I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais"

Transcrição

1

2 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO I. Tabela de Acumulação de Capital... 10

3 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA Taxas Proporcionais TAXAS DE JUROS Produzem os mesmos juros quando aplicados no mesmo prazo a juros simples. Exemplo: 6 % ao semestre. Taxa proporcional mensal: 6% 6 = 1 %. Taxa proporcional anual: 6% x 2 = 12 %. Taxa Nominal: É expressa em uma unidade de tempo diferente do prazo que é capitalizada. Exemplo: 12% ao ano capitalizado trimestralmente. Taxa Efetiva: É expressa na unidade de tempo que é capitalizada. Representa a verdadeira taxa cobrada. Exemplo: 2% ao mês com capitalização mensal. Obs: Podemos abreviar as taxas efetivas, omitindo a sua capitalização. Conversão da Taxa Nominal em Taxa Efetiva. A conversão da taxa nominal em taxa efetiva é feita ajustando-se o valor da taxa nominal proporcionalmente ao período da capitalização. Exemplos: Taxas Equivalentes: São aquelas que, aplicadas ao mesmo principal durante o mesmo prazo, no regime de JUROS COMPOSTOS, produzem os mesmos montantes. Obs: No regime de juros simples, taxas proporcionais serão sempre equivalentes. Fórmulas: ou Legenda: i k = taxa do período maior. i = taxa do período menor. t = período. Dica:

4 Juros Simples taxas proporcionais. Juros Compostos taxas equivalentes. Exemplo: Qual a taxa semestral de juros compostos equivalente à taxa composta de 44% a.a? CÁLCULO FINANCEIRO: CUSTO REAL E EFETIVO DE OPERAÇÕES DE FINANCIAMENTO, EMPRÉSTIMOS E INVESTIMENTO (TAXA REAL E APARENTE) A inflação provoca sérias consequências nas operações financeiras, como a ilusão monetária de rentabilidade. Num contexto inflacionário a taxa de juros, que é aquela praticada nos contratos, é formada por uma taxa real de juros e por uma taxa de inflação. Para termos o ganho real de uma operação financeira, devemos calcular a taxa de juros real, usando a expressão: Onde: (1+i) = (1+r). (1+if) i = taxa aparente (nominal). r = taxa real. if = taxa de inflação. Taxa Real: É a taxa efetiva depois de expurgarmos os efeitos da taxa inflacionária. Taxa Aparente: É a taxa em que não foram eliminados os efeitos inflacionários. Sem inflação a taxa real e a taxa efetiva serão iguais. Considere que a taxa nominal e a taxa efetiva, esteja relacionada no mesmo período. Dica: i > r + if EXERCÍCIOS 1. Uma pessoa que vive de rendimentos do mercado financeiro aplicou todos os seus recursos, o que lhe rendeu um retorno nominal de 20% no ano. Considerando-se que a inflação da cesta básica foi de 6% nesse mesmo ano, quantas cestas básicas a mais, em termos percentuais, ela poderá comprar após o retorno da aplicação? a) 12,8%. b) 13,2%. c) 14,0%. d) 14,8%. e) 15,0%. 2. Um investimento rende a taxa nominal de 12% ao ano com capitalização trimestral. A taxa efetiva anual do rendimento correspondente é, aproximadamente, a) 12%. b) 12,49%. c) 12,55%. d) 13%. e) 13,43%. 3. Nas operações de empréstimo, uma financeira cobra taxa efetiva de juros, no regime de capitalização composta, de 10,25% ao ano. Isso equivale a cobrar juros com taxa anual e capitalização semestral de: a) 5%. b) 5,51%. c) 10%. d) 10,25%. e) 10,51%.

5 4. Em um período em que a taxa de juros compostos foi de 300%, a taxa de juros equivalente à metade do período considerado é igual a: a) 41%. b) 59%. c) 73%. d) 100%. e) 150%. 5. Uma empresa aplicou um capital de R$ ,00 pelo prazo de dois meses, ao final dos quais recebeu R$ 3.000,00 de juros. Considerando-se que a inflação acumulada no período foi de 2%, pelo método de cálculo de juros compostos, pode-se afirmar que a taxa de juros: a) Real foi de 1% ao mês. b) Real foi de 0,98% no período. c) Nominal foi de 3% ao mês. d) Nominal foi de 1% no período. e) Nominal foi de 2% no período. 6. Taxas equivalentes constituem um conceito que está diretamente ligado a regime de juros a) Compostos. b) Nominais. c) Proporcionais. d) Reais. e) Simples. 7. Duas taxas são equivalentes quando, aplicadas a um mesmo capital, durante o mesmo período de tempo, produzem o mesmo rendimento. A transformação de uma taxa anual (txa) em sua taxa equivalente semestral (txs) é possível através da operação: a) Txs = (1+txa) 6/12-1. b) Txs = (1+txa) 12/6-1. c) Txs = 1+(1txa) 12/6. d) Txs = (1-txa) 6/ e) Txs = 1- (1-txa) 12/6. 8. Sendo a taxa nominal de 36% ao ano com capitalização mensal, a expressão matemática da taxa efetiva bimensal é: a) i e = 2 x [1 + 0,36/12]. b) i e = [1 + 0,36/12] 2-1. c) i e = [0,36/12] 2. d) i e = 2 x [0,36/12]. e) i e = [1 + 0,36] 1/ Um investimento obteve variação nominal de 15,5% ao ano. Nesse mesmo período, a taxa de inflação foi 5%. A taxa de juros real anual para esse investimento foi: a) 0,5%. b) 5,0%. c) 5,5%. d) 10,0%. e) 10,5%. 10. Qual a taxa efetiva semestral, no sistema de juros compostos, equivalente a uma taxa nominal de 40% ao quadrimestre, capitalizada bimestralmente? a) 75,0%. b) 72,8%. c) 67,5%. d) 64,4%. e) 60,0%.

6 11. A taxa efetiva anual de 50%, no sistema de juros compostos, equivale a uma taxa nominal de i % ao semestre, capitalizada bimestralmente. O número de divisores inteiros positivos de i é: a) 4. b) 5. c) 6. d) 7. e) A taxa de juros simples de 1% ao mês é proporcional à taxa trimestral de: a) 1,3%. b) 2,0%. c) 2,1%. d) 3,0%. e) 3,03%. 13. A taxa de juros compostos de 1% ao mês é equivalente a que taxa trimestral? a) 1,3%. b) 2,0%. c) 2,1%. d) 3,0%. e) 3,03%. 14. A taxa anual equivalente à taxa composta trimestral de 5% é: a) 19,58%. b) 19,65%. c) 19,95%. d) 20,00%. e) 21,55%. 15. Realizar uma operação financeira a uma taxa de 60% a.a, com capitalização mensal, é equivalente a realizar essa mesma operação, à taxa de juros composto semestral de: a) 24,00%. b) 26,53%. c) 27,40%. d) 30,00%. e) 34,01%. 1 - B 2 - C 3 - C 4 - D 5 - B 6 - A 7 - A 8 - B 9 - D 10 - B 11 - A 12 - D 13 - E 14 - E 15 - E GABARITO

7 I. MATEMÁTICA - DANIEL LUSTOSA CONJUNTO DOS NÚMEROS NATURAIS O conjunto N = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,...} é um conjunto infinito, ou seja, não tem fim. CONJUNTO DOS NÚMEROS INTEIROS Z = {...-5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5...}; observe que este conjunto é formado por números negativos, zero e números positivos. Vale lembrar que zero é um número nulo ou neutro, não é negativo e nem positivo. Obs.: é evidente que N Z. Lembrete: 1º: Zero é maior que qualquer número negativo. 2º: (-1) é o maior número negativo. 3º: Zero é menor que qualquer número positivo. 4º: Qualquer número positivo é maior que qualquer número negativo. Q = {x; x = p/q com p Z, q Z e q 0 }. CONJUNTO DOS NÚMEROS RACIONAIS Temos então que número racional é aquele que pode ser escrito na forma de uma fração p/q onde p e q são números inteiros, com o denominador diferente de zero. Lembre-se que não existe divisão por zero! São exemplos de números racionais: 2/3, -3/7, 0,001=1/1000, 0,75=3/4, 0, = 1/3, 7 = 7/1, etc. Notas: É evidente que N Z Q. Toda dízima periódica é um número racional, pois é sempre possível escrever uma dízima periódica na forma de uma fração. Exemplo: 0, = 4/9. Exemplo: 0, , , , , , Soma; Subtração; Multiplicação; Divisão; Potenciação. TRANSFORMANDO DIZIMAS EM FRAÇÕES OPERAÇÕES MATEMÁTICAS Chamamos de potenciação, um número real a e um número natural n, escrito na forma a n. Observe o seguinte produto de fatores iguais. 2 x 2 x 2 este produto pode ser escrito da seguinte forma, 2 3 onde o número 3 representa quantas vezes o fator 2 esta sendo multiplicado por ele mesmo.

8 O expoente informa quantas vezes a base vai ser multiplicado por ele mesmo. A base informa o fator a ser repetido. Potência é o resultado desta operação: 2 3 = lê-se, dois elevado a 3ª potencia ou dois elevado ao cubo. Exemplos: 3 2 = três elevado a segunda potência ou três elevado ao quadrado. 6 4 = seis elevado a quarta potência. 7 5 = sete elevado a quinta potência. 2 8 = dois elevado a oitava potência. Observações: 1ª) Todo número elevado a expoente um é igual a ele mesmo. 2 1 = 2, 3 1 = 3, 5 1 = 5, 6 1 = 6, 13 1 = 13, (1,2) 1 = 1,2, 2ª) Todo número diferente de zero elevado a expoente zero é igual a um. 4 0 = 1, 6 0 = 1, 8 0 = 1, 34 0 = 1, 26 0 = 1, (3,5) 0 = 1, 3ª) Potências de base = 1, 1 1 = 1, 1 2 = 1, 1 3 = 1, 1 12 = 1, toda potência de 1 é igual a 1. 4ª) Potências de base = 1, 10 2 = 100, 10 3 = 1000, 10 4 = 10000, toda potência de 10 é igual ao número formado pelo algarismo 1 seguido de tantos zeros quantas forem as unidades do expoente. Propriedades da Potenciação: 1ª) Multiplicação de potência de mesma base. Somamos os expoentes e conservamos a base, observe. 2 3 x 2 2 = = 2 5 = x 3 = = 3 4 = 81 4 x 4 2 x 4 3 = 4 6 = ª) Divisão de potência de mesma base. Subtraímos os expoentes e conservamos a base, observe. 2 3 : 2 2 = = 2 1 = : 3 2 = = 3 2 = : 7 3 = = 7 2 = 49 3ª) Potência de potência. Conservamos a base e multiplicamos os expoentes. (3 2 ) 2 = 3 2x2 = 3 4 = 81 [(3 2 ) 3 ] 2 = 3 2x3x2 = 3 12 = ª) Potência de frações. Tanto o numerador como o denominador são elevados ao expoente. (2/3) 4 = 2 4 /3 4 = 16/81 Potência com Expoente Negativo: Observe: (1/4)P = 1 16

9 EXPRESSÕES NUMÉRICAS Regras para resolver as expressões: 1ª) se tiver (), [], {}, resolva-as nessa ordem 2ª) as operações serão resolvidas na seguinte ordem: potenciações e radiciações, multiplicações e divisões, por ultimo as somas e subtrações. Exemplo: 50 { 15 + [ 4² : ( 10 2 ) + 5 x 2 ] }= MÚLTIPLOS E DIVISORES São dois conceitos muito próximos e relacionados. Múltiplos de um número são todos os números que resultam da multiplicação desse número pelos números naturais. Já os divisores de um número são todos os números naturais que ao dividirem tal número, resultarão em uma divisão exata. Exemplo: Os primeiros 5 múltiplos de 4 são: 0, 4, 8, 12, 16. Dessa forma o 4 é divisor dos números 0, 4, 8, 12, 16. EXERCÍCIOS 1. No modelo abaixo, os pontos A, B, C e D pertencem à mesma reta. O ponto A dista 65,8 mm do ponto D; o ponto B dista 41,9 mm do ponto D, e o ponto C está a 48,7 mm do ponto A. Qual é, em milímetros, a distância entre os pontos B e C? a) 17,1. b) 23,1. c) 23,5. d) 23,9. e) 24,8. 2. Ao serem divididos por 5, dois números inteiros, x e y, deixam restos iguais a 3 e 4, respectivamente. Qual é o resto da divisão de x y por 5? a) 4. b) 3. c) 2. d) 1. e) Seja x um número natural que, dividido por 6, deixa resto 2. Então, ( x + 1) é necessariamente múltiplo de: a) 2. b) 3. c) 4. d) 5. e) Se a soma de dois números naturais não nulos é igual ao quádruplo de um desses números, então: a) Pelo menos um dos números é múltiplo de 3. b) Um deles é par, se o outro for ímpar. c) Certamente os dois números são compostos. d) Os dois números podem ser iguais. e) Um dos números é, obrigatoriamente, primo.

10 5. Seja x um número natural tal que o mínimo múltiplo comum entre x e 36 é 360, e o máximo divisor comum entre x e 36 é 12. Então, a soma dos algarismos do número x é: a) 3. b) 5. c) 9. d) 16. e) Multiplicando-se o maior número inteiro menor do que 8 pelo menor número inteiro maior do que -8, o resultado encontrado será: a) -72. b) -63. c) -56. d) -49. e) Gilberto levava no bolso três moedas de R$ 0,50, cinco de R$ 0,10 e quatro de R$ 0,25. Gilberto retirou do bolso oito dessas moedas, dando quatro para cada filho. A diferença entre as quantias recebidas pelos dois filhos de Gilberto é de, no máximo: a) R$ 0,45. b) R$ 0,90. c) R$ 1,10. d) R$ 1,15. e) R$ 1, E 2 - C 3 - B 4 - A 5 - A 6 - D 7 - E GABARITO

11 I. TABELA DE ACUMULAÇÃO DE CAPITAL

LISTA DE EXERCÍCIOS N o 2

LISTA DE EXERCÍCIOS N o 2 89 90 91 92 93 94 LISTA DE EXERCÍCIOS N o 2 Dada uma taxa de juro simples expressa ao mês para se chegar à taxa proporcional ao ano basta: a) Dividir a taxa ao mês por 12 b) Multiplica a taxa mensal por

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

PARTE 3 - TAXA DE JUROS: NORMAL, EFETIVA E EQUIVALENTE. CONTEÚDO PROGRAMÁTICO 1. Definições 2. Fórmulas e conversões 3. Exercícios resolvidos

PARTE 3 - TAXA DE JUROS: NORMAL, EFETIVA E EQUIVALENTE. CONTEÚDO PROGRAMÁTICO 1. Definições 2. Fórmulas e conversões 3. Exercícios resolvidos PARTE 3 - TAXA DE JUROS: NORMAL, EFETIVA E EQUIVALENTE. CONTEÚDO PROGRAMÁTICO 1. Definições 2. Fórmulas e conversões 3. Exercícios resolvidos 1. Definições É comum na relação das instituições financeiras

Leia mais

Aulão - Ministério da fazenda Matemática Financeira Professor: Ronilton Loyola Estudo das Taxas de Juros 1. Taxas Proporcionais e Taxas Equivalentes A classificação mais geral de uma taxa é em simples

Leia mais

Primeira aplicação: Capital no valor de R$ ,00, durante 3 meses, sob o regime de capitalização simples a uma taxa de 10% ao ano.

Primeira aplicação: Capital no valor de R$ ,00, durante 3 meses, sob o regime de capitalização simples a uma taxa de 10% ao ano. 95. (Analista Judiciário Contadoria TRF 3ª Região 2016/FCC) Em um contrato é estabelecido que uma pessoa deverá pagar o valor de R$ 5.000,00 daqui a 3 meses e o valor de R$ 10.665,50 daqui a 6 meses. Esta

Leia mais

Guilherme de Azevedo M. C. Guimarães. Os Diversos Tipos De Taxas

Guilherme de Azevedo M. C. Guimarães. Os Diversos Tipos De Taxas Guilherme de Azevedo M. C. Guimarães Os Diversos Tipos De Taxas 01:: Finanças para novos empreendimentos :: Guilherme de Azevedo M. C. Guimarães Meta Apresentar os diversos tipos de taxas de juro. Ensinar

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

5 Calcular o valor do capital que produz juros de R$ 1.200,00 no final de 8 meses se aplicado a uma taxa de juros de 5% ao mês?

5 Calcular o valor do capital que produz juros de R$ 1.200,00 no final de 8 meses se aplicado a uma taxa de juros de 5% ao mês? - Pagamento único Resolver todas as questões utilizando: a) critério de juros simples b) critério de juros compostos 1 Uma pessoa empresta R$ 2.640,00 pelo prazo de 5 meses a uma taxa de juros de 4% ao

Leia mais

Equivalência de taxas

Equivalência de taxas quivalência de taxas quivalência de taxas a juros simples Dizemos que duas taxas são equivalentes a juros simples, se aplicadas num mesmo capital e durante um mesmo intervalo de tempo (múltiplos dos tempos

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números

Leia mais

Administração - UniFAI

Administração - UniFAI CENTRO UNIVERSITÁRIO ASSUNÇÃO UniFAI Matemática Financeira Exercícios - Parte I Juros Simples Juros Compostos 1 Juros Simples 1) Determine os juros simples obtidos nas seguintes condições: Capital Taxa

Leia mais

Aula 1 Parte 2 MATEMÁTICA FINANCEIRA P/ O BDMG (TEORIA E EXERCÍCIOS) PROFESSOR: GUILHERME NEVES. 1 Juros Compostos...

Aula 1 Parte 2 MATEMÁTICA FINANCEIRA P/ O BDMG (TEORIA E EXERCÍCIOS) PROFESSOR: GUILHERME NEVES.  1 Juros Compostos... Aula 1 Parte 2 1 Juros Compostos... 2 1.1 Período de Capitalização... 2 1.2 Fórmula do Montante Composto... 3 2 Comparação entre as Capitalizações Simples e Composta... 3 3 Convenção Linear e Convenção

Leia mais

INTRODUÇÃO JUROS SIMPLES

INTRODUÇÃO JUROS SIMPLES INTRODUÇÃO... 1 JUROS SIMPLES... 1 MONTANTE E VALOR ATUAL... 3 CONVERSÃO DE TAXAS... 4 CONVERSÃO DE PERÍODOS... 4 TAXA PROPORCIONAL... 7 TAXAS EQUIVALENTES... 7 JURO EXATO COMERCIAL... 7 DESCONTO SIMPLES...

Leia mais

Provão. Matemática 4 o ano

Provão. Matemática 4 o ano Provão Matemática 4 o ano 21 Com base em seus estudos sobre sistema de numeração decimal, marque a alternativa correta para escrevermos por extenso, os números: 1.423 94 195 a) Mil quatrocentos e vinte

Leia mais

Tabela I - Fator de Acumulação de Capital: a n = (1 + i) n. Profs. Alexandre Lima e Moraes Junior 1

Tabela I - Fator de Acumulação de Capital: a n = (1 + i) n. Profs. Alexandre Lima e Moraes Junior  1 Aula 15 - Questões Comentadas e Resolvidas Juros Compostos. Montante e juros. Desconto Composto. Taxa real e taxa efetiva. Taxas equivalentes. Capitais equivalentes. Capitalização contínua. Equivalência

Leia mais

O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...}

O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...} 07 I. Números naturais e inteiros O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0,,,, 4,...} Já o conjunto dos números inteiros é representado pela letra Z

Leia mais

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER Rio de Janeiro 2011 ÍNDICE Capítulo 1: HORA DE ESTUDAR Para que serve este livro...1 Porque Colégio Militar e Colégio Naval?...2 Matérias e alunos...2 Os exercícios

Leia mais

Lista de Exercícios Análise de Investimentos.

Lista de Exercícios Análise de Investimentos. Lista de Exercícios Análise de Investimentos. 1. Em um investimento que está sob o regime de capitalização composta: a) A taxa de juro em cada período de capitalização incide sobre o capital inicial investido

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Professor: Luis Guilherme Magalhães professor@luisguiherme.adm.br www.luisguilherme.adm.br (62) 9607-2031 NOMENCLATURAS PV - Present Value ou Valor Presente FV - Future Value ou Valor Futuro PMT - Payment

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo

Leia mais

LISTA DE ATIVIDADES ...

LISTA DE ATIVIDADES ... LISTA DE ATIVIDADES - Apresentar os quadrados dos números inteiros de 0 a 50. 2- Apresentar o resultado de uma tabuada de um número qualquer. 3- Elaborar um diagrama que apresente o somatório dos valores

Leia mais

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,... ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início

Leia mais

Matemática Financeira. Parte I. Professor: Rafael D Andréa

Matemática Financeira. Parte I. Professor: Rafael D Andréa Matemática Financeira Parte I Professor: Rafael D Andréa O Valor do Dinheiro no Tempo A matemática financeira trata do estudo do valor do dinheiro ao longo do tempo. Conceito de Investimento Sacrificiozinho

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

EXERCÍCIOS FINANÇAS CORPORATIVAS E VALOR ASSAF NETO CAPÍTULO 2 CÁLCULO FINANCEIRO E APLICAÇÕES

EXERCÍCIOS FINANÇAS CORPORATIVAS E VALOR ASSAF NETO CAPÍTULO 2 CÁLCULO FINANCEIRO E APLICAÇÕES 1. Explique o que são taxas: 1. Nominais: Taxa de juro contratada numa operação. Normalmente é expressa para um período superior ao da incidência dos juros. 2. Proporcionais: Duas taxas expressas em diferentes

Leia mais

Taxa opção 1 = [(0,04 /30) + 1) ^ 40] - 1 Taxa opção 1 = 5,47% Taxa opção 2 = [(1 + 0,036) ^ (40/30)] - 1 Taxa opção 2 = 4,83%

Taxa opção 1 = [(0,04 /30) + 1) ^ 40] - 1 Taxa opção 1 = 5,47% Taxa opção 2 = [(1 + 0,036) ^ (40/30)] - 1 Taxa opção 2 = 4,83% 1 Universidade de São Paulo Faculdade de Economia, Administração e Contabilidade LISTA 2 - Disciplina de Matemática Financeira Professora Ana Carolina Maia Monitora Pg: Paola Londero / Monitor: Álvaro

Leia mais

Matemática Financeira

Matemática Financeira Capítulo Matemática Financeira Juros Simples Adriano Leal Bruni albruni@minhasaulas.com.br Conceito de juros simples Juros sempre incidem sobre o VALOR PRESENTE Preste atenção!!! Empréstimo Valor atual

Leia mais

Cuiabá, de de. REVISÃO DE MATEMÁTICA

Cuiabá, de de. REVISÃO DE MATEMÁTICA Cuiabá, de de. REVISÃO DE MATEMÁTICA 1- O aluno Marcos do 6º ano do Ensino Fundamental, por não ter comparecido à aula na qual sua professora de Matemática explicou a matéria sobre Múltiplos e Divisores

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

SOCIEDADE CAMPINEIRA DE EDUCAÇÃO E INSTRUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS Média de Qualidade de cada Aspecto por ano/semestre

SOCIEDADE CAMPINEIRA DE EDUCAÇÃO E INSTRUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS Média de Qualidade de cada Aspecto por ano/semestre 1º Semestre de 2007 03/08/16 17:03 Pagina 1 de19 2º Semestre de 2007 03/08/16 17:03 Pagina 2 de19 1º Semestre de 2008 03/08/16 17:03 Pagina 3 de19 2º Semestre de 2008 03/08/16 17:03 Pagina 4 de19 1º Semestre

Leia mais

Matemática EXCETO

Matemática EXCETO Matemática 01 Considere as seguintes afirmações abaixo: I 0,777... é um número racional. II é maior que 5/3. III Todo número par pode ser escrito na forma 2n + 1. Estão corretas apenas as afirmações a)

Leia mais

Fazer teste: AS_I MATEMATICA FINANCEIRA 5º PERIODO UNIFRAN

Fazer teste: AS_I MATEMATICA FINANCEIRA 5º PERIODO UNIFRAN Fazer teste: AS_I MATEMATICA FINANCEIRA 5º PERIODO UNIFRAN Pergunta 1 João recebeu um aumento de 10% e com isso seu salário chegou a R$320,00. O salário de João antes do aumento era igual a? A. R$ 188,00

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO 0 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 00 Matemática Financeira A Créditos/horas-aula Súmula 04 /

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro Números Racionais MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro O que são números racionais? Alguma definição? Como surgiram? Relacionados a quais ideias ou situações? Representação

Leia mais

Álgebra. Progressão geométrica (P.G.)

Álgebra. Progressão geométrica (P.G.) Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

ATIVIDADE. b) A diferença de dois números inteiros é sempre um número inteiro. c) Existe número natural que não é número inteiro.

ATIVIDADE. b) A diferença de dois números inteiros é sempre um número inteiro. c) Existe número natural que não é número inteiro. ATIVIDADE 1. Considere os números a seguir e responda: 5; -8; 0; 14; -100; 57; -18; 2/3; -0,4; -1 a) Quais deles são números naturais? b) Quais deles são números inteiros? c) Todo número natural é um número

Leia mais

Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio.

Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. CONJUNTOS Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. Exemplos: A = {a, e, i, o, u} (conjunto das vogais do

Leia mais

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 9 Parte 2 1 Juros Compostos... 2 1.1 Período de Capitalização... 2 1.2 Fórmula do Montante Composto... 3 2 Comparação entre as Capitalizações Simples e Composta... 3 3 Convenção Linear e Convenção

Leia mais

MATEMÁTICA. Docente: Marina Mariano de Oliveira

MATEMÁTICA. Docente: Marina Mariano de Oliveira MATEMÁTICA Docente: Marina Mariano de Oliveira MATEMÁTICA Docente: Marina Mariano de Oliveira Bacharelado em Meteorologia (incompleto) Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

Princípios da Administração de Empresas PRO2303. DEPARTAMENTO DE ENGENHARIA DE MINAS E DE PETRÓLEO Prof. Regina Meyer Branski

Princípios da Administração de Empresas PRO2303. DEPARTAMENTO DE ENGENHARIA DE MINAS E DE PETRÓLEO Prof. Regina Meyer Branski Princípios da Administração de Empresas PRO2303 DEPARTAMENTO DE ENGENHARIA DE MINAS E DE PETRÓLEO Prof. Regina Meyer Branski 2 ENGENHARIA ECONÔMICA Blank e Tarquin Taxas Nominais e Efetivas de Juros Programa

Leia mais

Exercícios de provas nacionais e testes intermédios

Exercícios de provas nacionais e testes intermédios Exercícios de provas nacionais e testes intermédios 1. Considera o conjunto A = [ π[ Qual é o menor número inteiro que pertence ao conjunto A (A) 3 (B) 4 (C) π (D) π 1 2. Qual dos conjuntos seguintes é

Leia mais

Prof.: Joni Fusinato. Juros Compostos

Prof.: Joni Fusinato. Juros Compostos Prof.: Joni Fusinato Juros Compostos Juros Compostos Calculado sobre o montante obtido no período anterior. Somente no primeiro período é que os juros são calculados sobre o capital inicial. Também conhecido

Leia mais

Universidade de São Paulo Mercado Financeiro I RCC 0407 Faculdade de Economia, Administração e Contabilidade Ribeirão Preto

Universidade de São Paulo Mercado Financeiro I RCC 0407 Faculdade de Economia, Administração e Contabilidade Ribeirão Preto Carlos R. Godoy Universidade de São Paulo Carlos R. Godoy 2 Mercado Financeiro I RCC 0407 Faculdade de Economia, Administração e Contabilidade Ribeirão Preto Mercado Financeiro I RCC 0407 Taxas de Juros

Leia mais

Colégio Naval 2003 (prova verde)

Colégio Naval 2003 (prova verde) Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 0/0 Ficha de Trabalho outubro 0 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Números Reais

Leia mais

JUROS SIMPLES & COMPOSTOS

JUROS SIMPLES & COMPOSTOS JUROS SIMPLES & COMPOSTOS MÓDULO 3 MATEMÁTICA FINANCEIRA JUROS SIMPLES & COMPOSTOS A matemática financeira tem por objetivo estudar as diversas formas de evolução do valor do dinheiro no tempo, bem como

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Unidade I MATEMÁTICA FINANCEIRA Prof. Luiz Felix Matemática financeira A Matemática Financeira estuda o comportamento do dinheiro ao longo do tempo. Capital é o valor principal de uma operação, ou seja,

Leia mais

CAPITALIZAÇÃO SIMPLES

CAPITALIZAÇÃO SIMPLES Matemática Aplicada às Operações Financeiras Prof.Cosmo Rogério de Oliveira CAPITALIZAÇÃO SIMPLES CONCEITUAÇÃO: Capitalização simples é a operação que determina o crescimento do capital quando a taxa de

Leia mais

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

Resoluções das atividades

Resoluções das atividades Resoluções das atividades Capítulo Divisibilidade Testando seus conhecimentos (página ) a) I. divisível b) I. II. II. múltiplo III. III. divisor IV. fator IV. (0) Se forem bolas por caixa, precisará de

Leia mais

AULA 4: EQUIVALÊNCIA DE TAXAS

AULA 4: EQUIVALÊNCIA DE TAXAS MATEMÁTICA FINANCEIRA PROF. ELISSON DE ANDRADE Blog: www.profelisson.com.br AULA 4: EQUIVALÊNCIA DE TAXAS Exercícios resolvidos e comentados Proibida reprodução e/ou venda não autorizada. REVISÃO: COMO

Leia mais

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2006 / 07) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2006 / 07) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) Item 01. Sabendo-se que = mdc(8,7) de ( - A) B. ) zero ) 1 ) 56 ) 62 ) 63 A e B = mmc (9,7) Item 02. Determine o valor da expressão 1 + 2 +

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / 98 1ª QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / 98 1ª QUESTÃO MÚLTIPLA ESCOLHA 1 1ª QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES A ESQUERDA. Item 01. Dos conjuntos abaixo especificados, o conjunto unitário é o conjunto a. ( ) dos rios

Leia mais

Garantia de aprendizado

Garantia de aprendizado 1) Calcular o capital, que aplicado a uma taxa de juros simples de 6,2% a.m, por 174 dias, produziu um montante de $ 543.840,00. 2) Determinar o capital necessário para produzir um montante de $ 798.000,00

Leia mais

RESIDENCIAL - LOCAÇÃO. Outubro/2016

RESIDENCIAL - LOCAÇÃO. Outubro/2016 RESIDENCIAL - LOCAÇÃO Destaques do mês Preço médio do aluguel residencial completa 18 meses de queda Índice FipeZap de Locação cai 0,17% em outubro; nos últimos 12 meses a queda é de 3,80% Os preços de

Leia mais

Lista de Exercícios Estrutura de Repetição

Lista de Exercícios Estrutura de Repetição Universidade Federal Fluminense Instituto de Computação Programação de Computadores III Luciana Brugiolo Gonçalves Lista de Exercícios Estrutura de Repetição E15. Desenvolva um algoritmo para exibir todos

Leia mais

ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA Nome: Nº 6ºAno Data: / /2016 Professores: Décio e Leandro Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do Colégio

Leia mais

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num.

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num. Eercícios de Aprofundamento 05 Mat Log/Ep/Teo. Num.. (Ita 05) Considere as seguintes afirmações sobre números reais: I. Se a epansão decimal de é infinita e periódica, então é um número racional. II..

Leia mais

Matemática Financeira

Matemática Financeira Matemática Financeira Juros Simples Professor Edgar Abreu www.acasadoconcurseiro.com.br Matemática Financeira CAPITALIZAÇÃO SIMPLES X CAPITALIZAÇÃO COMPOSTA A definição de capitalização é uma operação

Leia mais

Lista de Exercícios 03a Repetição. 1) Escreva um programa que imprima todos os números inteiros de 0 a 50.

Lista de Exercícios 03a Repetição. 1) Escreva um programa que imprima todos os números inteiros de 0 a 50. Instituto de Ciências Eatas e Biológicas ICEB Lista de Eercícios 03a Repetição 1) Escreva um programa que imprima todos os números inteiros de 0 a 50. 2) Escreva um programa que imprima todos os números

Leia mais

1. As parcelas são pagas ao final de cada período. Neste caso denomina-se pagamento postecipado.

1. As parcelas são pagas ao final de cada período. Neste caso denomina-se pagamento postecipado. PARTE 5 SÉRIE UNIFORME DE PAGAMENTOS CONTEÚDO PROGRAMÁTICO 1. Introdução 2. Prestações e Valor presente 3. Prestações e Valor futuro 4. Renda perpétua 5. Exercícios Resolvidos 1. Introdução Quando se contrai

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo

Leia mais

Multiplicação Divisão

Multiplicação Divisão Multiplicação Divisão 1 Introdução Nesta aula iremos analisar como podemos usar o Sistema Numérico para calcular operações básicas usando a Aritmética Decimal na: Multiplicação; Divisão. 2 MULTIPLICAÇÃO

Leia mais

SIMULADO DE MATEMÁTICA FUNDAMENTAL. a) ( ) x = 01; b) ( ) x = 10; c) ( ) x = 05; d) ( ) x = 04;

SIMULADO DE MATEMÁTICA FUNDAMENTAL. a) ( ) x = 01; b) ( ) x = 10; c) ( ) x = 05; d) ( ) x = 04; NOME: DATA DE ENTREGA: / / SIMULADO DE MATEMÁTICA FUNDAMENTAL 1) Assinale a sentença correta: a) ( ) 31 ao conjunto dos números pares; b) ( ) {1, 3, 5 } { números ímpares}; c) ( ) 4 C { números pares};

Leia mais

O Preçário das Operações BNI pode ser consultado nos Balcões e Locais de Atendimento ao público do Banco de Negócios Internacional ou em

O Preçário das Operações BNI pode ser consultado nos Balcões e Locais de Atendimento ao público do Banco de Negócios Internacional ou em Instituição Financeira Bancária Preçário das Operações ANEXO II Tabela de Taxas de Juro DATA DE ENTRADA EM VIGOR: 12 de Janeiro de 2017 O Preçário das Operações BNI pode ser consultado nos Balcões e Locais

Leia mais

Sumário. Prefácio, xiii

Sumário. Prefácio, xiii Prefácio, xiii 1 Função dos juros na economia, 1 1.1 Consumo e poupança, 1 1.1.1 Necessidade natural de poupar, 2 1.1.2 Consumo antecipado paga juro, 2 1.2 Formação da taxa de juro, 4 1.2.1 Juro e inflação,

Leia mais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat 1 Exercícios Introdutórios Exercício 1. Encontre os restos da divisão de 2 24 por a) 5

Leia mais

Oficina de Matemática

Oficina de Matemática Oficina do Programa Integrar Eixo Educação 2012 Como usar bem o resultado da avaliação Oficina de Matemática Paracatu, 22 de junho de 2012 Eliane Scheid Gazire egazire@terra.com.br Quadro resumo do desempenho

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º

Leia mais

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno Unidade I MATEMÁTICA APLICADA Profa. Ana Carolina Bueno Números reais Fonte: http://infomaticando.blogspot.com.br/2012/12/numeros-irracionais.html Expressões algébricas São expressões matemáticas que apresentam

Leia mais

ANÁLISE DE INVESTIMENTOS

ANÁLISE DE INVESTIMENTOS CURSO DE CIÊNCIAS CONTÁBEIS GRADUAÇÃO PARA GRADUADOS ANÁLISE DE INVESTIMENTOS Profº Marcelo Cambria Duration 2 Reflete o rendimento (yield) efetivo dos títulos de Renda Fixa até o seu vencimento (maturity)

Leia mais

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação

Leia mais

MATRIZ DE CONTEÚDOS TESTE 6.º ANO MARÇO 2015

MATRIZ DE CONTEÚDOS TESTE 6.º ANO MARÇO 2015 MATRIZ DE CONTEÚDOS TESTE 6.º ANO MARÇO 2015 Domínio Conteúdos Números naturais - Números primos; - Crivo de Eratóstenes; - Teorema fundamental da aritmética e aplicações. Números e Operações Números racionais

Leia mais

Lista de Exercícios Glossário Básico

Lista de Exercícios Glossário Básico Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8

Leia mais

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2 MATEMÁTICA ÍNDICE Conjuntos Numéricos... 2 1 1 Matemática 2 Conjuntos Numéricos 00 Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades,

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

Matemática. 6. ano AULA 1

Matemática. 6. ano AULA 1 Matemática ENSINO FUNDAMENTAL o 6. ano AULA 1 1. Calcule o valor das expressões, transformando primeiramente a fração decimal em número decimal, e escreva como se lê o resultado. 5 8 a) + 10 10 0,5 + 0,8

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Lista de Exercícios 03a Algoritmos Repetição

Lista de Exercícios 03a Algoritmos Repetição Setor de Ciências Eatas / Departamento de Informática DInf Lista de Eercícios 0a lgoritmos Repetição (para... de... até... faça:... fim-para) 1) Escreva um algoritmo em PORTUGOL que imprima todos os números

Leia mais

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas

Leia mais

PROVA MATEMÁTICA FINANCEIRA BANRISUL 2010 (FDRH) COMENTADA

PROVA MATEMÁTICA FINANCEIRA BANRISUL 2010 (FDRH) COMENTADA PROVA BANRISUL 2010 (FDRH) COMENTADA Instruções: Para a resolução das questões desta prova, quando necessário, (1) utilize, para as conversões de tempo, a Regra do Banqueiro, uma convenção mundial, enunciada

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

Algoritmos e Estruturas de Dados I (DCC/003) Estruturas Condicionais e de Repetição

Algoritmos e Estruturas de Dados I (DCC/003) Estruturas Condicionais e de Repetição Algoritmos e Estruturas de Dados I (DCC/003) Estruturas Condicionais e de Repetição 1 Comando while Deseja-se calcular o valor de: 1 + 2 + 3 +... + N. Observação: não sabemos, a priori, quantos termos

Leia mais

Matemática Financeira Aplicada. Aula 3. Contextualização. Período Fracionário. Prof. Nelson Pereira Castanheira. Período Fracionário.

Matemática Financeira Aplicada. Aula 3. Contextualização. Período Fracionário. Prof. Nelson Pereira Castanheira. Período Fracionário. Matemática Financeira Aplicada Aula 3 Contextualização Prof. Nelson Pereira Castanheira Período Fracionário Taxa Nominal Taxa Efetiva Taxa Real Taxa Aparente Período Fracionário O Período Fracionário corresponde

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS

ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS E0059 (EXATUS) PM-ES 2012 QUESTÃO 66 A área de um triângulo equilátero de arestas medindo 8 cm é igual a: RESOLUÇÃO E0565 (EXATUS) PM-ES 2012 QUESTÃO 92 92 Tifany

Leia mais

Lista de Exercícios 03a Algoritmos Repetição. 1) Escreva um algoritmo em PORTUGOL que imprima todos os números inteiros de 0 a 50.

Lista de Exercícios 03a Algoritmos Repetição. 1) Escreva um algoritmo em PORTUGOL que imprima todos os números inteiros de 0 a 50. Universidade Federal de Minas Gerais - UFMG Instituto de Ciências Eatas - ICE Disciplina: Programação de Computadores Professor: David Menoti (menoti@dcc.ufmg.br) Monitor: João Felipe Kudo (joao.felipe.kudo@terra.com.br)

Leia mais

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)

Leia mais

Conteúdo Programático. Cursos Técnicos Integrados

Conteúdo Programático. Cursos Técnicos Integrados Conteúdo Programático Cursos Técnicos Integrados Especificações das Provas Disciplinas da prova objetiva Nº questões Pesos Total de pontos Língua Portuguesa 15 2 30 Matemática 15 2 30 Total 30-60 Prova

Leia mais

Conjuntos Contáveis e Não Contáveis / Contagem

Conjuntos Contáveis e Não Contáveis / Contagem Conjuntos Contáveis e Não Contáveis / Contagem Introdução A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras,

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Apontamentos de Matemática.º ano Introdução noção de potência Exemplo Uma bactéria divide-se dando origem a duas novas bactérias. Suponha que havia inicialmente duas bactérias e que ocorreram sucessivamente

Leia mais