MATEMÁTICA BÁSICA. Operações

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA BÁSICA. Operações"

Transcrição

1 MATEMÁTICA BÁSICA Regras dos Sinais a) Adição (+) Soma (+) + (+) = (+) (-) + (-) = (-) (+) + (-) = Sinal do Maior (-) + (+) = Sinal do Maior (+6) + (+3) = = 9 (-6) + (-3) = -6-3 = -9 (+6) + (-3) = +6-3 = 3 (-6) + (+3) = = -3 b) Subtração (-) Diminuir (+) - (+) = Sinal do Maior (-) - (-) = Sinal do Maior (+) - (-) = (+) (-) - (+) = (-) (+6) - (+3) = +6-3 = 3 (-6) - (-3) = = -3 (+6) - (-3) = = 9 (-6) - (+3) = -6-3 = -9 c) Multiplicação (x) ou (.) (+) (+) = (+) (-) (-) = (+) (+) (-) = (-) (-) (+) = (-) (+6) (+3) = = 18 (-6) (-3) = -6-3 = 18 (+6) (-3) = +6-3 = -18 (-6) (+3) = = -18 d) Divisão (/) (+) / (+) = (+) (-) / (-) = (+) (+) / (-) = (-) (-) / (+) = (-) (+6) / (+3) = +6 / +3 = 2 (-6) / (-3) = -6 / -3 = 2 (+6) / (-3) = +6 / -3 = -2 (-6) / (+3) = -6 / +3 = -2 Operações Os processos usados para trabalharmos com números são chamados Operações. As operações fundamentais são: Adição, Subtração, Multiplicação e Divisão. Conjunto dos Números Naturais Ao contarmos uma quantidade de qualquer coisa (objeto, animais, estrelas, pessoas, frutas, etc.) Obtemos: IN={1,2,3,4,5,6,7,8,...}. Esses números são chamados de números Naturais. As reticências servem para indicar que existem mais números. Existem infinitos números Naturais. Conjunto dos Números Inteiros Para obter um conjunto em que a operação de subtração entre seus elementos fosse sempre possível, foi necessário ampliar o conceito de número. Então se criou para cada número Natural positivo (+) um número negativo (-). Z = {...,-4,-3,-2,-1,0,1,2,3,4,5,...} Potenciação de números inteiros Uma potência é um produto de fatores iguais. 2 3 = 8 Onde o 2 é a Base, o 3 é Expoente e o 8 é a potencia, chama-se 3ª potência de 2 ou 2 elevado a 3. Exemplos: a) 4 3 = = 64 b) 2 3 = = 8 c) 2 5 = = 32 d) 1 4 = = 1 e) 1 3 = = 1

2 f) 0 3 = = 0 g) 0 5 = = 0 h) Eram 4 irmãos, cada um tinha 4 carros, e cada carro tem 4 rodas, Quantas eram essas rodas? 4 3 =4 4 4 = 64 i) Indicação das formas de potencia: = = = = 6 7 Exercício 1. Resolva as Expressões abaixo. 5 2³ (2 2 2) + (7 7) = / 2 (5 5) 3 (6 6)/2 = (3 3) ( ) + 1 = 145 Toda a potência de expoente zero, o resultado é igual a um. 6 0 = = = 1 Exercício 2. Simplifique as potências: a) b) c) d) e) 10 7 / 10 2 f) 2 12 / 2 7 g) 2 19 / 2 11 Exercício 3. Calcule as potências: a) 10 6 / 10 4 b) 7 5 / 7 3 c) 12 4 / 12 2 Produto de Potência de Mesma Base Repete-se a base, somam-se os expoentes = = = Quociente de Potência de Mesma Base Repete-se a base, subtraem-se os expoentes. 3 7 / 3 2 = = / 6 5 = = 6 6 Observações: Toda a potência de expoente um, o resultado é igual a Base. 2 1 = = = 20 Equações: Presentes em situações do nosso cotidiano, o conceito de equação é um dos mais importantes em toda a matemática. Equação é toda Sentença Matemática aberta expressa por uma incógnita. x + 4 = 6 x =? Onde x é a incógnita (valor desconhecido) a ser encontrada. Uma equação do 1º grau, na incógnita x, é qualquer expressão matemática que possa ser escrita na forma a x b 0, onde a, b R e a 0. A solução de uma equação do 1º grau é encontrada isolando a incógnita

3 em questão em um dos membros da equação. Exemplo 1) x - 2 = 15 x - 2 = 15 x = x = 17 S = { 17 } 2) x = 0 x = 0 x + 5 = 0 x = 0 5 (princípio aditivo) x = - 5 S = { - 5 } 3) 7x = 21 7x 21 7x 21 (princípio multiplicativo) 7 7 x 3 S = { 3 } 4) 5. ( - x + 3 ) = 2. x + 1 Neste caso é realizada primeiramente a eliminação dos parênteses aplicando a propriedade da distributiva da multiplicação. 5. ( - x + 3 ) = 2. x + 1-5x + 15 = 2x + 1-5x - 2x = x = x = x = 2 S = { 2 } Exercício 4. Dê a solução de cada uma das equações abaixo. a) x - 50 = 30 S = { 80 } b) x = S = { 3 } c) 6x - 1 = 29 d) 3(x - 1) = 5( x - 2 ) S = { 7 / 2 } e) ( 4 + x) = 2(3x - 1) S = { 4 } f) 3x - 10 = 5x S = { - 5 } g) 4x + 9 = - 6 S = { - 15 / 4 } h) 8a a = 4a + 14 S = { 1 / 3 } i) -7b = 8-7b + 3b - 3-5b j) 9x = 27 S = { 3 } k) 4x + 5 = - 10

4 S = { - 15 / 4 } l) x = 4 5 S = { 20 } m) 4x = - 1 S = { - 1 / 4 } n) 3(4x - 2) = 5(2x + 3) + 3 S = { 12 } o) 2x + 5 = 15 p) 15x - 60 = 0 S = { 4 } q) 4(x 2) - 2(x - 1) = 4 r) 5x = - 3x + 4 S = { ½ } s) 5(x - 3) + 2 = 3(1 x) - 2 S = { 7/4 } t) 10x - 2 = 5x S = { 2/5 } u) 2x + 3 = 5x S = { 1 } Resolução de problemas de 1º grau de uma variável: Escreve-se a equação do problema. Resolve-se a equação estabelecida. Interpreta-se a solução da equação: isto é verificar se satisfaz as condições. 1) Uma empresa de radio táxi cobra R$ 5,00 a bandeirada e mais R$ 1,60 pelo km rodado. Se percorrermos 8 km qual o valor a ser cobrado pelo taxista? Se x vale 8 km então x = 8 y = 5,00 + 1,60. x Substituindo x por 8. y = 5,00 + 1,60. 8 y = 5, ,80 y = 17,80 Se y = 17,80 5,00 + 1,60. x = 17,80 Substituindo y por 17. 1,60. x = 17,80-5 1,60. x = 12,80 x = 12,80 1,60 x = 8 2) Se percorrermos o total de 20 km. Qual o valor cobrado pelo taxista? Y = 5,00 + 1,60. x Y = 5,00 + 1, Y = 5, ,00 Y = 37,00 3) A soma do dobro de um número com 30 é igual a 100, calcule esse número: O número procurado é: x

5 2. x + 30 = x = x = 70 x = 70 2 x = 35 Exercício 8. A soma do quádruplo de um número com 10 é igual 70, determine esse número. S = { 35 } 4) A diferença entre o triplo de um número e 15, é igual a 45, calcule o número: O número procurado é: x 3. x 15 = x = x = 60 x = 60 3 x = 20 S = { 20 } Exercícios5. Um terreno de 900 m 2 de área foi reservado para a construção de uma escola, essa escola devera ter 8 salas de aulas do mesmo tamanho e um pátio de 260 m 2 de área. Qual devera ser a área de cada sala de aula? S = { 15 } Exercício 9. A soma do dobro de um número com 40 é igual a 100, calcule esse número? S = { 30 } Resolução de problemas de 1º grau com duas variável: Escreve-se a equação do problema. Resolve-se a equação estabelecida. Interpreta-se a solução da equação: isto é verificar se satisfaz as condições. S = { 80 } m 2 Exercício 6. Se ao dobro de um número acrescentarmos 21, obteremos o quíntuplo do próprio número. Determine esse número. S = { 7 } Exercício 7. Pensei em certo número e multipliquei-o por 5, a seguir somei o resultado com 3 e obtive 23, qual é esse número? S = { 4 } 1) A soma de dois números é 620, o maior deles é igual ao menor mais 160, determine esse número. Número menor: x Número maior: x X + ( x ) = 620 x + x = x = x = x = 460 x = x = 230 Então: Número Menor = 230

6 Número Maior = = 390 S = { 230, 390 } Exercício 10. A soma de dois números naturais é 95 e sua diferença é 31, calcule esse dois números. Resolução de problemas de 1º grau com três variável: Escreve-se a equação do problema. Resolve-se a equação estabelecida. Interpreta-se a solução da equação: isto é verificar se satisfaz as condições. S = { 32, 63 } Exercício 11. Num terreno de 800 m 2 a área construída tem 180 m 2 a mais que a área livre. Determine a área construída e a área livre. S = { 310, 490 } Exercício 12. A quantia de R$ 5000,00 foi dividida entre João e José, sabendose que a diferença entre as quantias recebidas, por João e José foi de R$ 1200,00, nessa ordem. Qual a quantia que cada um recebeu? S = { 1900, 3100 } 1) Jofre tinha 9 anos quando Adalgisa nasceu, e Adalgisa tinha 4 anos quando Wando nasceu. A soma das idades atuais dos três é de 62 anos. Qual é a idade de cada um hoje? Idade Wando: x Idade Adalgisa: x + 4 Idade Jofre: x + 13 x + ( x + 4 ) + (x + 13 ) = 62 x + x x + 13 = x = x + 17 = x = x = 45 x = 45 3 X = 15 Então: Wando tem 15 anos Adalgisa tem = 19 Jofre tem = 28 S = { 15, 19, 28 } Exercício 13. A soma de três números é 47, sabendo-se que o segundo supera o primeiro em 7 unidades, e o terceiro supera o segundo em 3 unidades. Determine os três números.

7 S = { 10, 17, 20 } Exercício 14. Um terreno de 2,100 m 2 de área deve ser repartido em três lotes de tal forma que o segundo lote tenha o dobro da área do primeiro, e o terceiro tenha 100 m 2 a mais que o segundo, qual deverá ser a área de cada lote? S = { 400, 800, 900 } Exercício 15. Três alunos disputam o cargo de representante da 6 série, que tem 43 alunos, sabendo que o vencedor obteve 6 votos a mais que o segundo colocado e que este obteve 5 votos a mais que o terceiro colocado, perguntase quantos votos obteve o vencedor? S = { 9, 14, 20 }

MATEMÁTICA BÁSICA E CALCULADORA

MATEMÁTICA BÁSICA E CALCULADORA DISCIPLINA MATEMÁTICA FINANCEIRA PROFESSOR SILTON JOSÉ DZIADZIO APOSTILA 01 MATEMÁTICA BÁSICA E CALCULADORA A matemática Financeira tem como objetivo principal estudar o valor do dinheiro em função do

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS

Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 0 1º Bimestre/013 Aluno(: Número: Turma: EXPRESSÕES NUMÉRICAS

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Raciocínio Lógico-Matemático

Raciocínio Lógico-Matemático Raciocínio Lógico-Matemático Índice Operações com Números Inteiros e Racionais Números Naturais... 02 Números Inteiros... 05 Números Racionais (Frações e Operações)... 26 Números Decimais... 45 Expressões

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

RELATÓRIO I Data: 23.04.2015

RELATÓRIO I Data: 23.04.2015 RELATÓRIO I Data: 23.04.2015 Discutir conteúdos trabalhados em sala de aula, sucessor, antecessor, oposto, simétrico, módulo, expressões numéricas envolvendo adição e subtração de números inteiros. 1)

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

I.INTRODUÇÃO A MATEMÁTICA.

I.INTRODUÇÃO A MATEMÁTICA. I.INTRODUÇÃO A MATEMÁTICA. 1. HISTÓRIA DA MATEMÁTICA Matemática é uma ciência que foi criada a fim de contar e resolver problemas com uma razão de existirem, foi criada a partir dos primeiros seres racionais

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores.

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores. 8º ANO LISTA 1 de fatoração AV 1 3º Bim. Escola adventista de Planaltina Professor: Celmo Xavier. Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou

Leia mais

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES REVISÃO Disciplina: Cálculo e Estatística Aplicada Professor: Dr. Fábio Saraiva da

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

Matemática Financeira RECORDANDO CONCEITOS

Matemática Financeira RECORDANDO CONCEITOS 1 Matemática Financeira RECORDANDO CONCEITOS Propriedades da matemática Prioridades: É importante relembrar e entender alguns conceitos da matemática, que serão muito úteis quando trabalharmos com taxas.

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

MATEMÁTICA NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO);

MATEMÁTICA NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO); NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO); Conjunto dos Números Inteiros Z Definimos o conjunto dos números inteiros como a reunião do conjunto dos

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

Construção na orla marítima

Construção na orla marítima Reforço escolar M ate mática Construção na orla marítima Dinâmica 4 9º Ano 2º Bimestre Professor DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Algébrico Simbólico Equação do 2º. Grau

Leia mais

Operações com números racionais - adição, subtração, multiplicação e divisão.

Operações com números racionais - adição, subtração, multiplicação e divisão. Nome: nº: 7º ano: do Ensino Fundamental Professores: Edilaine, Luis Carlos e Matheus TER - Operações com números racionais - adição, subtração, multiplicação e divisão. EXPRESSÕES NUMÉRICAS Para resolver

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

PIBID-MATEMÁTICA Jogo: Vai e vem das equações

PIBID-MATEMÁTICA Jogo: Vai e vem das equações PIBID-MATEMÁTICA Jogo: Vai e vem das equações Regras: Número de participantes: A sala toda irá participar, sendo dividida em 4 grupos que competirão entre si. Objetivo: solucionar situações-problemas envolvendo

Leia mais

O sentido da divisão e os vários tipos de problemas

O sentido da divisão e os vários tipos de problemas O sentido da divisão e os vários tipos de problemas Dividir - envolve a repartição equitativa dos elementos de um conjunto (por exemplo, doces por crianças) A divisão / distribuição é diferente da adição

Leia mais

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 03 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 jl.matematica@outlook.com Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA

Leia mais

REVISÃO E AVALIAÇÃO DA MATEMÁTICA

REVISÃO E AVALIAÇÃO DA MATEMÁTICA 2 Aula 45 REVISÃO E AVALIAÇÃO DA 3 Vídeo Arredondamento de números. 4 Arredondamento de números Muitas situações cotidianas envolvendo valores destinados à contagem, podem ser facilitadas utilizando o

Leia mais

b) A quantidade mínima de peças que a empresa precisa vender para obter lucro.

b) A quantidade mínima de peças que a empresa precisa vender para obter lucro. Avaliação Trimestral Amanda Marques Adm-Manhã 1. Uma empresa produz um tipo de peça para automóveis. O custo de produção destas peças é dado por um custo fixo de R$10,00 mais R$5,00 por peça produzida.

Leia mais

Sistema de Numeração e Aritmética Básica

Sistema de Numeração e Aritmética Básica 1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para

Leia mais

Nível B3 SISTEMAS DE EQUAÇÕES

Nível B3 SISTEMAS DE EQUAÇÕES Nível B SISTEMAS DE EQUAÇÕES Equações do º grau com duas incógnitas Equação do º grau com duas incógnitas é uma equação onde figuram eactamente duas letras com epoente, por eemplo: -. Uma solução de uma

Leia mais

Expoentes fracionários

Expoentes fracionários A UUL AL A Expoentes fracionários Nesta aula faremos uma revisão de potências com expoente inteiro, particularmente quando o expoente é um número negativo. Estudaremos o significado de potências com expoentes

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

BIMESTRAL - MANHÃ MATEMÁTICA CÁLCULOS TESTES. Nome: Nº: Data: / /2007 Série: 6ª/Ano: 7º Bimestre: 1º NOTA: Prova: Disciplina:

BIMESTRAL - MANHÃ MATEMÁTICA CÁLCULOS TESTES. Nome: Nº: Data: / /2007 Série: 6ª/Ano: 7º Bimestre: 1º NOTA: Prova: Disciplina: Nome: Nº: Disciplina: MATEMÁTICA Prova: BIMESTRAL - MANHÃ Data: / /2007 Série: 6ª/Ano: 7º Bimestre: 1º NOTA: Orientações para a prova: A prova é um instrumento de avaliação e aprendizagem. 1 - Leia cada

Leia mais

AMEI Escolar Matemática 9º Ano Equações do 2º grau

AMEI Escolar Matemática 9º Ano Equações do 2º grau AMEI Escolar Matemática 9º Ano Equações do 2º grau Operações com polinómios. Casos notáveis da multiplicação de polinómios. Decomposição em factores (revisões) Na escrita de polinómios as letras representam

Leia mais

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA PLANOS DE CURSO PARA 6º E 7º ANOS Campina Grande, 2011 -

Leia mais

A equação do 2º grau

A equação do 2º grau A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

Nome:... Curso Técnico em... Período:...

Nome:... Curso Técnico em... Período:... TÑÉáà Ät wx `tàxåöà vt Uöá vt Nome:... Curso Técnico em... Período:... Cascavel 01/01 A P O S T I L A D E M A T E M Á T I C A BÁSICA I Operações matemáticas envolvendo apenas números: Há duas situações

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais...

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais... Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2 1.1 Adição e Subtração de Números Racionais...2 1.2 Multiplicação e Divisão de Números Racionais...2 2.OPERAÇÕES COM NÚMEROS DECIMAIS...4 2.1 Adição e Subtração

Leia mais

Metas Curriculares do Ensino Básico Matemática 1.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Metas Curriculares do Ensino Básico Matemática 1.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Metas Curriculares do Ensino Básico Matemática 1.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Números e Operações Contar até cem, mil,... Descodificar o sistema de numeração

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI

Leia mais

Calcular o montante de um capital de $1.000,00, aplicado à taxa de 4 % ao mês, durante 5 meses.

Calcular o montante de um capital de $1.000,00, aplicado à taxa de 4 % ao mês, durante 5 meses. JUROS COMPOSTOS Capitalização composta é aquela em que a taxa de juros incide sobre o capital inicial, acrescido dos juros acumulados até o período de montante anterior. Neste regime de capitalização a

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

NÍVEL 1 7 a Lista. 1) Qual é o maior dos números?

NÍVEL 1 7 a Lista. 1) Qual é o maior dos números? NÍVEL 1 7 a Lista 1) Qual é o maior dos números? (A) 1000 + 0,01 (B)1000 0,01 (C) 1000/0,01 (D) 0,01/1000 (E) 1000 0,01 ) Qual o maior número de 6 algarismos que se pode encontrar suprimindo-se 9 algarismos

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

4.º Bimestre PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO

4.º Bimestre PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO 2012 4.º Bimestre PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE

Leia mais

Organização e tratamento d. e dados

Organização e tratamento d. e dados Organização e tratamento d e dados Proposta de cadeia de tarefas para o 7.º ano - 3.º ciclo Equações Setembro de 2009 Equações Página 1 Índice Introdução Proposta de planificação Tarefas 1A Balanças 1B

Leia mais

MÓDULO 1. Números. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 1. Números. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 1 Números As questões destas aulas foram retiradas ou adaptadas de provas das Olimpíadas Brasileiras de Matemática (OBM), fonte considerável

Leia mais

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto. Conjuntos numéricos 1) Naturais N = {0,1,2,3, } 2) Inteiros Z = { -3, -2, -1, 0, 1, 2, } Z + {1, 2, 3, } a) Divisão inteira Na divisão inteira de um número a por d, obtém se quociente q e resto r, segundo

Leia mais

QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÃO 01 1 Identificar a localização/movimentação de objeto, em mapas, croquis e outras representações gráficas.

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Números Inteiros Números Naturais Desde os tempos mais remotos, o homem sentiu a necessidade de verificar quantos elementos figuravam em um conjunto. Antes que soubessem contar, os pastores verificavam

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação.

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação. Apostila de Cálculo Zero Este material visa auxiliar os estudos em Matemática promovendo a revisão de seu conteúdo básico, de forma a facilitar o aprendizado nas disciplinas de cálculo e também melhorar

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

Universidade Federal do Paraná. Setor de Ciências Exatas. Departamento de Matemática

Universidade Federal do Paraná. Setor de Ciências Exatas. Departamento de Matemática Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática Oficina de Calculadora PIBID Matemática Grupo do Laboratório de Ensino de Matemática Curitiba Agosto de 2013 Duração:

Leia mais

Qual é a média dos salários dessa empresa? R.:

Qual é a média dos salários dessa empresa? R.: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 7º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 0- Assunto: Média aritmética

Leia mais

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido.

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Atividade extra Exercício 1 A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Se a balança abaixo se encontra em equilíbrio é correto afirmar que: Fonte: http//portaldoprofessorhmg.mec.gov.br

Leia mais

3 Exercícios. 2 Equação que fornece o custo do aluguel: y = 80 + 0, 75x. 3 Equação que fornece o dinheiro disponível: y = 185

3 Exercícios. 2 Equação que fornece o custo do aluguel: y = 80 + 0, 75x. 3 Equação que fornece o dinheiro disponível: y = 185 Roteiro da aula MA091 Matemática básica Aula 19 Solução de equações e inequações no plano. 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Abril de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática

Leia mais

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES Prof. ANTONIO ROBERTO GONÇALVES Aprendizagem de Conceitos Se você precisa encontrar o volume de um silo de milho, a distância percorrida por um carro

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

Módulo de Juros e Porcentagem. Juros Simples e Compostos. Sétimo Ano

Módulo de Juros e Porcentagem. Juros Simples e Compostos. Sétimo Ano Módulo de Juros e Porcentagem Juros Simples e Compostos Sétimo Ano Juros Simples e Compostos 1 Eercícios Introdutórios Eercício 1. Um investidor quer aplicar a quantia de R$ 800, 00 por 3 meses, a uma

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

Prof. Dr. João Muccillo Netto

Prof. Dr. João Muccillo Netto Prof. Dr. João Muccillo Netto INTRODUÇÃO 1. Juros Segundo a Teoria Econômica, o homem combina Terra Trabalho Capital Aluguel Salário Juro para produzir os bens de que necessita. Juro é a remuneração do

Leia mais

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC)

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC) Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Instalador e Reparador de Redes de Computadores MATEMÁTICA

Leia mais

Aula 04 Matemática Financeira. Equivalência de Capitais a Juros Compostos

Aula 04 Matemática Financeira. Equivalência de Capitais a Juros Compostos Aula 04 Matemática Financeira Equivalência de Capitais a Juros Compostos Introdução O conceito de equivalência permite transformar formas de pagamentos (ou recebimentos) em outras equivalentes e, consequentemente,

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

Equações do segundo grau

Equações do segundo grau Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro

Leia mais

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema. SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces

Leia mais

Prof. Msc. Edmundo Tork Matemática Básica. + % a b

Prof. Msc. Edmundo Tork Matemática Básica. + % a b Prof. Msc. Edmundo Tork Matemática Básica π n x α φ + % a b χ β Sumário Números Inteiros... 0 Números Naturais... 0 Operações Fundamentais com Números Naturais... 0 Exercícios... 0 Mínimo Múltiplo Comum...

Leia mais

SISTEMAS LINEARES CONCEITOS

SISTEMAS LINEARES CONCEITOS SISTEMAS LINEARES CONCEITOS Observemos a equação. Podemos perceber que ela possui duas incógnitas que são representadas pelas letras x e y. Podemos também notar que se e, a igualdade se torna verdadeira,

Leia mais

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Planejamento Anual 2014 Matemática 1º período 3º ano - Ensino Fundamental I. Reconhecer a necessidade de contar no cotidiano.

Planejamento Anual 2014 Matemática 1º período 3º ano - Ensino Fundamental I. Reconhecer a necessidade de contar no cotidiano. COLÉGIO LA SALLE BRASÍLIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Planejamento Anual 2014 Matemática

Leia mais

Matemática. Aula: 02/10. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Aula: 02/10. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Aula: 02/10 Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA UTILIZANDO O EDITOR DE EQUAÇÕES MICROSOFT EQUATION, NO MICROSOFT WORD Juliane Sbaraine

Leia mais

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { }

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { } CURSO: ASTRONOMIA APLICADA À NAVEGAÇÃO PROFESSOR: ALEXANDRE RIBEIRO ANDRADE MÓDULO 1: MATEMÁTICA APLICADA NA ASTRONOMIA NÁUTICA Apostila 1: Sistema de Unidades utilizadas na Navegação e na Astronomia,

Leia mais

PLANEJAMENTO ANUAL DE. MATEMÁTICA 7º ano

PLANEJAMENTO ANUAL DE. MATEMÁTICA 7º ano COLÉGIO VICENTINO IMACULADO CORAÇÃO DE MARIA Educação Infantil, Ensino Fundamental e Médio Rua Rui Barbosa, 1324, Toledo PR Fone: 3277-8150 PLANEJAMENTO ANUAL DE MATEMÁTICA 7º ano PROFESSORAS: SANDRA MARA

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

MATEMÁTICA PARA CONCURSOS

MATEMÁTICA PARA CONCURSOS MATEMÁTICA PARA CONCURSOS Sumário Números Naturais ------------------------------------------- 03 Conjuntos numéricos: racionais e reais ------------------- 05 Divisibilidade -------------------------------------------------

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais