matemática Prioridades: É importante relembrar e entender alguns conceitos da matemática, que serão muito úteis quando trabalharmos com taxas.

Leia mais

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. 1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação

Leia mais

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 26.1 Conteúdo:

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 26.1 Conteúdo: Aula 26.1 Conteúdo: Múltiplos e submúltiplos do metro. 2 Habilidades: Resolver problemas que envolvam medidas de Comprimento e Área. 3 Pedro gastou R$9,45 para comprar 2,1kg de tomate. Quanto custa 1kg

Leia mais

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão:

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão: Unidades de Medidas e Conversões Medidas de comprimento Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br O METRO E SEUS MÚLTIPLOS

Leia mais

CONTEÚDOS ABORDADOS EDUARDO PAES PREFEITURA DA CIDADE DO RIO DE JANEIRO CLAUDIA COSTIN SECRETARIA MUNICIPAL DE EDUCAÇÃO

CONTEÚDOS ABORDADOS EDUARDO PAES PREFEITURA DA CIDADE DO RIO DE JANEIRO CLAUDIA COSTIN SECRETARIA MUNICIPAL DE EDUCAÇÃO º BIMESTRE / 0 EDUARDO PAES PREFEITURA DA CIDADE DO RIO DE JANEIRO CLAUDIA COSTIN SECRETARIA MUNICIPAL DE EDUCAÇÃO REGINA HELENA DINIZ BOMENY SUBSECRETARIA DE ENSINO MARIA DE NAZARETH MACHADO DE BARROS

Leia mais

Unidades de Medidas e as Unidades do Sistema Internacional

Unidades de Medidas e as Unidades do Sistema Internacional Unidades de Medidas e as Unidades do Sistema Internacional Metrologia é a ciência da medição, abrangendo todas as medições realizadas num nível conhecido de incerteza, em qualquer dominio da atividade

Leia mais

SITUAÇÃO DE APRENDIZAGEM 1 O SOROBAN E OS NÚMEROS DECIMAIS. a) 23,5. b) 1,05. c) 500,1. d) 40,862. e) 2 680,4. 2. a) Páginas 8-11

SITUAÇÃO DE APRENDIZAGEM 1 O SOROBAN E OS NÚMEROS DECIMAIS. a) 23,5. b) 1,05. c) 500,1. d) 40,862. e) 2 680,4. 2. a) Páginas 8-11 SITUAÇÃO DE APRENDIZAGEM O SOROBAN E OS NÚMEROS DECIMAIS Páginas 8-. a) 23,5. b),05. c) 500,. d) 40,862. e) 2 680,4. 2. a) b) c) d) e) Páginas -4 3. a) b) c) 2 d) 4. a) Como 0 centésimos equivalem a décimo,

Leia mais

CENAP Centro de Educação Profissional MATEMÁTICA MÓDULO II

CENAP Centro de Educação Profissional MATEMÁTICA MÓDULO II MÓDULO II É Proibida a duplicação ou reprodução deste material, no todo ou em parte, em quaisquer formas ou por quaisquer meios (eletrônico, mecânico, gravação, fotocópia, distribuição pela internet ou

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. Matemática. Conhecendo as unidades de medidas (parte II) Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. Matemática. Conhecendo as unidades de medidas (parte II) Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 04 Matemática Conhecendo as unidades de medidas (parte II) Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico

Leia mais

Fundamentos da Matemática Fernando Torres. Números Complexos. Gabriel Tebaldi Santos RA: 160508

Fundamentos da Matemática Fernando Torres. Números Complexos. Gabriel Tebaldi Santos RA: 160508 Fundamentos da Matemática Fernando Torres Números Complexos Gabriel Tebaldi Santos RA: 160508 Sumário 1. História...3 2.Introdução...4 3. A origem de i ao quadrado igual a -1...7 4. Adição, subtração,

Leia mais

BASES DO SISTEMA MÉTRICO DECIMAL NOÇÕES BÁSICAS DE CONVERSÃO DE UNIDADES

BASES DO SISTEMA MÉTRICO DECIMAL NOÇÕES BÁSICAS DE CONVERSÃO DE UNIDADES 1 PROFESSOR DA TURMA: WLADIMIR 1. INTRODUÇÃO BASES DO SISTEMA MÉTRICO DECIMAL NOÇÕES BÁSICAS DE CONVERSÃO DE UNIDADES Este material apresenta um resumo dos principais conhecimentos básicos necessários

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Em um paralelogramo, as medidas de dois ângulos

Leia mais

Fundamentos Tecnológicos

Fundamentos Tecnológicos 1 2 Potenciação Fundamentos Tecnológicos Potenciação, radiciação e operações algébricas básicas Prof. Flavio Fernandes Dados um número real positivo a e um número natural n diferente de zero, chama-se

Leia mais

Curso Técnico em Eletromecânica. Edição 2009-2

Curso Técnico em Eletromecânica. Edição 2009-2 Curso Técnico em Eletromecânica Edição 009- MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE ARARANGUÁ

Leia mais

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais...

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais... Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2 1.1 Adição e Subtração de Números Racionais...2 1.2 Multiplicação e Divisão de Números Racionais...2 2.OPERAÇÕES COM NÚMEROS DECIMAIS...4 2.1 Adição e Subtração

Leia mais

EDITAL 2015 Testes de Português e Matemática - Material: com foto PORTUGUÊS Indicação bibliográfica: Na ponta da língua MATEMÁTICA

EDITAL 2015 Testes de Português e Matemática - Material: com foto PORTUGUÊS Indicação bibliográfica: Na ponta da língua MATEMÁTICA EDITAL 2015 2º ANO DO ENSINO FUNDAMENTAL Testes de Português e Matemática - Material: o candidato deverá trazer: lápis apontados, apontador, borracha e o Compreensão e interpretação de textos; exploração

Leia mais

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação.

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação. Apostila de Cálculo Zero Este material visa auxiliar os estudos em Matemática promovendo a revisão de seu conteúdo básico, de forma a facilitar o aprendizado nas disciplinas de cálculo e também melhorar

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

MATEMÁTICA PARA CONCURSOS II.

MATEMÁTICA PARA CONCURSOS II. 1 MATEMÁTICA PARA CONCURSOS II. QUERIDO(A) ALUNO(A): SEJA BEM-VINDO AO CURSO LIVRE MATEMÁTICA PARA CONCURSOS II. ESTE CURSO OBJETIVA PRIORITARIAMENTE QUE VOCÊ DESENVOLVA COMPETÊNCIAS SIGNIFICATIVAS ATRAVÉS

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO DE MATEMÁTICA 8.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de relacionar números racionais e dízimas, completar a reta numérica e ordenar números

Leia mais

MÓDULO 2 MATEMÁTICA RECADO AO ALUNO

MÓDULO 2 MATEMÁTICA RECADO AO ALUNO MÓDULO 2 MATEMÁTICA RECADO AO ALUNO As matérias desta apostila foram reunidas e consolidadas para estudo dos alunos Instituto Marconi. A leitura e estudo deste conteúdo não exclui a consulta a outras fontes

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Matemática. Elementar II Caderno de Atividades

Matemática. Elementar II Caderno de Atividades Matemática Elementar II Caderno de Atividades Autor Leonardo Brodbeck Chaves 2009 2008 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 jl.matematica@outlook.com Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é

Leia mais

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 1.º Período Conteúdos Programados Previstas Dadas Números e Operações Utilizar corretamente os numerais ordinais até vigésimo. Ler e representar

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Tópico 2. Conversão de Unidades e Notação Científica

Tópico 2. Conversão de Unidades e Notação Científica Tópico 2. Conversão de Unidades e Notação Científica Toda vez que você se refere a um valor ligado a uma unidade de medir, significa que, de algum modo, você realizou uma medição. O que você expressa é,

Leia mais

Construção na orla marítima

Construção na orla marítima Reforço escolar M ate mática Construção na orla marítima Dinâmica 4 9º Ano 2º Bimestre Professor DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Algébrico Simbólico Equação do 2º. Grau

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL SISTEMA MÉTRICO DECIMAL UNIDADES DE COMPRIMENTO A uidade fudametal chama-se metro (m). Múltiplos: quilômetro (km), hectômetro (hm) e decâmetro (dam) Submúltiplos: decímetro (dm), cetímetro (cm) e milímetro

Leia mais

Nome:... Curso Técnico em... Período:...

Nome:... Curso Técnico em... Período:... TÑÉáà Ät wx `tàxåöà vt Uöá vt Nome:... Curso Técnico em... Período:... Cascavel 01/01 A P O S T I L A D E M A T E M Á T I C A BÁSICA I Operações matemáticas envolvendo apenas números: Há duas situações

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES REVISÃO Disciplina: Cálculo e Estatística Aplicada Professor: Dr. Fábio Saraiva da

Leia mais

Matemática - Séries Iniciais. Currículo Matemática. Currículos Instututo Alfa e Beto 69

Matemática - Séries Iniciais. Currículo Matemática. Currículos Instututo Alfa e Beto 69 Matemática - Séries Iniciais Currículo Matemática Currículos Instututo Alfa e Beto 69 Matemática - Séries Iniciais 1º ANO 2º ANO 3º ANO 4º ANO 5º ANO DOMÍNIO: NÚMEROS E OPERAÇÕES 1: SISTEMA DE NUMERAÇÃO

Leia mais

OPERADOR DE COMPUTADOR

OPERADOR DE COMPUTADOR OPERADOR DE COMPUTADOR MATEMÁTICA CAPITULO 1 - NÚMEROS NATURAIS Os números 0, 1, 2, 3, 4, 5...; são chamados naturais, e a sequência dos números naturais é infinita. Assim como você, todas as pessoas usam

Leia mais

FICHA DE MATEMÁTICA 3º ANO NOME: DATA: AVALIAÇÃO:

FICHA DE MATEMÁTICA 3º ANO NOME: DATA: AVALIAÇÃO: FICHA DE MATEMÁTICA 3º ANO NOME: DATA: AVALIAÇÃO: 1 -. Completa os quadros de acordo com os exemplos. 2456 2 Milhares + 4 centenas + 5 dezenas + 6 unidades 10345 1 Dezena de milhar + 2 Dezenas de milhar

Leia mais

CURRÍCULO DE MATEMÁTICA PARA O ENSINO FUNDAMENTAL COM BASE NOS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO

CURRÍCULO DE MATEMÁTICA PARA O ENSINO FUNDAMENTAL COM BASE NOS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO CURRÍCULO DE MATEMÁTICA PARA O ENSINO FUNDAMENTAL COM BASE NOS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO GOVERNADOR DE PERNAMBUCO Eduardo Campos VICE-GOVERNADOR João Lyra Neto SECRETÁRIO DE EDUCAÇÃO

Leia mais

Equações do segundo grau

Equações do segundo grau Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro

Leia mais

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE No módulo anterior, estudamos os Sistemas de Unidades de Comprimento, Massa e de Tempo. Nesse módulo iremos estudar outros Sistemas de Unidades de Medidas,

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA 1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva

Leia mais

Colégio Jardim Paulista

Colégio Jardim Paulista Colégio Jardim Paulista Nome: Nº Série: Profª:_ Roberto Salgado Período: 4º Bimestre Data: / / Trabalho de Matemática 6 º ano A Nota Medidas de comprimento: 1) Ana e Antônia fizeram algumas medições e

Leia mais

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França CURSO DE ENGENHARIA CARTOGRÁFICA Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Sistema Internacional de unidades (SI). 22/06/1799

Leia mais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA

Leia mais

Matriz Curricular de Matemática 6º ao 9º ano 6º ano 6º Ano Conteúdo Sistemas de Numeração Sistema de numeração Egípcio Sistema de numeração Romano Sistema de numeração Indo-arábico 1º Trimestre Conjunto

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores.

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores. 8º ANO LISTA 1 de fatoração AV 1 3º Bim. Escola adventista de Planaltina Professor: Celmo Xavier. Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

MATEMÁTICA NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO);

MATEMÁTICA NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO); NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO); Conjunto dos Números Inteiros Z Definimos o conjunto dos números inteiros como a reunião do conjunto dos

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

TEORIA DOS CONJUNTOS Símbolos

TEORIA DOS CONJUNTOS Símbolos 1 MATERIAL DE APOIO MATEMÁTICA Turmas 1º AS e 1º PD Profº Carlos Roberto da Silva A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo F- TIPO D-6 Matemática (P-2) Ensino Fundamental 6º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avali ar o desempenho dos alunos do 6 o ano

Leia mais