MATERIAL MATEMÁTICA I

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "MATERIAL MATEMÁTICA I"

Transcrição

1 MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração

2 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades de potenciação: 1) a n a a a... a ( n vezes ) ) a ) a a n 1 n ) a, a 0 a n m n m ) a a a (Produto de potência de mesma base: repete a base e soma os epoentes) OBS.: I) ( a) ímpar negativo n m nm 6) a a a, a 0 (divisão de potência de mesma base: repete a base e subtrai os epoentes) m m. n 7) ( a ) a n (potência de potência: repete a base e multiplica os epoentes) n n a a 8), b 0 n b b ( a) par positivo II) Observe a diferença:. 6 ( ) 9 Calcule o valor das epressões abaio: a) b) ( ) c) ( ) d) e) f) g) ( ) h) a) 16 b) 7 c) d) 1/9 e) 16/9 f) 1/7 g) 1/ h) 10 ou 1000

3 1. Cálculo de Epressões Numéricas Para calcular corretamente qualquer epressão numérica, é necessário obedecer algumas prioridades. Então, devemos ter em mente que devemos fazer os cálculos na seguinte ordem: 1) parênteses ( ), colchetes [ ] e chaves { } ) Potência e raiz ) Multiplicação e divisão ) Soma e subtração OBS.: i) Soma e subtração de fração: deve-se tirar o MMC entre os denominadores. ii) Produto de fração: deve-se multiplicar numerador com numerador e 8 denominador com denominador. P. e., 1 iii) Divisão de fração: repete o primeiro e multiplica pelo inverso do segundo. Por e., iv) Multiplicação e divisão de números reais: Multiplicação Divisão v) Soma e subtração de números reais: Prevalece o sinal do maior. Calcule o valor numérico das epressões abaio: a) [ 18 ( ) ] [1 7 ( 8 8)] ( 17) b) 17 {1 1 [ 1 (7 10 1) ]} 10 (6) c) { [ ( )]} (17) d) { 1. [ ( 1)] 10} [ 6(1 )] () ( 8) e) [( )( ) ( ) ] ( ) f) 18 [ ( ) ( )] g) [( ) ( ) ( ) ( ) ] [( ) ( ) ( ) ( ) ] (87) (16) 7 h) (/) i) ( /) j) 6 ( /)

4 11 k) 11 ( 8) 1 1 l) ( /) 1 1 m) (16/) 1 1 n) (/) 1. Potência de Epoente Racional, Simplificação de Radicais e Racionalização n m a / Às vezes nos deparamos com potências da forma e nos perguntamos: Como resolver esta epressão? Devemos nos lembrar que a epressão acima simboliza m a n. Portanto: 8 1/ 8 OBS.: Como trabalharemos apenas com números reais, só consideraremos raiz de número negativo se o seu índice for ímpar, pois caso contrário, seu resultado não será um número real. Outro fato comum é nos depararmos com um resultado que apresenta uma raiz que pode ser simplificada. Como proceder para simplificá-la? 1) Fatore o radicando ) Agrupe os fatores primos achados de acordo com o índice da raiz, p. e., se o índice for, agrupe-os de dois em dois; se o índice for, agrupe-os de três em três; e assim por diante. ) Cada grupo formado sai da raiz como um fator apenas e os fatores que não formarem grupos completos permanecem dentro da raiz. ) Todos os fatores que saírem serão multiplicados assim como os que permanecerem. E.: Simplifique 18 Podemos ainda chegar a um resultado que apresenta um radical no denominador, fato este esteticamente incorreto na matemática. Portanto, devemos racionalizar o resultado. Isso significa que devemos fazer manipulações algébricas para retirar o radical do denominador. O tipo de racionalização mais simples, que é a que veremos aqui, é aquela que apresenta somente uma raiz quadrada no denominador, e conseguimos racionalizar o resultado, multiplicando ambos, numerador e denominador, pela própria raiz.por e.:

5 Simplifique os radicais abaio: a) 76 d) b) 00 e) c) 1 f) 90 g) 98 h) - Racionalize: a) b) 1 c) d) 6 e) - a) b) 10 c) d) 1 e) 9 f) 10 g) 7 h) 18 - a) b) c) d) e) 1. Operações com Epressões Algébricas Epressões algébricas são epressões que envolvem letras ou números e letras, como por eemplo: ab 8 6 a bc bc 8 As letras são chamadas de variáveis e os números que as acompanham são chamados de coeficientes. Podemos fazer as seguintes operações com epressões algébricas: 1..1 Adição e subtração Só podemos adicionar ou subtrair termos semelhantes e, essa operação será feita sobre os coeficientes, mantendo-se a parte literal. Observe que, se não houver termo semelhante para operar, ele apenas será repetido.

6 E.: (a b 7c) (6a 8b c) a 6a b 8b 7c c 9a b 6c ( ) ( 8 ) Multiplicação A multiplicação deverá ser feita multiplicando-se primeiro os coeficientes, depois a parte literal, obedecendo as regras de potenciação e a regra da distributividade e, por fim, adicionando-se os termos semelhantes. E.: ( )( ) Divisão de Polinômio por Monômio Este tipo de divisão deverá ser realizado, dividindo-se cada termo do polinômio pelo monômio, lembrando-se das regras de potenciação. 6a a 8 E.: ( 6a a 8) a a a a a a a 1.. Produtos Notáveis Produtos notáveis, como o próprio nome já diz, são produtos que aparecem com bastante freqüência na resolução de problemas, Aqui, veremos os mais usados: ( a b) a ab b ( a b) a ab b ( a b)( a b) a b 1 Efetue as operações abaio: ab a b b a 6ab a) ( ) ( ) b) ( ) ( ) c) ( ) ( ) d) ( ) ( ) e) a 10a 18a 8a ( ) ( ) ( ) f) ( )( ) g) ( 6 )( 1) ) Desenvolva os produtos indicados: a) ( ) b) ( ) h) ( )( ) i) ( )( ) j) ( )( ) k) ( 6 8) ( ) l) ( 6 1) ( ) m) ( ) ( ) n) ( ) ( ) c) ( )

7 6 d) e) ( ) f) ( ) g) ( ) h) i) ( )( ) j) ( 1)( 1) k) ( )( ) l) ( )( ) m) ( 1)( 1) 1 a) ab a b b) c) d) 1 e) f) 0a 6a 16a g) h) 6 i) j) 9 k) l) m) n) a) b) 0 9 c) 0 d) e) 10 f) g) h) i) j) 1 k) 9 l) m) 1 1. Equações do 1 Grau Uma equação que pode ser escrita na forma a b 0, onde a e b são números reais conhecidos, com a 0, representa uma incógnita e o epoente de é 1, é chamada de equação do 1 grau a uma incógnita. Os números conhecidos são chamados coeficientes. Um valor que pode ser atribuído à incógnita, tal que torne a sentença verdadeira é chamado de raiz ou solução da equação. O conjunto das raízes ou soluções de uma equação é chamado de conjunto solução e pode ser indicado pela letra S. Forma Geral: a b 0 a 0 Solução: a b b a E.: 1) ( 1) 6 / ) ) 9 7 ( ) ( 7) 9 ( )

8 7 1 - Resolva as equações abaio: a) 1 b) c) d) 0 e) f) h) 1 i) 6 6 j) ( ) ( 1) k) l) 6 g) ( ) 10 ( ) a) 10 b) 7/ c) d) 8/1 e) 1 f) 1 g) h) 9 i) j) sem solução k) solução real l) sem solução 1.6 Inequações do 1 Grau Uma epressão algébrica que apresenta algum sinal de desigualdade ( >, <,, ) é denominada inequação. Resolver uma inequação é encontrar todos os valores que tornam a desigualdade verdadeira. A inequação do 1 grau é aquela em que o epoente da incógnita é 1. A maneira de resolver é semelhante à equação do 1 grau. A diferença consiste no fato de que, quando o coeficiente do é negativo, multiplicamos a inequação por ( 1) e invertemos a desigualdade. E.: 1) / S { R } 8 ) S { R }

9 8 ) ( ) ( 1) ( 1) S R / 1 - Resolva as inequações abaio: a) h) > b) 6 > 10 c) < 1 1 i) > d) ( ) ( 1) < e) ( 1) ( 1) > 10 f) 10 6( 1) ( 1) 7 j) 1 g) ( ) k) ( ) ( ) < 1 1 a) S { R } b) S { R > 11} c) S { R > 1} d) S { R > 1/} e) S { R > } f) S { R 6} g) S { R 10} h) S { R } i) S { R < 9/} j) S { R > 1} k) S φ 1.7 Equações do º Grau Uma equação pode ser escrita na forma a b c 0, onde a, b e c são números reais conhecidos, com a 0 e representa uma incógnita, é chamada de equação do º grau a uma incógnita. Os números conhecidos são chamados coeficientes. Os valores que podem ser atribuídos à incógnita, tal que torne a sentença verdadeira são as raízes ou soluções da equação. O conjunto das raízes ou soluções de uma equação é chamado conjunto solução e pode ser indicado pela letra S. Uma equação do º grau pode ser resolvida segundo a fórmula de Bhaskara, que será apresentada a seguir: b ±, onde b ac a Neste caso, é chamado de discriminante, pois discrimina quantas soluções terá a equação: Se >0, a equação terá duas raízes; Se 0, a equação terá uma raiz; Se <0, a equação não terá raiz;

10 9 a b c 1 ( ) ± 1 ' ' '' '' 6 E.: 0 ( ) 1 1 Resolva as equações abaio: a) 9 b) 1 0 c) 1 0 d) 6 0 e) 9 f) 6 0 g) 0 h) 16 i) 6 1 j) 1 9 l) m) 1 0 n) ( )( ) 10 k) ( ) o) ( ) 16 1 a) ± b) ± c) 0 ou 7 d) ou 0 e) ± f) ou g) h) 8 i) ou j) sem solução k) 8 ou / l) sem solução m) 1 ou 1/ n) o) 1 ou Sistemas de Equações do 1 Grau Um sistema de equações do 1 Grau é um conjunto de equações do 1 grau que devem ser resolvidas juntas pois uma depende da outra. Neste ponto, veremos apenas sistemas de duas equações e duas incógnitas. Para resolvermos estes sistemas, veremos os dois métodos mais comuns: Método da Substituição e Método da Adição.

11 Método da Substituição Este método consiste em isolar e substituir uma das incógnitas. Achar o seu valor e depois substituir o resultado para calcular a segunda. E.: Resolva os sistemas abaio: 6 a) 10 i) Isolar uma das incógnitas, por e., na equação (II): (III) ii) Substituir, na equação (I), pela epressão (III): (10 ) iii) Substituir o valor de ( ) em qualquer uma das equações, p. e., na (III): ( ) 8 Logo, a solução será 8 e b) 1 7 i) Isolar uma das incógnitas, por e., na equação (I): (III) ii) Substituir, na equação (II), pela epressão (III): ( 1) iii) Substituir o valor de () em qualquer uma das equações, p. e., na (III): 1. 1 Logo, a solução será 1 e 1.8. Método da Adição Este método consiste em adicionar as duas equações membro a membro, com o objetivo de obter uma equação que tenha apenas uma incógnita. Para isso, escolheremos uma incógnita cujos coeficientes devem ser simétricos. E.: Resolva os sistemas:

12 11 a) 6 10 i) Neste caso, não é necessário arrumar nenhuma equação, simplesmente fazemos a soma: ii) Substituir o valor de (8) em qualquer uma das equações, p. e., na (I): Logo, a solução será 8 e b) 0 1 i) Devemos obter coeficientes simétricos de ou para adicionarmos as equações, então, podemos multiplicar (II) por ( ): ii) Substituir o valor de (18) em qualquer uma das equações, p. e., na (I): Logo, a solução será e 18 c) 1 7 i) Devemos obter coeficientes simétricos de ou para adicionarmos as equações, então, podemos multiplicar (II) por ( ) e (I) por (): ii) Substituir o valor de () em qualquer uma das equações, p. e., na (I): Logo, a solução será 1 e

13 1 1 - Resolva os sistemas abaio: a) 7 c) 6 d) e) 11 9 f) 7 1 h) 1 1 i) 10 j) a) 0 e 17 c) e d) e 1 e) e 1 f) 1 e h) e i) e 0 j) e

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores.

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores. 8º ANO LISTA 1 de fatoração AV 1 3º Bim. Escola adventista de Planaltina Professor: Celmo Xavier. Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou

Leia mais

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais...

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais... Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2 1.1 Adição e Subtração de Números Racionais...2 1.2 Multiplicação e Divisão de Números Racionais...2 2.OPERAÇÕES COM NÚMEROS DECIMAIS...4 2.1 Adição e Subtração

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

Matemática Financeira RECORDANDO CONCEITOS

Matemática Financeira RECORDANDO CONCEITOS 1 Matemática Financeira RECORDANDO CONCEITOS Propriedades da matemática Prioridades: É importante relembrar e entender alguns conceitos da matemática, que serão muito úteis quando trabalharmos com taxas.

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

I.INTRODUÇÃO A MATEMÁTICA.

I.INTRODUÇÃO A MATEMÁTICA. I.INTRODUÇÃO A MATEMÁTICA. 1. HISTÓRIA DA MATEMÁTICA Matemática é uma ciência que foi criada a fim de contar e resolver problemas com uma razão de existirem, foi criada a partir dos primeiros seres racionais

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

MATEMÁTICA BÁSICA E CALCULADORA

MATEMÁTICA BÁSICA E CALCULADORA DISCIPLINA MATEMÁTICA FINANCEIRA PROFESSOR SILTON JOSÉ DZIADZIO APOSTILA 01 MATEMÁTICA BÁSICA E CALCULADORA A matemática Financeira tem como objetivo principal estudar o valor do dinheiro em função do

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Fundamentos Tecnológicos

Fundamentos Tecnológicos 1 2 Potenciação Fundamentos Tecnológicos Potenciação, radiciação e operações algébricas básicas Prof. Flavio Fernandes Dados um número real positivo a e um número natural n diferente de zero, chama-se

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 jl.matematica@outlook.com Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo abaixo) para Pré-IME, Pré-ITA, EsPCEx, EEAer, ENEM.

Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo abaixo) para Pré-IME, Pré-ITA, EsPCEx, EEAer, ENEM. O ALGEBRISTA Autor: Laércio Vasconcelos www.laercio.com.br Livro de ÁLGEBRA do ensino fundamental (6º ao 9º ano) Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA PLANOS DE CURSO PARA 6º E 7º ANOS Campina Grande, 2011 -

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

Construção na orla marítima

Construção na orla marítima Reforço escolar M ate mática Construção na orla marítima Dinâmica 4 9º Ano 2º Bimestre Professor DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Algébrico Simbólico Equação do 2º. Grau

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior.

POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior. POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior. Bruno Marques Collares, UFRGS, collares.bruno@hotmail.com Diego Fontoura Lima, UFRGS,

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Lista de Exercícios 4: Soluções Sequências e Indução Matemática

Lista de Exercícios 4: Soluções Sequências e Indução Matemática UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,

Leia mais

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1. REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA

Leia mais

Equações do segundo grau

Equações do segundo grau Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro

Leia mais

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação.

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação. Apostila de Cálculo Zero Este material visa auxiliar os estudos em Matemática promovendo a revisão de seu conteúdo básico, de forma a facilitar o aprendizado nas disciplinas de cálculo e também melhorar

Leia mais

Matriz Curricular de Matemática 6º ao 9º ano 6º ano 6º Ano Conteúdo Sistemas de Numeração Sistema de numeração Egípcio Sistema de numeração Romano Sistema de numeração Indo-arábico 1º Trimestre Conjunto

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

Nível B3 SISTEMAS DE EQUAÇÕES

Nível B3 SISTEMAS DE EQUAÇÕES Nível B SISTEMAS DE EQUAÇÕES Equações do º grau com duas incógnitas Equação do º grau com duas incógnitas é uma equação onde figuram eactamente duas letras com epoente, por eemplo: -. Uma solução de uma

Leia mais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Fundamentos da Matemática Fernando Torres. Números Complexos. Gabriel Tebaldi Santos RA: 160508

Fundamentos da Matemática Fernando Torres. Números Complexos. Gabriel Tebaldi Santos RA: 160508 Fundamentos da Matemática Fernando Torres Números Complexos Gabriel Tebaldi Santos RA: 160508 Sumário 1. História...3 2.Introdução...4 3. A origem de i ao quadrado igual a -1...7 4. Adição, subtração,

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

AMEI Escolar Matemática 9º Ano Equações do 2º grau

AMEI Escolar Matemática 9º Ano Equações do 2º grau AMEI Escolar Matemática 9º Ano Equações do 2º grau Operações com polinómios. Casos notáveis da multiplicação de polinómios. Decomposição em factores (revisões) Na escrita de polinómios as letras representam

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

MATEMÁTICA BÁSICA. Operações

MATEMÁTICA BÁSICA. Operações MATEMÁTICA BÁSICA Regras dos Sinais a) Adição (+) Soma (+) + (+) = (+) (-) + (-) = (-) (+) + (-) = Sinal do Maior (-) + (+) = Sinal do Maior (+6) + (+3) = +6 +3 = 9 (-6) + (-3) = -6-3 = -9 (+6) + (-3)

Leia mais

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional.

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional. Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 3 - GABARITO 06 de julho de 013 1. (1,5 pontos) Determine se as afirmações

Leia mais

Álgebra. SeM MiSTéRio

Álgebra. SeM MiSTéRio Álgebra SeM MiSTéRio Série SeM MiSTéRio Alemão Sem Mistério Álgebra Sem Mistério Cálculo Sem Mistério Conversação em Alemão Sem Mistério Conversação em Espanhol Sem Mistério Conversação em Francês Sem

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO DE MATEMÁTICA 8.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de relacionar números racionais e dízimas, completar a reta numérica e ordenar números

Leia mais

Aritmética com Maple:

Aritmética com Maple: Aritmética com Maple: Capítulo 4: Objetivos: 1. Realizar operações básicas de números complexos com o Maple 2. Realizar operações com raízes usando o Maple 3. Arredondamento de números reais Partes real

Leia mais

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1 APOSTILA 015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 015 1 Sumário 1.Conjuntos...5 1.1 Representação de conjuntos...5 1. Operações com conjuntos...6 1. Propriedades

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

NÚMEROS COMPLEXOS (TUTORIAL: BÁSICO 01)

NÚMEROS COMPLEXOS (TUTORIAL: BÁSICO 01) MATEMÁTICA: Números Complexos - C; - Maior dos conjuntos - engloba todos os outros e acrescenta recursos especiais como raiz quadrada de número negativo; - Para darmos interpretação às raízes quadradas

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

Algoritmos e Programação de Computadores

Algoritmos e Programação de Computadores Algoritmos e Programação de Computadores Algoritmos Estrutura Sequencial Parte 1 Professor: Victor Hugo L. Lopes Agenda Etapas de ação do computador; TDP Tipos de Dados Primitivos; Variáveis; Constantes;

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Estabilidade Carlos Alexandre Mello 1 Introdução Já vimos que existem três requisitos fundamentais para projetar um sistema de controle: Resposta Transiente Estabilidade Erros de Estado Estacionário Estabilidade

Leia mais

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS Nome: Ano: 3º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº 02 Assunto: JUROS E PORCENTAGENS 1) Porcentagem Definição: É uma fração que indica a participação de uma quantidade sobre um todo.

Leia mais

E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO

E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO Dizemos que uma equação é linear, ou de primeiro grau, em certa incógnita, se o maior expoente desta variável for igual a um. Ela será quadrática, ou

Leia mais

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES REVISÃO Disciplina: Cálculo e Estatística Aplicada Professor: Dr. Fábio Saraiva da

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

Lição 1 - Criação de campos calculados em consultas

Lição 1 - Criação de campos calculados em consultas 1 de 5 21-08-2011 22:15 Lição 1 - Criação de campos calculados em consultas Adição de Colunas com Valores Calculados: Vamos, inicialmente, relembrar, rapidamente alguns conceitos básicos sobre Consultas

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

REVISÃO E AVALIAÇÃO DA MATEMÁTICA

REVISÃO E AVALIAÇÃO DA MATEMÁTICA 2 Aula 45 REVISÃO E AVALIAÇÃO DA 3 Vídeo Arredondamento de números. 4 Arredondamento de números Muitas situações cotidianas envolvendo valores destinados à contagem, podem ser facilitadas utilizando o

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) I Representação dos números, aritmética de ponto flutuante e erros em máquinas

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

Aplicações de Combinatória e Geometria na Teoria dos Números

Aplicações de Combinatória e Geometria na Teoria dos Números Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA 1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva

Leia mais

Aula 2 Modelo Simplificado de Computador

Aula 2 Modelo Simplificado de Computador Aula 2 Modelo Simplificado de Computador Um computador pode ser esquematizado de maneira bastante simplificada da seguinte forma: Modelo Simplificado de Computador: Memória Dispositivo de Entrada Processador

Leia mais

Exemplo de Subtração Binária

Exemplo de Subtração Binária Exemplo de Subtração Binária Exercícios Converta para binário e efetue as seguintes operações: a) 37 10 30 10 b) 83 10 82 10 c) 63 8 34 8 d) 77 8 11 8 e) BB 16 AA 16 f) C43 16 195 16 3.5.3 Divisão binária:

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

Em um sistema de numeração de base b qualquer, um número positivo é representado pelo polinômio:

Em um sistema de numeração de base b qualquer, um número positivo é representado pelo polinômio: ELETRÔNICA DIGITAl I 1 SISTEMAS DE NUMERAÇÃO INTRODUÇÃO A base dos sistemas digitais são os circuitos de chaveamento (switching) nos quais o componente principal é o transistor que, sob o ponto de vista

Leia mais

Microsoft Excel 2007

Microsoft Excel 2007 Microsoft Excel 2007 O Microsoft Excel é um aplicativo para a construção e edição de planilhas eletrônicas, que permite o trabalho com: formulários, tabelas, gráficos e outros. 2.1 CONCEITOS INICIAIS:

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

Conteúdo Programático Anual MATEMÁTICA

Conteúdo Programático Anual MATEMÁTICA MATEMÁTICA 1º BIMESTRE 5ª série (6º ano) CALCULANDO COM NÚMEROS NATURAIS 1. Idéias associadas à adição 2. Idéias associadas à subtração 3. Idéias associadas à multiplicação 4. Idéias associadas à divisão

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA Apontamentos: Curso de Conhecimentos Básicos de Matemática Cursos do Departamento de Gestão Maria Cristina

Leia mais

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá.

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá. INTRODUÇÃO A lógica de programação é extremamente necessária para as pessoas que queiram trabalhar na área de programação, seja em qualquer linguagem de programação, como por exemplo: Pascal, Visual Basic,

Leia mais

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação COMPUTAÇÕES NUMÉRICAS.0 Representação O sistema de numeração decimal é o mais usado pelo homem nos dias de hoje. O número 0 tem papel fundamental, é chamado de base do sistema. Os símbolos 0,,, 3, 4, 5,

Leia mais

Aritmética Binária e. Bernardo Nunes Gonçalves

Aritmética Binária e. Bernardo Nunes Gonçalves Aritmética Binária e Complemento a Base Bernardo Nunes Gonçalves Sumário Soma e multiplicação binária Subtração e divisão binária Representação com sinal Sinal e magnitude Complemento a base. Adição binária

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Engenharia Informática. Física II. 1º Ano 2º Semestre. Instituto politécnico de Bragança Escola Superior de Tecnologia e de Gestão

Engenharia Informática. Física II. 1º Ano 2º Semestre. Instituto politécnico de Bragança Escola Superior de Tecnologia e de Gestão 1º no º Semestre 1. Cálculo vectorial 1.1. Introdução análise vectorial é um assunto do âmbito da matemática e não propriamente da Engenharia. No entanto, é quase impossível estudar Electrostática e Magnetismo

Leia mais

Devemos escolher os números com os menores expoentes, cujas bases são comuns aos três desenvolvimentos em fatores primos.

Devemos escolher os números com os menores expoentes, cujas bases são comuns aos três desenvolvimentos em fatores primos. 1) O dono de um pequeno mercado comprou menos de 200 limões e, para vendê-los, poderá fazer pacotes contendo 12, ou 15, ou 18 limões em cada um deles, utilizando, dessa forma, todos os limões comprados.

Leia mais

Uma expressão matemática que apresenta números e letras ou somente letras, é denominada expressão algébrica

Uma expressão matemática que apresenta números e letras ou somente letras, é denominada expressão algébrica Trabalho de Reforço Matemática 8º ano A, 8º ano B e 8º ano C Ensino Fundamental Professor André Data de entrega: 05 de agosto de 2013. Exercícios de revisão de conteúdo Objetivo: fazer com que o aluno

Leia mais

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA UTILIZANDO O EDITOR DE EQUAÇÕES MICROSOFT EQUATION, NO MICROSOFT WORD Juliane Sbaraine

Leia mais