UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA"

Transcrição

1 1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva Janio de Jesus Cardoso Orientadora: Elisangela de Campos CURITIBA 2013

2 2 INTRODUÇÃO Supomos que você se deparasse com a seguinte afirmação: Para todo numero Natural n, temos que P(n) (Lê-se a função P aplicada no ponto n) resultará em um número primo, onde a função P é da forma P(n)=n²+n+41 O que provavelmente aconteceria é que você iria acreditar na afirmação, mas vamos verificar. Uma primeira tentativa de começar a verificar a veracidade da afirmação, é a aplicar a função P em alguns números naturais, e verificar se realmente temos como resultado um número primo. P(1) = 1² = 43 P(2) = 2²+2+41= 47, 47 P(3) = 3²+3+41=53 P(4)= 4²+4+41=61 P(5) = 5² = 71 Assim para n=1, 2, 3,4 e 5 a função resulta em um números primos. Mas, como vamos saber se de fato essa função leva todos os n (Natural) para um número primo? A intuição nos faz acreditar que realmente a afirmação é verdadeira, entretanto se considerarmos n= 41: P (41)= 41² = 1763 Achamos um contra-exemplo, ou seja, um exemplo onde a afirmação não vale, pois para n=41 a função P não gera um número primo. Nesse contexto destacamos a importância da necessidade de se provar, demonstrar as descobertas em Matemática, antes de utilizarmos. Consequentemente essa relevancia atinge os cursos de matemática, que por sua vez, desenvolve ao longo do curso demonstrações e provas de tudo, ou quase tudo, do que será utilizado, ao contrário do ensino fundamental e médio, onde aceitamos as fórmulas e resultados como verdadeiros sem questionamento se aquilo é de fato verdadeiro. Mas o que vem a ser prova e demonstração em matemática? Primeiramente, vamos nesse mini-curso tratar provas e demonstrações como

3 3 sinônimos. Demonstração matemática basicamente é um processo de raciocínio lógicodedutivo onde assumindo uma hipotese, se deduz, por argumentos, a tese, ou seja, uma demonstração garante que se a hipotese ocorre consequentemente a tese ocorre. No teorema de Pitagoras: Em um triângulo retângulo, a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa. Nesse teorema, a hipotese é...um triângulo retângulo, pelo teorema essa hipotese resulta na tese a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa. Tendo em vista a importância que já destacamos das provas e demonstrações, em matemática, desenvolveremos nesse mini-curso alguns tipos de demonstrações mais utilizados no curso de matemática, assim como alguns Sofismas. TIPOS DE DEMONSTRAÇÕES Há várias técnicas de demonstração em matemática, entre elas há a demonstração direta, demonstração por indução, demonstração por absurdo e demonstração por contrapositiva. DEMONSTRAÇÃO DIRETA- DEDUÇÃO Quando utilizado essa técnica de demonstração, inicia-se assumindo a hipótese como verdadeira, após é feito uma sequencia de passos lógicos-dedutivos chegando-se diretamente a tese, ou seja, é apenas feito uma verificação. Exemplo 01 Teorema: Existem dois, e apenas dois múltiplos simultâneos de 2 e 3 entre os números 9 à 19, incluindo estes. Hipótese : Múltiplos simultâneos de 2 e 3 entre os números 9 até 19. Tese: Existem apenas 2. Uma maneira simples para a prova desse resultado, é expressar todos os números de 9 a 19, e verificar quais deles cumprem a hipótese, isto é, que simultaneamente são múltiplos de 2 e 3. A = { 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} Números que pertencem ao conjunto A que são múltiplos de 2:{10, 12, 14,16,18} Números que pertencem ao conjunto A que são múltiplos de 3:{9, 12, 15, 18} Assim:

4 4 Os números que são simultaneamente múltiplos de 2 e 3 são :{12, 18} Logo: Existem apenas 2. Exemplo 02: TEOREMA: Se x é um número real tal que 3 x + 1 > 7, então x > 2. Hipótese : 3 x + 1 > 7 Tese : x > 2 Assim pela Hipótese temos que 3 x + 1 > 7, como x é um número real, são válidas as operações fundamentais da aritmética ( adição, subtração, multiplicação e divisão). Assim : 3 x + 1 > 7 3 x > 7 1 (subtraindo 1 em ambos os lados não altera a desigualdade), assim temos que: 3 x > 6 Dividindo ambos os lados por 3 mantem a desigualdade, assim: ( 3 x ) : 3 > 6 : 3 Logo : x > 2 Exemplo 03: TEOREMA : A soma de dois números racionais é um número racional. Convém notar aqui é que não estamos tratando de algum ou alguns números racionais em especial, mas sim, de todos os racionais. Temos que : Hipótese: Adição de dois números Racionais. Tese : A soma é um número Racional.

5 O artifício matemático utilizado para demonstrar esse teorema, está na forma de expressar o número Racional. Todo número Racional pode ser expresso da seguinte forma: p q 5 onde p é um número inteiro qualquer, e q é um número inteiro diferente de zero. Assim a adição de dois números naturais pode ser escrita como : p n + q j Mas, temos que : p n p. j + n. q + = q j q. j Como (p. j + n. q) tem como resultado um número inteiro (produto de números inteiros é inteiro, e a soma de números inteiros é inteiro), e (q. j) é um número inteiro diferente de zero (a multiplicação de dois números inteiros diferentes de zero tem por resultado um número diferente de zero) então podemos concluir que: p n + q j é um número racional. DEMONSTRAÇÃO POR INDUÇÃO Essa técnica de demonstração consiste em dois passos: base e passo de indução. O passo base consiste em verificar que a proposição é verdadeira para o menor elemento que norteia a proposição. O passo de indução consiste em assumir que a proposição é verdadeira para n, a partir disso prova-se que é verdadeiro para n+1 (usando a afirmação que é válido para n). Exemplo1

6 Provar que a fórmula 1²+2²+...+n² = pertencente aos Naturais. n(n+1)(2n+1) 6 é verdadeira para todo n No passo base verificamos que a fórmula é válida para n=1 (primeiro número natural). O passo de indução consiste em assumir que a proposição é verdadeira para n, a partir disso prova-se que é verdadeiro para n+1 (usando a afirmação que é válido para n). No passo de indução assumimos que para n a fórmula é verdadeira, então devemos provar que 1²+2²+... +n²+(n+1)² = (n+1)(n+2)(2 (n+1)+1) 6 a partir da afirmação que assumimos anteriormente. Prova: 1²+2²+3² n² + (n + 1)² = é (n/6)(n + 1)(2n + 1). 1²+2²+3² n² + (n + 1)² = (n +1)[( 1²+2²+3² n² + (n + 1)² = (n + 1)( 1²+2²+3² n² + (n + 1)²=(n + 1)( 1²+2²+3² n² + (n + 1)² = (n + 1)( 1²+2²+3² n² + (n + 1)²= [ n 6 (n + 1)(2n + 1) + (n + 1)² (observe que a soma até n² n 6 )(2n + 1) + (n + 1)] 1 6 )(2n² + n + 6n + 6) 1 6 )(2n² + 7n + 6) 1 6 ).2(n ).(n + 2) n+1 6 (n + 1)/6](n + 2)(2n + 3) O polinômio ax² + bx + c, com raízes x 1 e x 2 pode ser decomposto em a(x x 1) (x - x 2 ). Como as raízes de 2n² + 7n + 6 são -2 e - 3 2, temos 2n² + 7n + 6 = 2(n )(n + 2). 6 Exemplo 2 Provar que: n(n + 1) = ( naturais. n 3 )(n + 1)(n + 2) para todo n pertence aos (1) Passo base: Para n = 1: 1.2 = 2

7 7 ( )(1 + 1)(1 + 2) = ( 3 )(2)(3) = 2. (2) Hipótese: n(n + 1) = ( n 3 )(n + 1)(n + 2) (3) Provar que: n(n + 1) + (n + 1)(n + 2) = [ n+1 3 ](n + 2)(n + 3). Prova: n(n + 1) + (n + 1)(n + 2) = ( n(n + 1) + (n + 1)(n + 2) = (n + 1)(n + 2)[( n(n + 1) + (n + 1)(n + 2) =(n + 1)(n + 2)[ n(n + 1) + (n + 1)(n + 2) = [ n 3 )(n + 1)(n + 2) + (n + 1)(n + 2) n 3 ) + 1] n+3 3 ] n+1 3 ](n + 2)(n + 3). DEMONSTRAÇÃO POR ABSURDO- CONTRADIÇÃO Quando se quer demonstrar por absurdo uma proposição, parte-se supondo que a negação da tese é verdadeira e após aplica-se as técnicas da demonstração direta, ou seja, é feito uma sequencia de passos lógicos-dedutivos até chegarmos a conclusão que a negação da tese não pode ocorrer, ou seja, que a negação da tese é um absurdo. Portanto resta que a tese é verdadeira. Exemplo 1 Demonstre que é um número irracional. Para mostrar que 2 é um número irracional pela técnica da redução por absurdo, supomos inicialmente que 2 é racional, aplicando uma sequecia lógica de implicações a partir dessa afirmação, chegamos que a suposição que 2 é racional não pode ocorrer. Vejamos detalhadamente: Vamos supor que não seja irracional, então vamos escrever como um numero racional. Então,

8 8 = e sendo mdc (p,q) = 1, ou seja, está na forma irredutível. elevando os dois lados da igualdade ao quadrado, obtemos: 2 = então ou seja, p é múltiplo de 2, ou seja, p = 2k. Com isso, (2k)² = 2q² 4k²=2q² 2k²=q² então q também é múltiplo de 2. O que é um absurdo, pois contradiz a afirmação de que o mdc (p,q) = 1. Portanto é irracional. Exemplo 2 Mostre que se n N e n² for divisível por 2, ou seja, n² for par, então n é divisível por 2. Dem: Seja n N, tal que n² seja divisível por 2. Suponha que n não seja divisel por 2, isto é, n seja impar. Logo n é da forma n = 2k + 1, para algum k Z. Temos, n² = (2k + 1)² = 4k² + 4k + 1 = 2(2k² + 2k) + 1 = 2m + 1, onde m = 2k² + 2k Z. Portanto n² é impar, o que contradiz a hipótese de n² quadrado ser divisível por 2. Chegamos a um absurdo. Exemplo 3. Se um número somado a ele mesmo é igual a ele mesmo, então esse número é zero. Representamos por x um numero qualquer. A hipótese afirma que x + x = x, e a tese é x = 0. A prova é por absurdo. Supomos que x 0. Por hipótese, x + x = x, então 2x = x e x 0. Dividindo ambos os lados da equação por x, obtemos: 2 = 1, o que é um absurdo.

9 9 DEMONSTRAÇÕES USANDO A CONTRA POSITIVA tese, tem-se: As demonstrações utilizando essa técnica seguem o seguinte principio: Para duas sentenças quaisquer H e T, onde, H representa a hipótese e T representa a (H T) equivale a ( T H) n é par). T H Onde H representa a negação de H, e T representa a negação de T. Veja o seguinte exemplo. Teorema: Se n N e n² for divisível por 2 ( isto é, n² for par) então n é divisível por 2 ( Temos que Hipotese: H = n Ne n² for divisível por 2 ( isto é, n² for par). Tese: T = n é divisível por 2 ( n é par) A contra positiva dessa afirmação seria da forma: Onde: H = n Ne n² NÃO for divisível por 2 ( isto é, n² é impar) T = n NÃO é divisível por 2 ( n é impar) E o teorema poderia ser enunciado assim: Se n Né impar, então n² é impar." A demonstração dos dois teoremas é equivalente. Esse método de demonstração é chamada indireta, pois, provar H provar a implicação T H. T, reduz-se a COMPARANDO DIFERENTES TIPOS DE DEMONSTRAÇÕES Teorema: se 2 x² + x - 1= 0 então x < 1 Demonstração 1-Direta Faz-se encontrando as raízes da equação 2x² + x + 1, que são x = -1 e x= 0,5, portanto ambas menores que 1. Demonstração 2- Indireta usando a Redução ao absurdo

10 10 Supondo 2 x² + x - 1= 0 e x 1. Logo se x 1, então 1 x 0 e 2x² 0. Dessas duas desigualdades, usando novamente a hipótese, teríamos 0 < 2x² = 1- x 0, o que é uma absurdo, portanto x < 1 Demonstração 3- Usando a contra positiva Faz-se demonstrando que se x 1 então 2 x² + x 1 0. De fato se x 1, temos x 1 0 e 2x² > 0. Somando as duas desigualdades teremos que x 1 + 2x² > 0, o que significa que 2 x² + x 1 0 SOFISMAS Se você usar de argumentos não válidos em uma dedução, é possível se obter vários tipos de resultados, resultados esse que podem ser até absurdos, causadores de surpresas. Exemplo 1 a) Igualdade aparente: 3 = 4 Começamos com a seguinte igualdade : 0 = 0 Que podemos escrever como 3 x - 3 x = 4 x - 4 x Colocando o 3 e o 4 em evidencia 3 ( x x)= 4 ( x- x) Cortando os termos em comum temos 3 = 4 b ) 2 = 1 Seja a e b números reais diferentes de zero. E supondo que a = b Multiplicando os dois lados por a temos a. a = b. a isto é : a² = b. a Subtraindo b² de ambos os lados temos : a² b² = ab b² Podemos reescrever o fator do primeiro membro como: (a + b). ( a b) = ab b²

11 11 Colocando b em evidencia do lado direito temos : (a + b). ( a b) = b ( a b) Cortando ( a b) ambos os lados (a+b) = b Isto é : 2 b = b Logo: 2 = 1 Exemplo 2 Igualdade aparente resultante de uma soma = 5 Começamos com a seguinte igualdade: -20= = Somamos (81/4) nos dois lados, (81/4) = (81/4) Isso pode ser escrito da seguinte forma: (4-(9/2))² = (5-(9/2))² Tirando a raiz quadrada em ambos os lados temos: 4-(9/2) = 5-(9/2) Somando (9/2) nos dois lados da igualdade temos: 4 = 5 Como 4=2+2 chegamos a seguinte conclusão: 2+2=5 Exemplo 3: Sofisma Geométrico Aritmético. Teorema: Todos os triângulos semelhantes são congruentes. Demonstração:

12 12 Considere os seguintes triângulos semelhantes : A A' B C C' B' Pelas relações de semelhança de triângulos da geometria Plana, temos : B ' C ' A' B ' = BC AB B'C'AB=BCA'B' onde XY representa o comprimento de um segmento de reta com as extremidades X e Y. Da igualdade anterior decorrem as seguintes implicações : 0 = 0 (B'C') ². AB (B'C') ². AB = (BC)². A'B' (BC)². A'B' (B'C') ². AB B'C' ( B'C'. AB) = BC ( BC. A'B') (BC)² A'B' B'C' ( B'C'. AB BC. A'B') = BC ( B'C'. AB BC. A'B') B'C' = BC Analogamente se prova as igualdades A'B' = AB e C'A' = CA. Logo essas igualdades garantem que quaisquer dois triângulos semelhantes são congruentes. Lembrando: Dois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. Dois triângulos são congruentes quando os lados e ângulos do primeiro triângulo estão em correspondência com os lados e ângulos do segundo triângulo de tal forma que os lados em correspondência têm a mesma medida, assim como os ângulos.

13 13 EXERCÍCIOS 1) Prove por indução que: (a) a = b então a n = b n (b) a m + n = a m a n (c) (ab) n = a n b n (d) (a m ) n = a mn (e) (2n 1) = n² (f) 5 n 1 é múltiplo de 4. 2) Conta-se a seguinte história sobre o matemático alemão Carl Friedrich Gauss ( ), quando ainda garoto. Na escola, o professor, para aquietar a turma de Gauss, mandou os alunos calcularem a soma de todos os números naturais de 1 a 100. Qual não foi a surpresa quando, pouco tempo depois, o menino deu a resposta: Indagado como tinha descoberto tão rapidamente o resultado, Gauss, então com nove anos de idade, descreveu o método a seguir. Sendo, S n = n; o objetivo é encontrar uma fórmula fechada para Sn. Somando a igualdade acima, membro a membro, com ela mesma, porém com as parcelas do segundo membro em ordem invertida, temos que, Daí segue-se que 2S n = n(n + 1) e, portanto, S n = S n = n S n = n + (n + 1) S n = (n + 1) + (n + 1) + + (n + 1) Prove, por indução, que S n = n = 3) Pela técnica da prova direta, mostre que: A soma de dois números pares é um número par. 4) Demonstrar por absurdo que: se um número somado a ele mesmo é igual a ele mesmo, então esse número é 0.

14 REFERÊNCIA S BIBLIOGRÁFICAS CAVALCANTI, Jorge. Teoremas e demonstrações. Disponível em: < Acesso em: 05 abr HEFEZ, Abramo. Indução Matemática. Disponível em: < Acesso em: 03 abr MORAIS FILHO, Daniel Cordeiro de. Um Convite a Matemática: Fundamentos Lógicos com técnicas de demonstração, notas históricas e curiosidades.. 3. ed. Campina Grande: Fabrica de Ensino, p. MALTA, Iaci; PESCO, Sinécio; LOPES, Hélio. Cálculo a uma variável. 3 ed. Gávea: Puc-rio, p. 14

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Lista de Exercícios 4: Soluções Sequências e Indução Matemática

Lista de Exercícios 4: Soluções Sequências e Indução Matemática UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de

Leia mais

Aplicações de Combinatória e Geometria na Teoria dos Números

Aplicações de Combinatória e Geometria na Teoria dos Números Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Em um paralelogramo, as medidas de dois ângulos

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

A razão dos irracionais. Série Matemática na Escola. Objetivos 1. Apresentar os numeros irracionais. 2. Demonstrar que 2 não é racional com o

A razão dos irracionais. Série Matemática na Escola. Objetivos 1. Apresentar os numeros irracionais. 2. Demonstrar que 2 não é racional com o A razão dos irracionais. Série Matemática na Escola Objetivos 1. Apresentar os numeros irracionais. 2. Demonstrar que 2 não é racional com o argumento do absurdo. A razão dos irracionais Série Matemática

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Equações do segundo grau

Equações do segundo grau Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

Princípio da Indução Matemática: P(1) verdadeira ( k)[p(k) verdadeira P(k+1) verdadeira] ENTÃO P(n) verdadeira para todos os n inteiros positivos

Princípio da Indução Matemática: P(1) verdadeira ( k)[p(k) verdadeira P(k+1) verdadeira] ENTÃO P(n) verdadeira para todos os n inteiros positivos Indução Matemática Princípio da Indução Matemática: P(1) verdadeira ( k)[p(k) verdadeira P(k+1) verdadeira] ENTÃO P(n) verdadeira para todos os n inteiros positivos O Princípio da Indução Matemática é

Leia mais

Conceitos e fórmulas

Conceitos e fórmulas 1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que

Leia mais

Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro e Acad. Taís Aline Bruno de Azevedo.

Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro e Acad. Taís Aline Bruno de Azevedo. 1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA SECRETARIA DE ENSINO À DISTÂNCIA O NÚMERO DE OURO Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

Qual é Mesmo a Definição de Polígono Convexo?

Qual é Mesmo a Definição de Polígono Convexo? Qual é Mesmo a Definição de Polígono Convexo? Elon Lages Lima IMPA, Rio de Janeiro Quando pensamos num polígono convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula Divisibilidade II Definição 1. Dados dois inteiros a e b, com a 0, dizemos que a divide b ou que a é um divisor

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1. EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única.

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única. Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Matemática Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio

Leia mais

Fundamentos da Matemática Fernando Torres. Números Complexos. Gabriel Tebaldi Santos RA: 160508

Fundamentos da Matemática Fernando Torres. Números Complexos. Gabriel Tebaldi Santos RA: 160508 Fundamentos da Matemática Fernando Torres Números Complexos Gabriel Tebaldi Santos RA: 160508 Sumário 1. História...3 2.Introdução...4 3. A origem de i ao quadrado igual a -1...7 4. Adição, subtração,

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

REVISÃO E AVALIAÇÃO DA MATEMÁTICA

REVISÃO E AVALIAÇÃO DA MATEMÁTICA 2 Aula 45 REVISÃO E AVALIAÇÃO DA 3 Vídeo Arredondamento de números. 4 Arredondamento de números Muitas situações cotidianas envolvendo valores destinados à contagem, podem ser facilitadas utilizando o

Leia mais

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17.

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17. Prova Teoria de Números 23/04/203 Nome: RA: Escolha 5 questões.. Mostre que 2 67 + 3 34 é múltiplo de 7. Solução: Pelo teorema de Fermat 2 6 (mod 7 e 3 7 3 (mod 7. Portanto, 2 67 = 2 64+3 = ( 2 6 4 8 8

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

casa. Será uma casa simples, situada em terreno plano, com sala, dois quartos, cozinha, banheiro e área de serviço.

casa. Será uma casa simples, situada em terreno plano, com sala, dois quartos, cozinha, banheiro e área de serviço. A UUL AL A A casa Nesta aula vamos examinar a planta de uma casa. Será uma casa simples, situada em terreno plano, com, dois quartos, cozinha, banheiro e área de serviço. Introdução terreno 20 m rua 30

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso.

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso. Respostas de MAIO Dia 1: O menor número de ovos é 91. Dia 2: O nível da água baixa. No barquinho, a moeda desloca a mesma massa de água que a do barquinho, portanto, um volume maior que o da moeda. Na

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

A linguagem matemática

A linguagem matemática A linguagem matemática Ricardo Bianconi 1 o Semestre de 2002 1 Introdução O objetivo deste texto é tentar explicar a linguagem matemática e o raciocínio lógico por trás dos textos matemáticos. Isto não

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil.

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 36 INTRODUÇÃO A CRIPTOGRAFIA RSA Rafael Lima Oliveira¹, Prof. Dr. Fernando Pereira de Souza². ¹CPTL/UFMS, Três Lagoas,

Leia mais

Um jogo de preencher casas

Um jogo de preencher casas Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO Atualizado em Prof. Rui Mano E mail: rmano@tpd.puc rio.br SISTEMAS DE NUMERAÇÃO Sistemas de Numer ação Posicionais Desde quando se começou a registrar informações sobre quantidades, foram criados diversos

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 14: A Matemática Grega: Pitágoras e os Pitagóricos 17/04/2015 2 Pitágoras de Samos Aproximadamente 572 a.c. Discípulo de Tales de Mileto,

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

quociente razão. mesma área a partes de um tablete de chocolate

quociente razão. mesma área a partes de um tablete de chocolate 1 As sequências de atividades Vamos relembrar, Como lemos os números racionais?, Como escrevemos os números racionais?, As partes das tiras de papel, Comparando e ordenando números racionais na forma decimal

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto Todas as questões encontram-se comentadas na videoaula do canal maismatemática, disponível para visualização gratuita no seguinte link: https://www.youtube.com/watch?v=tlsqgpe7td8 NÍVEL BÁSICO 1. (G1 -

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

Fórmula versus Algoritmo

Fórmula versus Algoritmo 1 Introdução Fórmula versus Algoritmo na resolução de um problema 1 Roberto Ribeiro Paterlini 2 Departamento de Matemática da UFSCar No estudo das soluções do problema abaixo deparamos com uma situação

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

A equação do 2º grau

A equação do 2º grau A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

1 TEOREMA DE TALES 2 APLICAÇÃO PARA TRIÂNGULOS 3 TEOREMA DA BISSETRIZ INTERNA. Matemática 2 Pedro Paulo

1 TEOREMA DE TALES 2 APLICAÇÃO PARA TRIÂNGULOS 3 TEOREMA DA BISSETRIZ INTERNA. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA XI 1 TEOREMA DE TALES No Nivelamento, um dos assuntos abordados foi Razão e Proporção. A proporção aparece em várias situações no dia-a-dia: por exemplo, na leitura

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Técnico do TRT/4ª Região (Rio

Leia mais

Vetores Lidando com grandezas vetoriais

Vetores Lidando com grandezas vetoriais Vetores Lidando com grandezas vetoriais matéria de vetores é de extrema importância para o ensino médio basta levar em consideração que a maioria das matérias de física envolve mecânica (movimento, dinâmica,

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior.

POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior. POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior. Bruno Marques Collares, UFRGS, collares.bruno@hotmail.com Diego Fontoura Lima, UFRGS,

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

15 + 17 + 19 +... + 35 + 37 = 312

15 + 17 + 19 +... + 35 + 37 = 312 MATEMÁTICA 1 Para uma apresentação de dança, foram convidadas 31 bailarinas. Em uma de suas coreografias, elas se posicionaram em círculos. No primeiro círculo, havia 15 bailarinas. Para cada um dos círculos

Leia mais

TEORIA DOS CONJUNTOS Símbolos

TEORIA DOS CONJUNTOS Símbolos 1 MATERIAL DE APOIO MATEMÁTICA Turmas 1º AS e 1º PD Profº Carlos Roberto da Silva A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar

Leia mais

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá.

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá. INTRODUÇÃO A lógica de programação é extremamente necessária para as pessoas que queiram trabalhar na área de programação, seja em qualquer linguagem de programação, como por exemplo: Pascal, Visual Basic,

Leia mais

Bem, produto interno serve para determinar ângulos e distâncias entre vetores e é representado por produto interno de v com w).

Bem, produto interno serve para determinar ângulos e distâncias entre vetores e é representado por produto interno de v com w). Produto Interno INTRODUÇÃO Galera, vamos aprender agora as definições e as aplicações de Produto Interno. Essa matéria não é difícil, mas para ter segurança nela é necessário que o aluno tenha certa bagagem

Leia mais

chamados de números racionais.

chamados de números racionais. O Período Pré-Industrial e a Geometria Euclidiana Os números racionais Com o sistema de numeração hindu ficou fácil escrever qualquer número, por maior que ele fosse. 0, 13, 35, 98, 1.024, 3.645.872. Como

Leia mais

Conceitos Fundamentais

Conceitos Fundamentais Capítulo 1 Conceitos Fundamentais Objetivos: No final do Capítulo o aluno deve saber: 1. distinguir o uso de vetores na Física e na Matemática; 2. resolver sistema lineares pelo método de Gauss-Jordan;

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 Este é o 7º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região

Leia mais

Alunos dorminhocos. 5 de Janeiro de 2015

Alunos dorminhocos. 5 de Janeiro de 2015 Alunos dorminhocos 5 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: entender a necessidade de se explorar um problema para chegar a uma solução; criar o hábito (ou pelo menos entender

Leia mais

A ideia de coordenatização (2/2)

A ideia de coordenatização (2/2) 8 a : aula (1h) 12/10/2010 a ideia de coordenatização (2/2) 8-1 Instituto Superior Técnico 2010/11 1 o semestre Álgebra Linear 1 o ano das Lics. em Engenharia Informática e de Computadores A ideia de coordenatização

Leia mais

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos ESCOL ESTDUL DE ENSINO MÉDIO UL PILL COMPONENTE CUICUL: Matemática POFESSO: Maria Inês Castilho Noções básicas: Conjuntos 1º NOS DO ENSINO MÉDIO Um conjunto é uma coleção qualquer de objetos, de dados,

Leia mais

QUADRADO MÁGICO - ORDEM 4

QUADRADO MÁGICO - ORDEM 4 CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de igual ao número de ); b) domínio: com elementos assumindo valores

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais