AULA 6 LÓGICA DOS CONJUNTOS

Tamanho: px
Começar a partir da página:

Download "AULA 6 LÓGICA DOS CONJUNTOS"

Transcrição

1 Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem alguma propriedade em comum. NOTAÇÃO: Letras maiúsculas para conjunto Letras minúsculas para elementos do conjunto Para denotar pertinência usaremos o símbolo (pertence) ou (não pertence) Exemplo 1: Se A = {violeta, verde, castanho} então, verde A e azul A. Os elementos de um conjunto não precisam ser ordenados, {a,b,c,d,e} = { c,e,a,d,b}. Dois conjuntos são iguais se (se e somente se) contém os mesmos elementos. Uma notação lógica: A = B significa ( x )[( x A x B) ( x B x A] Conjunto finito - é conjunto que conseguimos identificar todos os elementos. Exemplo: Conjunto dos dias de semana. Q = { segunda-feira, terça-feira, quarta-feira, quinta-feira, sexta-feira, sábado, domingo} Conjunto infinito é o conjunto que não conseguimos identificar todos os elementos. Exemplo:Conjunto dos inteiros positivos pares. = {2,4,6,8,...} * + Temos diversas maneiras para tentar descrever um conjunto: Listar seus elementos S = {2,4,6,8,...} Usar recorrência para descrever como gerar seus elementos 1.2 S 2.Se n S, então (n + 2) S Descrever uma propriedade P que caracteriza seus elementos S= { x / x é um inteiro positivo par} 1

2 A notação para um conjunto cujos elementos são caracterizados por uma propriedade P é S = { x / P(x)} e significa ( x )[( x S P(x)) ( P( x) x S ] Exemplo 2: 3 Suponha que um conjunto A é dado por A = { x /( y)( y { 0,1,2 } e x = y } Logo, A = {0,1,2} Descrevendo outros conjuntos: a. = { x / x e ( y)( y { 2,3,4,5} x > y} b. = { x /( y)( z)( y { 1,2} e z {2,3} e x = y + z} A R : A = {x / x N e x > 5} B R : B = { 3, 4, 5} RELAÇÕES ENTRE CONJUNTOS Para A = {2, 3, 5,12} e B = {2, 3, 4, 5, 9, 12}, todo elemento de A é elemento de B. Quando isso acontece dizemos que A é subconjunto de B. Escreve-se A B. Se A B e A B (existe pelo menos um elemento de B que não pertence a A), então podemos dizer que A B (A está contido em B ). Exemplo 3: Sejam os conjuntos : A = { x / x N e x 5}, B = {10,12, 16, 20}, C = { x / ( y)(y N e x = 2y)} Quais das proposições a seguir são verdadeiras? a. B C b. B A c. A C d. 26 C e. {11, 12, 13} A f. {11, 12, 13} C g. {12} B g. {12} B h. {x / x N e x < 20} B i. 5 A j. { } B k. A R: a, b, d, e, h, i, l CONJUNTOS DE CONJUNTOS Para um conjunto S, podemos formar um novo conjunto cujos elementos são os subconjuntos de S. Esse novo conjunto é chamado de conjunto das partes de S e é denotado por (S). Exemplo 4: 2

3 Para S = {0, 1}, (S) = {, {0}, {1}, {0,1} }. Note que os elementos do conjunto das partes de um conjunto são conjuntos. Para qualquer conjunto S, (S) sempre tem pelo menos, e S como elementos. Observe que S tem 2 elementos, e (S) tem 4 elementos. Podemos encontrar o número de elementos de um conjunto das partes de S usando 2 n, onde n é o número de elementos de S. OPERAÇÕES BINÁRIAS E UNÁRIAS Quando subtraímos dois elementos de um conjunto encontramos um terceiro elemento, esta operação é conhecida como binária. A negação age em um inteiro, portanto é uma operação unária. Para realizarmos uma subtração, por exemplo, precisamos de dois elementos, x e y, onde x y gera uma única resposta. Estes dois elementos x e y formam um par ordenado. Ordenado porque, dados 5 e 7, 5 7 é diferente de 7 5, portanto a ordem dos elementos é importante. NOTAÇÃO: Um par ordenado é denotado por (x, y), onde x é a primeira componente e y é a segunda. Em conjuntos {1, 2} e {2, 1} são iguais, mas os pares ordenados (1, 2) e (2, 1) são diferentes. O símbolo marca, simplesmente, o lugar; em qualquer discussão específica, que será substituído pelo símbolo apropriado para a operação, como o símbolo da subtração, adição e multiplicação, por exemplo. Logo, operações binárias é uma operação em um conjunto S se, para todo par ordenado (x, y) de elementos de S, x y existe, é único e pertence a S. As operações lógicas de conjunção, disjunção, condicional e equivalência são operações binárias no conjunto das fbfs proposicionais. ATENÇÂO: Um candidato ao posto de pode deixar de ser uma operação binária em um conjunto S se qualquer uma entre três coisas acontecer: 1. Se existirem x e y pertencentes a S para os quais x y não existe. 2. Se existirem elementos x e y pertencentes a S para os quais x y tem mais de um resultado. 3. Se existirem elementos x e y pertencentes a S para os quais x y não pertence a S. A divisão não é uma operação binária. 3

4 Exemplo 5: A subtração não é uma operação binária em N, pois N não é bem definida ( não é fechada),para a operação. Por exemplo: 10 1 = 9 os três elementos pertencem a N, mas 1 10 = -9, e este não pertence a N. OPERAÇÕES EM CONJUNTOS Dado S, podemos definir algumas operações binárias ou unárias no conjunto (S). S nesse caso é chamado de conjunto universo. Exemplo: S = Z. Uma operação binária em (S) tem que agir em dois subconjuntos arbitrários de S para produzir um subconjunto de S. Exemplo 6: Seja S o conjunto de todos os estudantes da Silicon U. Então os elementos de (S) são conjuntos de estudantes. Seja A o conjunto de estudantes de ciências da computação e seja B o conjunto de estudantes de administração. Ambos A e B pertencem a (S). Um novo conjunto pode ser definido, consistindo em todos os alunos que são alunos de ciências da computação ou de administração (ou ambos), esse conjunto é a união de A e B. Outro conjunto pode ser definido pelos alunos que estudam ao mesmo tempo nos dois cursos. Esse conjunto (que pode ser vazio) é chamado de interseção de A e B. 1. A união de conjuntos pode ser definida como: Sejam A,B (S). A união de A e B denotada por A B, é {x / x A ou x B}. 2. A interseção de conjuntos pode ser definida A B, é {x / x A e x B}. Exemplo 7: Sejam A = {1,3,5,7,9} e B = {3,5,6,10,11}. Podemos considerar A e B como elementos de (N). Então A B = {1,3,5,6,7,9,10,11} e A B = {3,5}. Ambos, A B e A B são elementos de (N). Podemos usar diagramas de Venn para visualizar as operações binárias de união ( ) e interseção ( ). 4

5 Diagramas de Venn: ( John Venn, ) São úteis na verificação de propriedades de operações entre conjuntos, mas não devem ser considerados instrumentos de prova matemática rigorosa. S S A B A B Agora definiremos uma operação unária em (S). 3. Complemento de um conjunto: para um conjunto A (S), o complemento de A, A é [x / x S e x A} No diagrama de Venn, teremos: S A Exemplo 8: Uma pesquisa do tipo, carros usados E (Mercedes Bens OU Volkswagen) E NÃO Caminhões. Está pedindo ao programa de busca que retorne um conjunto de páginas (ou, mais precisamente, um conjunto de links para essas páginas). Se U = conjunto de páginas contendo carros usados M = conjunto de páginas contendo carros da Mercedes Bens V = conjunto de páginas contendo carros da Volkswagen 5

6 C = conjunto de páginas contendo caminhões Então: U ( M V ) C Que representa o conjunto de páginas na rede contendo o resultado desejado na pesquisa. 4. Diferença entre conjuntos: é uma operação binária, onde A B = {x / x A e x B} ou ainda A B = {x / x A e x B } ou como A B = A B No diagrama de Venn temos: Exemplo 9: Sejam os conjuntos abaixo subconjuntos de S = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}: A = {1, 2, 3, 5, 10} B = {2, 4, 7, 8, 9} C = {5, 8, 10} Encontre: a. A B R: { 1, 2, 3, 4, 5, 7, 8, 9, 10} b. A C R: {1, 2, 3} c. B (A C) R: {1, 3, 5, 10} Lembre-se B = {1, 3, 5, 6, 10} ATENÇÃO: O Cálculo Proposicional e a Álgebra dos conjuntos possuem estruturas semelhantes. Toda fórmula do Cálculo Proposicional determina uma operação correspondente entre conjuntos: Negação (~) corresponde à complementação ( ) Conjunção ( ) corresponde à interseção ( ) Disjunção ( V ) corresponde à união ( ) As variáveis proposicionais podem servir como variáveis simbolizando conjunto na nova expressão: Exemplo: ((p V q) ~p) corresponde a ( (p q) p 6

7 IDENTIDADES ENVOLVENDO CONJUNTOS Existem muitas igualdades envolvendo as operações de união, interseção, diferença e complementação que são verdadeiras para todos os subconjuntos de um conjunto S. Desta forma as identidades básicas foram listadas na tabela abaixo. Identidades Básicas Envolvendo Conjuntos 1a. A B = B A 1b. A B = B A Comutativa 2a. (A B) C = A (B C) 2b. (A B) C = A (B C) Associativa 3a.A (B C) = (A B) (A C) 3b. A (B C) = (A B) (A C) Distributiva 4a. A = A 4b. A S = A Existência de elemento neutro 5a. A A = S 5b. A A = Propriedade do complemento Exemplo 10: Usando as identidades básicas, vamos provar que [A (B C)] ([A (B C)] (B C) ) = [A (B C)] ([A (B C)] (B C) ) ([A (B C)] [A (B C)]) (B C) (2b) ([(B C) A] [( B C ) A ]) (B C) (1a duas vezes) [(B C) (A A )] (B C) (3a) [(B C) ] (B C) (5b) (B C) (B C) (4a) (5b) Exemplo 11: Agora mostre a identidade: [C (A B)] [(A B) C ] = (A B) [(A B) C] [(A B) C ] (1b) (A B) (C C ) (3b) (A B) S (5a) A B (4b) 7

8 ENUMERABILIDADE Para se provar a enumerabilidade de conjuntos precisamos apenas exibir o modo de contar seus elementos. Exemplo: N = conjuntos de inteiros não negativos N = { 0, 1, 2, 3, 4...} Portanto o conjunto N é enumerável. Conjuntos finitos não enumeráveis: Exemplo: Vamos mostrar que o conjunto de todos os números reais entre 0 e 1 não é enumerável. Se descrevermos os elementos deste conjunto de forma decimal, teremos: R= { d 1, d 2, d 3,...d n } Dado o número 0, , você conseguiria dizer qual é o proximo número da sequencia? Comparando os números decimais acima mencionados e os número inteiros, veremos que os números decimais são conjuntos não-enumeráveis. CONJUNTOS CONTÁVEIS E NÃO-CONTÁVEIS Em um conjunto finito S, sempre podemos designar um elemento como sendo o primeiro, s 1,um outro número, s 2, e assim por diante. Se existem k elementos, então esses podem ser listados. Exemplo: s 1, s 2, s 3,...s k conjunto) ( o número de elementos em um conjunto finito é a cardinalidade do Um conjunto infinito, podemos ainda ser capazes de selecionar um primeiro elemento, s 1,um outro número, s 2, e assim por diante, de modo que a lista fique Exemplo: s 1, s 2, s 3,... ( todo elemento do conjunto aparecerá na lista alguma hora. Tal conjunto infinito é dito enumerável) Tanto conjuntos finitos e enumeráveis são conjuntos contáveis, pois podemos contar, ou enumerar seus elementos ( significa que podemos dizer quem é o primeiro elemento, o segundo, e assim por diante). Existem conjuntos infinitos que são não-contáveis ( ou não-enumerávies). São conjuntos tão grandes que não há maneira de se contar os elementos e obter todo o conjunto nesse processo. Alguns exemplos de enumeráveis infinitos: Os conjuntos N ou Z E não-enumerável: o conjunto dos números reais entre 0 e 1. 8

Faculdades Pitágoras de Uberlândia. Matemática Básica 1

Faculdades Pitágoras de Uberlândia. Matemática Básica 1 Faculdades Pitágoras de Uberlândia Sistemas de Informação Disciplina: Matemática Básica 1 Prof. Walteno Martins Parreira Júnior www.waltenomartins.com.br waltenomartins@yahoo.com 2010 Professor Walteno

Leia mais

TEORIA DOS CONJUNTOS Símbolos

TEORIA DOS CONJUNTOS Símbolos 1 MATERIAL DE APOIO MATEMÁTICA Turmas 1º AS e 1º PD Profº Carlos Roberto da Silva A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT. Lista de Exercícios 01.

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT. Lista de Exercícios 01. UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT Curso de Bacharel em Ciência da Computação Disciplina: Matemática Discreta Professor: Rafael Stubs Parpinelli ) Diga se é verdadeiro

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos I. Conjuntos 1. Introdução e notações 1.1. Relação de pertença 1.2. Modos de representar um conjunto 1.3. Classificação de conjuntos quanto ao número de elementos 1.4. Noção de correspondência 2. Relações

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

RELAÇÕES BINÁRIAS Produto Cartesiano A X B

RELAÇÕES BINÁRIAS Produto Cartesiano A X B RELAÇÕES BINÁRIAS PARES ORDENADOS Um PAR ORDENADO, denotado por (x,y), é um par de elementos onde x é o Primeiro elemento e y é o Segundo elemento do par A ordem é relevante em um par ordenado Logo, os

Leia mais

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos ESCOL ESTDUL DE ENSINO MÉDIO UL PILL COMPONENTE CUICUL: Matemática POFESSO: Maria Inês Castilho Noções básicas: Conjuntos 1º NOS DO ENSINO MÉDIO Um conjunto é uma coleção qualquer de objetos, de dados,

Leia mais

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias Capítulo 2 Álgebra e imagens binárias Em Análise de Imagens, os objetos mais simples que manipulamos são as imagens binárias. Estas imagens são representadas matematicamente por subconjuntos ou, de maneira

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

Exemplo de Subtração Binária

Exemplo de Subtração Binária Exemplo de Subtração Binária Exercícios Converta para binário e efetue as seguintes operações: a) 37 10 30 10 b) 83 10 82 10 c) 63 8 34 8 d) 77 8 11 8 e) BB 16 AA 16 f) C43 16 195 16 3.5.3 Divisão binária:

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

MÉTODOS DISCRETOS EM TELEMÁTICA

MÉTODOS DISCRETOS EM TELEMÁTICA 1 MÉTODOS DISCRETOS EM TELEMÁTICA MATEMÁTICA DISCRETA Profa. Marcia Mahon Grupo de Pesquisas em Comunicações - CODEC Departamento de Eletrônica e Sistemas - UFPE Outubro 2003 2 CONTEÚDO 1 - Introdução

Leia mais

Teoria dos Conjuntos. Prof Elizeu Junior

Teoria dos Conjuntos. Prof Elizeu Junior Teoria dos Conjuntos Prof Elizeu Junior Introdução A teoria dos Conjuntos representa instrumento de grande utilidade nos diversos desenvolvimentos da Matemática, bem como em outros ramos das ciências físicas

Leia mais

AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE

AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Disciplina: Matemática Computacional Prof. Diana de Barros Teles AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Quantificadores: são frases do tipo para todo, ou para cada, ou para algum, isso é, frases

Leia mais

Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos

Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos 1) O tipo float está contido dentro de quais conjuntos? (Mais de uma alternativa pode ser marcada como correta).

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

II. DEFINIÇÕES INICIAIS 1

II. DEFINIÇÕES INICIAIS 1 -1- ELPO: Definições Iniciais [MSL] II. DEFINIÇÕES INICIAIS 1 No que se segue, U é um conjunto qualquer e X, Y,... são os subconjuntos de U. Ex.: U é um quadrado e X, Y e Z são três círculos congruentes

Leia mais

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com - Aula 3 - ÁLGEBRA BOOLEANA 1. Introdução O ponto de partida para o projeto sistemático de sistemas de processamento digital é a chamada Álgebra de Boole, trabalho de um matemático inglês que, em um livro

Leia mais

PC Fundamentos Revisão 4

PC Fundamentos Revisão 4 exatasfepi.com.br PC Fundamentos Revisão 4 André Luís Duarte...mas os que esperam no Senhor renovarão as suas forças; subirão com asas como águias; correrão, e não se cansarão; andarão, e não se fatigarão.is

Leia mais

Aula 6 Aritmética Computacional

Aula 6 Aritmética Computacional Aula 6 Aritmética Computacional Introdução à Computação ADS - IFBA Representação de Números Inteiros Vírgula fixa (Fixed Point) Ponto Flutuante Para todos, a quantidade de valores possíveis depende do

Leia mais

Software Matemático para aplicação da Teoria dos Conjuntos

Software Matemático para aplicação da Teoria dos Conjuntos Software Matemático para aplicação da Teoria dos Conjuntos Ana Paula Cavalheiro Oliveira (man05103@feg.unesp.br) Diego Teixeira de Souza (man05109@feg.unesp.br) Rodrigo Alexandre Ribeiro (man04023@feg.unesp.br)

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Conceitos Fundamentais

Conceitos Fundamentais Capítulo 1 Conceitos Fundamentais Objetivos: No final do Capítulo o aluno deve saber: 1. distinguir o uso de vetores na Física e na Matemática; 2. resolver sistema lineares pelo método de Gauss-Jordan;

Leia mais

Construção de tabelas verdades

Construção de tabelas verdades Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais

Leia mais

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos Trabalho compilado da Internet Prof. Claudio Passos Sistemas Numéricos A Informação e sua Representação O computador, sendo um equipamento eletrônico, armazena e movimenta as informações internamente sob

Leia mais

CALENDÁRIO DE AVALIAÇÕES 1º PERÍODO LETIVO AV2 6º ANO

CALENDÁRIO DE AVALIAÇÕES 1º PERÍODO LETIVO AV2 6º ANO 6º ANO 17/04 quarta-feira Ciências 18/04 quinta-feira 19/04 sexta-feira Informática 25/04 quinta-feira Matemática 26/04 sexta-feira Inglês 29/04 segunda-feira Historia 30/04 terça-feira Geografia Música

Leia mais

Aritmética Binária e. Bernardo Nunes Gonçalves

Aritmética Binária e. Bernardo Nunes Gonçalves Aritmética Binária e Complemento a Base Bernardo Nunes Gonçalves Sumário Soma e multiplicação binária Subtração e divisão binária Representação com sinal Sinal e magnitude Complemento a base. Adição binária

Leia mais

13 Números Reais - Tipo float

13 Números Reais - Tipo float 13 Números Reais - Tipo float Ronaldo F. Hashimoto e Carlos H. Morimoto Até omomentonoslimitamosaouso do tipo inteiro para variáveis e expressões aritméticas. Vamos introduzir agora o tipo real. Ao final

Leia mais

Probabilidade - aula III

Probabilidade - aula III 27 de Março de 2014 Regra da Probabilidade Total Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a Regra da Probabilidade

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

Sistemas Numéricos e a Representação Interna dos Dados no Computador

Sistemas Numéricos e a Representação Interna dos Dados no Computador Capítulo 2 Sistemas Numéricos e a Representação Interna dos Dados no Computador 2.0 Índice 2.0 Índice... 1 2.1 Sistemas Numéricos... 2 2.1.1 Sistema Binário... 2 2.1.2 Sistema Octal... 3 2.1.3 Sistema

Leia mais

Lista n 0 1 de Exercícios de Teoria da Computação

Lista n 0 1 de Exercícios de Teoria da Computação Lista n 0 1 de Exercícios de Teoria da Computação UFU-Curso de Bacharelado em Ciência da Computação - 7 0 período Profa. Sandra de Amo Exercícios de Revisão : Autômatos e Gramáticas 1. Mostre que a linguagem

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Escala horária de propaganda em rede para televisão 08/10/2010 a 29/10/2010

Escala horária de propaganda em rede para televisão 08/10/2010 a 29/10/2010 Justiça Eleitoral Página 1 de 5 Cargo: Presidente Data da propaganda: 08/10/2010 SEXTA-FEIRA PARA O BRASIL SEGUIR MUDANDO 13:00:00 13: 20:30:00 20:40:00 O Brasil Pode Mais 13: 13:20:00 20:40:00 20:50:00

Leia mais

.x.y.z A B = {1,2,3,4} Conjunto das Partes CONJUNTOS. Nomenclatura: Conjuntos Letras maiúsculas Elementos Letras minúsculas

.x.y.z A B = {1,2,3,4} Conjunto das Partes CONJUNTOS. Nomenclatura: Conjuntos Letras maiúsculas Elementos Letras minúsculas Nomenclatura: Representação:.x.y.z CONJUNTOS Conjuntos Letras maiúsculas Elementos Letras minúsculas A = {x,y,z}- Entre chaves Diagrama de Euler-Venn Descrição de um Conjunto Enumerado - A= {a,e,i,o,u}

Leia mais

Elementos de Matemática Discreta

Elementos de Matemática Discreta Elementos de Matemática Discreta Prof. Marcus Vinícius Midena Ramos Universidade Federal do Vale do São Francisco 9 de junho de 2013 marcus.ramos@univasf.edu.br www.univasf.edu.br/~marcus.ramos Marcus

Leia mais

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850.

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850. ÁLGEBRA BOOLEANA Foi um modelo formulado por George Boole, por volta de 1850. Observando a lógica proposicional e a teoria de conjuntos verificamos que elas possuem propriedades em comum. Lógica Proposicional

Leia mais

Matemática Discreta - 03

Matemática Discreta - 03 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 03 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/52 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS

PROF. LUIZ CARLOS MOREIRA SANTOS 1 - CONCEITO PROF. LUIZ CARLOS MOREIRA SANTOS CONJUNTOS Conjunto proporciona a idéia de coleção, admitindo-se coleção de apenas um elemento (conjunto unitário) e coleção sem nenhum elemento (conjunto vazio).

Leia mais

Abril / 2016. 25 Segunda-feira 17h, 18h e 19h 25 e 26/04. 27 Quarta-feira 17h, 18h e 19h 27 e 28/04. 29 Sexta-feira 17h, 18h e 19h 29/04 e 02/05

Abril / 2016. 25 Segunda-feira 17h, 18h e 19h 25 e 26/04. 27 Quarta-feira 17h, 18h e 19h 27 e 28/04. 29 Sexta-feira 17h, 18h e 19h 29/04 e 02/05 Cursos Abril / 2016 25 Segunda-feira 17h, e 19h 25 e 26/04 27 Quarta-feira 17h, e 19h 27 e 28/04 29 Sexta-feira 17h, e 19h 29/04 e 02/05 Cursos Maio / 2016 02 Segunda-feira 17h, e 19h 02 e 03/05 04 Quarta-feira

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO Atualizado em Prof. Rui Mano E mail: rmano@tpd.puc rio.br SISTEMAS DE NUMERAÇÃO Sistemas de Numer ação Posicionais Desde quando se começou a registrar informações sobre quantidades, foram criados diversos

Leia mais

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 jl.matematica@outlook.com Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Chapter 2. 2.1 Noções Preliminares

Chapter 2. 2.1 Noções Preliminares Chapter 2 Seqüências de Números Reais Na Análise os conceitos e resultados mais importantes se referem a limites, direto ou indiretamente. Daí, num primeiro momento, estudaremos os limites de seqüências

Leia mais

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1 APOSTILA 015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 015 1 Sumário 1.Conjuntos...5 1.1 Representação de conjuntos...5 1. Operações com conjuntos...6 1. Propriedades

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

UNIVERSIDADE FEDERAL DE ALFENAS UNIFAL/MG. Projeto Institucional de Formação Continuada

UNIVERSIDADE FEDERAL DE ALFENAS UNIFAL/MG. Projeto Institucional de Formação Continuada 1 UNIVERSIDADE FEDERAL DE ALFENAS UNIFAL/MG Projeto Institucional de Formação Continuada Aprendizagem de Matemática Mediada por suas Aplicações 6 o Encontro: Matemática Financeira Professor José Carlos

Leia mais

Biotecnologia Ambiental

Biotecnologia Ambiental Ambiental 1º MÓDULO 27 28 29 (AGOSTO) Segunda-feira Terça-feira Quarta-feira Quinta-feira (27/08) Sexta-feira (28/08) Sábado (29/08) //Marco //Marco Ambiental 2º MÓDULO 17 18 19 (SETEMBRO) Segunda-feira

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Universidade Federal do Piauí Campus Ministro Reis Velloso Departamento de Matemática Fundamentos de Matemática por Cleyton Natanael Lopes de Carvalho Cunha Parnaiba, de 20 Sumário 1 Teoria Elementar dos

Leia mais

Construção na orla marítima

Construção na orla marítima Reforço escolar M ate mática Construção na orla marítima Dinâmica 4 9º Ano 2º Bimestre Professor DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Algébrico Simbólico Equação do 2º. Grau

Leia mais

Sumário. INF01040 Introdução à Programação. Elaboração de um Programa. Regras para construção de um algoritmo

Sumário. INF01040 Introdução à Programação. Elaboração de um Programa. Regras para construção de um algoritmo INF01040 Introdução à Programação Introdução à Lógica de Programação s Seqüenciais Sumário Elaboração de um programa/algoritmo Formas de representação de um algoritmo Elementos manipulados em um programa/algoritmo

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 02 ATIVIDADE 01 Para poupar esforço de digitação, você pode usar o tradicional

Leia mais

Raciocínio Lógico - Parte II

Raciocínio Lógico - Parte II Apostila escrita pelo professor José Gonçalo dos Santos Contato: jose.goncalo.santos@gmail.com Raciocínio Lógico - Parte II Sumário 1. Operações Lógicas sobre Proposições... 1 2. Tautologia, contradição

Leia mais

Conversão de Bases e Aritmética Binária

Conversão de Bases e Aritmética Binária Conversão de Bases e Aritmética Binária Prof. Glauco Amorim Sistema de Numeração Decimal Dígitos Decimais: 0 2 3 4 5 6 7 8 9 Potências de base 0 0 0 2 0 0 3 4 0 0 00 000 0 000 Sistema de Numeração Binário

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Introdução MATRIZES. O que vocês acham? Onde podemos usar Matrizes além dos estudos de matemática?

Introdução MATRIZES. O que vocês acham? Onde podemos usar Matrizes além dos estudos de matemática? PROBBILIDDES Professora Rosana Relva Números Inteiros e Racionais Introdução rrelva@globo.com O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais aplicada. Onde

Leia mais

Calendário de Provas 2014

Calendário de Provas 2014 Calendário de Provas 1º BIMESTRE (de 27/01/ a 02/04/) 25 de Fevereiro Terça-feira Horário de Aula Produção Textual 26 de Fevereiro Quarta-feira P1 de Português 27 de Fevereiro Quinta-feira Horário de Aula

Leia mais

Estudo de funções parte 2

Estudo de funções parte 2 Módulo 2 Unidade 13 Estudo de funções parte 2 Para início de conversa... Taxa de desemprego no Brasil cai a 5,8% em maio A taxa de desempregados no Brasil caiu para 5,8% em maio, depois de registrar 6%

Leia mais

Fundamentos da Matemática Fernando Torres. Números Complexos. Gabriel Tebaldi Santos RA: 160508

Fundamentos da Matemática Fernando Torres. Números Complexos. Gabriel Tebaldi Santos RA: 160508 Fundamentos da Matemática Fernando Torres Números Complexos Gabriel Tebaldi Santos RA: 160508 Sumário 1. História...3 2.Introdução...4 3. A origem de i ao quadrado igual a -1...7 4. Adição, subtração,

Leia mais

e à Linguagem de Programação Python

e à Linguagem de Programação Python Introdução a Algoritmos, Computação Algébrica e à Linguagem de Programação Python Curso de Números Inteiros e Criptografia Prof. Luis Menasché Schechter Departamento de Ciência da Computação UFRJ Agosto

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

Banco de Dados. Álgebra Relacional. Prof. Enzo Seraphim

Banco de Dados. Álgebra Relacional. Prof. Enzo Seraphim Banco de Dados Álgebra Relacional Prof. Enzo Seraphim Introdução A álgebra relacional é composta por um conjunto de operações utilizadas para manipular Relações como um todo Toda Operação Relacional é

Leia mais

UTILIZANDO PROGRAMAS EDUCACIONAIS

UTILIZANDO PROGRAMAS EDUCACIONAIS LINUX EDUCACIONAL UTILIZANDO PROGRAMAS EDUCACIONAIS PROFESSOR GERSON VALENCIO Caro professor: As novas Tecnologias de Informação e Comunicação(TICs) estão mudando nossa forma de pensar, agir, relacionar-se,

Leia mais

Linguagens Formais e Autômatos. Alfabetos, Palavras, Linguagens e Gramáticas

Linguagens Formais e Autômatos. Alfabetos, Palavras, Linguagens e Gramáticas Linguagens Formais e Autômatos Alfabetos, Palavras, Linguagens e Gramáticas Cristiano Lehrer, M.Sc. Introdução (1/3) A Teoria das Linguagens Formais foi originariamente desenvolvida na década de 1950 com

Leia mais

Matemática Financeira RECORDANDO CONCEITOS

Matemática Financeira RECORDANDO CONCEITOS 1 Matemática Financeira RECORDANDO CONCEITOS Propriedades da matemática Prioridades: É importante relembrar e entender alguns conceitos da matemática, que serão muito úteis quando trabalharmos com taxas.

Leia mais

Definição 2.2 (Palavra) As sequências finitas de letras são designadas por palavras sobre o alfabeto V.

Definição 2.2 (Palavra) As sequências finitas de letras são designadas por palavras sobre o alfabeto V. Capítulo 2 Definição de Linguagens 2.1 Linguagens Formais Definição 2.1 (Alfabeto) Um conjunto finito e não vazio de símbolos arbitrários é designado por um alfabeto, e é denotado por V. Os elementos de

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos Classes de Complexidades de Problemas Prof. Osvaldo Luiz de Oliveira Estas anotações devem ser complementadas por apontamentos em aula. Tempo polinomial Um algoritmo A, com entrada

Leia mais

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática 2014 Na teoria dos conjuntos três noções são aceitas sem denição (noção primitiva):: Conjunto;

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

A linguagem da Lógica Proposicional (Capítulo 1)

A linguagem da Lógica Proposicional (Capítulo 1) A linguagem da Lógica Proposicional (Capítulo 1) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Alfabeto 3. Fórmulas bem formadas (FBF) 4. Exemplos

Leia mais

Introdução aos cálculos de datas

Introdução aos cálculos de datas Page 1 of 7 Windows SharePoint Services Introdução aos cálculos de datas Aplica-se a: Microsoft Office SharePoint Server 2007 Ocultar tudo Você pode usar fórmulas e funções em listas ou bibliotecas para

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Informática no Ensino da Matemática

Informática no Ensino da Matemática Informática no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista de Exercícios 2 ATIVIDADE 1 Para poupar esforço de digitação, você pode usar o tradicional sistema

Leia mais

NOTAS DE AULA CONJUNTOS, FUNÇÕES E RELAÇÕES

NOTAS DE AULA CONJUNTOS, FUNÇÕES E RELAÇÕES NOTAS DE AULA CONJUNTOS, FUNÇÕES E RELAÇÕES CAPÍTULO I NOÇÕES BÁSICA DE CONJUNTOS 1. Conjuntos O conceito de conjunto aparece em todos os ramos da matemática. Intuitivamente, um conjunto é qualquer coleção

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

Sumário. Apresentação da Coleção... 23

Sumário. Apresentação da Coleção... 23 Sumário Apresentação da Coleção... 23 INTRODUÇÃO... 25 O que é lógica?... 25 Divisão da Filosofia... 29 Lógica de Aristóteles... 30 Lógica Moderna... 30 Raciocínio lógico matemático... 32 Objeto da lógica...

Leia mais