INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

Tamanho: px
Começar a partir da página:

Download "INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE"

Transcrição

1 INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente. Ao se realizar um teste para analisar a confiabilidade do sistema foram transmitidos 4 dados. a) Qual é a probabilidade de que tenha havido erro na transmissão? (R.: 855) b) Qual é a probabilidade de que tenha havido erro na transmissão de exatamente 2 dados? (R.: 35) Trata-se do modelo Binomial: cada realização tem apenas 2 resultados possíveis, o número de realizações é conhecido, e a probabilidade de sucesso é suposta constante (pois não há nenhuma informação em contrário). n = 4 π = 5. A fórmula será: P(= x i ) = C 4,xi 5 xi,95 n-xi a) Haverá erro quando for maior do que zero, então : x i = P(>) = P( = ) = C 4, 5,95 4- = 4! ,95,95, ! (4 )! b) Exatamente 2 dados, significa x i = 2, então: P( = 2) = C 4,2 5 2,95 4 = 4! ,95 5, ! (4 2)! 2 2 2) Jogando-se uma moeda honesta cinco vezes e observando a face voltada para cima. Há interesse em calcular a probabilidade de ocorrência de uma, duas,..., cinco caras. Qual é a probabilidade de obter ao menos quatro caras? (R.: 875) Trata-se do modelo Binomial: cada realização tem apenas 2 resultados possíveis, o número de realizações é conhecido, e a probabilidade de sucesso é suposta constante (pois não há nenhuma informação em contrário). n = 5 π =. A fórmula será: P(= x i ) = C 5,xi xi n-xi Pelo menos 4 caras, significa 4 ou mais, como o limite máximo é 5, procura-se P( 4): P( 4) = P( = 4) + P( = 5) = C 5, C 5, = 5! ! ! 5 5! ! (5 4)! 5! (5 5)! 4! 5!! 3) Suponha que você vai fazer uma prova com questões do tipo verdadeiro-falso. Você nada sabe sobre o assunto e vai responder as questões por adivinhação. a) Qual é a probabilidade de acertar exatamente 5 questões? (R. 46) b) Qual é a probabilidade de acertar pelo menos 8 questões? (R.: 5468) Trata-se do modelo Binomial: cada realização tem apenas 2 resultados possíveis, o número de realizações é conhecido, e a probabilidade de sucesso é suposta constante (pois não há nenhuma informação em contrário), e igual a (5%), pois você nada sabe sobre o conteúdo e há apenas duas respostas possíveis (verdadeiro ou falso). n = π =. A fórmula será: P(= x i ) = C,xi xi n-xi a) Exatamente 5 questões, significa = 5. P( = 5) = C 5-5! ! =, 246 5! ( 5)! 5! b) Pelo menos 8 questões significa acertar 8, ou 9 ou questões: 8 P( 8) = P( = 8) + P( = 9) + P( = ) = C, C,9 9 + C! 8 2! 9 9! 8! ( 8)! 9! ( 9)!! ( )! Lembre-se que! (fatorial de zero) vale, e que um número elevado a zero, por exemplo,, é igual a.

2 ,5 -,5 - -,5,5 -,5 - -,5 9 8! 8! 2! 9! 9!! INE 5 Gabarito da Lista de Exercícios de Probabilidade!!! ) Suponha que % da população seja canhota. São escolhidas 3 pessoas ao acaso, com o objetivo de calcular a probabilidade de que o número de canhotos entre eles seja,, 2 ou 3. Qual é a probabilidade de ao menos uma das pessoas ser canhota? (R.: 7) Trata-se do modelo Binomial: cada realização tem apenas 2 resultados possíveis, o número de realizações é conhecido, e a probabilidade de sucesso é suposta constante (pois não há nenhuma informação em contrário). n = 3 π =. A fórmula será: P(= x i ) = C 3,xi xi,9 n-xi Ao menos uma pessoa canhota significa ou 2 ou 3, ou seja,. P( ) = P( < ) = P( = ) = C 3,,9 3 3! ,9,9,729, 27! (3 )! 3 2 5) Trace uma curva normal e sombreie a área desejada, obtendo então as probabilidades a) P( >,) (R.: 587) b) P( <,) (R.:,843) c) P( > ) (R.:,633) d) P( < <,5) (R.: 332) e) P(,88 < < ) (R.: 98) f) P(-6 < < -) (R.: 33) g) P(-9 < < 9) (R.: 758) h) P(2,5 < < 2,8) (R.: 36) i) P( < -) (R.: 27) j) P( > -) (R.:793) k) P(- < < ) (R.: 793) l) P(- < < ) (R.: 347) a) No gráfico abaixo P(>,) A área sombreada corresponde a P(>,). Esta probabilidade pode ser obtida diretamente da tabela: P(>,) = 587 b) No gráfico abaixo P( <,) A área sombreada corresponde a P(<,). Esta probabilidade NÃO pode ser obtida diretamente da tabela. Mas pelas propriedades de probabilidade sabemos que: P(<,) = P(,). Esta última probabilidade pode ser obtida diretamente da tabela, e é igual à probabilidade encontrada no item a (P(>,)), pois é uma variável aleatória contínua. Então: P(<,) = P(>,) = =,843 c) No gráfico abaixo P(>) 2

3 ,5 -,5 - -,5,5 -,5 - -,5,5 -,5 - -,5,5 -,5 - -,5 INE 5 Gabarito da Lista de Exercícios de Probabilidade A área sombreada corresponde a P(>). Esta probabilidade NÃO pode ser obtida diretamente da tabela, pois o é negativo. Mas pelas propriedades de probabilidade sabemos que: P(>) = P(<). E devido à simetria da distribuição normal padrão em relação à média zero: P(<) = P(>4), e esta última probabilidade pode ser obtida da tabela. Então: P(>) = P(>4) = 669 =,633 d) No gráfico abaixo P( < <,5) Para obter a probabilidade de estar entre e,5 basta obter a probabilidade de ser maior do que zero e subtrair a probabilidade de ser maior do que,5: o resultado será exatamente a probabilidade do intervalo procurado. P( < <,5) = P(>) P(>,5) = 668 = 332 Esta probabilidade foi facilmente obtida por que os valores de são ambos positivos. e) No gráfico abaixo P(,88 < < ) f) No gráfico abaixo P(-6<<-) Podemos usar um raciocínio semelhante ao da letra d): P(,88<<) = P(<) P(<,88). A probabilidade P(<) é igual a P(>), mas P(<,88) não pode ser obtida diretamente da tabela. Contudo, devido à simetria da distribuição normal padrão em relação à média zero: P(<- 2,88) = P(>2,88). Então: P(,88<<) = P(>) P(>2,88) = 2 = 98 O valor de,88 é invisível no gráfico ao lado devido à grande distância da média (2,88 desvios padrões). Podemos usar um raciocínio semelhante ao da letra e, tendo em mente que os dois valores que definem o intervalo são negativos, e que há simetria da distribuição normal padrão em relação à média zero: P(-6<<-) = P(>) P(>6) = = 33 3

4 ,5 -,5 - -,5,5 -,5 - -,5,5 -,5 - -,5,5 -,5 - -,5 g) No gráfico abaixo P(-9 < < 9) INE 5 Gabarito da Lista de Exercícios de Probabilidade Usemos um raciocínio semelhante ao das letras d e e, mas agora os valores que definem o intervalo têm sinais diferentes, mas são iguais em módulo, isto é estão à mesma distância da média (zero). Sendo assim, P(>9) = P(<- 9), devido à simetria da distribuição normal padrão em relação à média. Recordando que a probabilidade de ocorrência de um evento é igual a menos a probabilidade do seu complementar, então: P(-9<<9) = - 2 P(>9) = 2 2 = 758 h) No gráfico abaixo P(2,5 < < 2,8) i) No gráfico abaixo P(<-) Usando um raciocínio semelhante ao da letra d, basta obter a probabilidade de ser maior do que 2,5 e subtrair a probabilidade de ser maior do que 2,8: o resultado será exatamente a probabilidade do intervalo procurado. P(2,5< < 2,8) = P(>2,5) P(>2,8) = = 36 Esta probabilidade foi facilmente obtida por que os valores de são ambos positivos. O valor obtido é pequeno, pois o intervalo está a mais de 2 desvios padrões da média. A probabilidade procurada não pode ser obtida diretamente da tabela: esta define as probabilidades de ser MAIOR do que um certo valor. Entretanto, devido à simetria da distribuição normal padrão em relação à média zero: P(<-) = P(>) = 27 j) No gráfico abaixo P(>-) A probabilidade procurada não pode ser obtida diretamente da tabela, pois aqui é negativo. Entretanto, devido à simetria da distribuição normal padrão em relação à média zero, e usando a propriedade do evento complementar: P(>-) = -P(>) = 7 = 793 4

5 ,5 -,5 - -,5,5 -,5 - -,5,5 -,5 - -,5,5 -,5 - -,5 k) No gráfico abaixo P(-<<) INE 5 Gabarito da Lista de Exercícios de Probabilidade Podemos usar o raciocínio da letra e. A probabilidade P(<) é igual a P(>), mas P(<-) não pode ser obtida diretamente da tabela. Contudo, devido à simetria da distribuição normal padrão em relação à média zero: P(<-) = P(>). Então: P(-<<) = P(>) P(>) = 27 = 793 l) No gráfico abaixo P(-<<) Usemos um raciocínio semelhante ao da letra g, mas os valores que definem o intervalo têm sinais e valores diferentes. Mas, devido à simetria da distribuição normal padrão em relação à média: P(<-) = P(>). Recordando que a probabilidade de ocorrência de um evento é igual a menos a probabilidade do seu complementar, então: P(-<<) = - P(>) - P(>) = = 347 6) Determine os valores de z que correspondem às seguintes probabilidades: a) P( > z) = 55 (R.:,64) b) P( > z) = 228 (R.: 2) c) P( < z) = 228 (R.: ) d) P( < < z) = 772 (R.: 2) e) P(-z < < z) =,95 (R.:,96) f) P( < z) = (R.:,29) g) P( < z) = 55 (R.: -,64) h) P( < z) = (R.: ) i) P(-z < < z) =,6825 (R.:,) j) P(-z < < z) =,9544 (R.: 2,) a) No gráfico abaixo P(> ) = 55 Procura-se o valor de tal que a probabilidade de ser MAIOR do que ele seja igual a 55. Desta forma podemos procurar esta probabilidade diretamente na tabela. Na coluna da extrema esquerda identificamos a linha,6. E na primeira linha encontramos a segunda decimal 4, resultando em =,64. b) No gráfico abaixo P(> ) = 228. Procura-se o valor de tal que a probabilidade de ser MAIOR do que ele seja igual a 228. Desta forma podemos procurar esta probabilidade diretamente na tabela. Na coluna da extrema esquerda identificamos a linha 2,. E na primeira linha encontramos a segunda decimal, resultando em = 2,. 5

6 ,5 -,5 - -,5,5 -,5 - -,5,5 -,5 - -,5,5 -,5 - -,5 c) No gráfico abaixo P(< ) = 228 INE 5 Gabarito da Lista de Exercícios de Probabilidade Procura-se o valor de tal que a probabilidade de ser MENOR do que ele seja igual a 228. Desta forma NÃO podemos procurar esta probabilidade diretamente na tabela. Entretanto, devido à simetria da distribuição normal padrão à média zero, sabemos que: P(< ) = 228 = P(>- ) = 228 De acordo com a letra b = 2,, então =,. Observe a coerência do resultado: como a área é limitada por um valor ABAIO de zero, obviamente teria que ser negativo. d) No gráfico abaixo P(<< ) = 772 Procura-se o valor de tal que a probabilidade de estar entre e ele seja igual a 772. Percebe-se que será POSITIVO. P(<<) = 772 = P(>) P(> ) P(>) = 772 = 228. Observe que se trata do mesmo problema da letra b, então = 2. e) No gráfico abaixo P(- << ) =,95. f) No gráfico abaixo P(<) = Procura-se tal que a probabilidade de estar entre e + seja igual a,95. Como os dois valores estão à mesma distância de zero P(<- ) = P(> ) = (-,95)/2 = 25 P(>) = 25. Procura-se tal que a probabilidade de ser MAIOR do que ele seja igual a 25. Desta forma podemos procurar esta probabilidade diretamente na tabela. Na coluna da extrema esquerda identificamos a linha,9. E na primeira linha encontramos a segunda decimal 6, resultando em =,96. Procura-se tal que a probabilidade de ser MENOR do que ele seja igual a. Este valor não pode ser identificado diretamente na tabela, mas devido à simetria da distribuição normal à média zero: P(< ) = = P(>- ). Procura-se - tal que a probabilidade de ser MAIOR do que ele seja igual a. Desta forma podemos procurar esta probabilidade diretamente na tabela. Na coluna da extrema esquerda identificamos a linha 2,2. E na primeira linha encontramos a segunda decimal 9, resultando em - = 2,29. Logo =,29 (observe a coerência com o gráfico, pois é menor do que zero). 6

7 ,5 -,5 - -,5,5 -,5 - -,5,5 -,5 - -,5 g) No gráfico abaixo P(< ) = 55 INE 5 Gabarito da Lista de Exercícios de Probabilidade Procura-se o valor de tal que a probabilidade de ser MENOR do que ele seja igual a 55. Este valor não pode ser identificado diretamente na tabela, mas devido à simetria da distribuição normal à média zero: P(< ) = 55 = P(>- ) Procura-se o valor de - tal que a probabilidade de ser MAIOR do que ele seja igual a 55. Desta forma podemos procurar esta probabilidade diretamente na tabela. Na coluna da extrema esquerda identificamos a linha,6. E na primeira linha encontramos a segunda decimal 4, resultando em - =,64. Logo = -,64 (observe a coerência com o gráfico, pois é menor do que zero). h) P(< ) =. Como a distribuição normal padrão é simétrica em relação à sua média zero, então =, pois há 5% de chance dos valores serem menores do que zero. i) No gráfico abaixo P(- << ) =,6825 j) No gráfico abaixo P(- << ) =,9544 Procura-se tal que a probabilidade de estar entre e + seja igual a,6825. Como os dois valores estão à mesma distância de zero P(<- ) = P(> ) = (-,6825)/2 = 587 P(>) = 587. Procura-se tal que a probabilidade de ser MAIOR do que ele seja igual a 587. Desta forma podemos procurar esta probabilidade diretamente na tabela. Na coluna da extrema esquerda identificamos a linha,. E na primeira linha encontramos a segunda decimal, resultando em =,. Procura-se tal que a probabilidade de estar entre e + seja igual a,9544. Como os dois valores estão à mesma distância de zero P(<- ) = P(> ) = (-,9544)/2 = 228 P(>) = 228. Procura-se tal que a probabilidade de ser MAIOR do que ele seja igual a 228. Desta forma podemos procurar esta probabilidade diretamente na tabela. Na coluna da extrema esquerda identificamos a linha 2,. E na primeira linha encontramos a segunda decimal, resultando em = 2,. 7) Uma variável aleatória contínua apresenta distribuição normal com média 25 e desvio padrão igual a 2. Determine os valores de para os seguintes valores de : a) 23, (R.: -,) b) 23,5 (R.: -,75) c) 24, (R.: -) d) 25,2 (R.: ) e) 25,5 (R.: 5) A solução desta questão passa pela equação = (x - )/, sabendo-se que = 25 e = 2. 7

8 ,5 -,5 - -, ,5 -,5 - -,5 INE 5 Gabarito da Lista de Exercícios de Probabilidade a) = (235)/2 = -, b) = (23,55)/2 = -,75 c) = (245)/2 = - d) = (25,25)/2 = e) = (25,5 25)/2 = 5 8) Uma variável aleatória contínua apresenta distribuição normal com média 4 e desvio padrão igual a 3. Determine os valores de para os seguintes valores de : a) (R.: 4) b) 2, (R.: 46) c),75 (R.: 42,25) d) 2,53 (R.: 32,4) e) 3, (R.: 3) f) 3,2 (R.: 3) Novamente devemos usar a equação = (x - )/, mas isolar o valor de x: x = +, sabendo que = 4 e = 3. a) x = 4 + ( 3) = 4 b) x = 4 + (2 3) = 46 c) x = 4 + (,75 3) = 42,25 d) x = 4 + (,53 3) = 32,4 e) x = 4 + ( 3) = 3 f) x = 4 + (,2 3) = 3 9) Suponha que o escore dos estudantes no vestibular seja uma variável aleatória com distribuição normal com média 55 e variância 9. Se a admissão em certo curso exige um escore mínimo de 575, qual é a probabilidade de um estudante ser admitido? E se o escore mínimo for 54? (R.: 33;,6293) Em ambos os casos é preciso encontrar os valores de correspondentes aos escores mínimos 575 e 54. Como 575 é maior do que 55, o valor de associado será positivo, e como 54 é menor do que 55, será negativo. Vamos apresentar os cálculos, lembrando que o desvio padrão vale 3 (raiz quadrada de 9, que é a variância). Usando a equação = (x - )/ podemos encontrar os valores de correspondentes a 575 e 54: = (575-55)/3 =,83 2 = (54-55)/3 = - 3. Então P(>575) = P(>,83) e P(>54) = P(>). Os gráficos respectivos são mostrados a seguir: Nos dois primeiros gráficos vemos P(>575) = P(>,83), esta última probabilidade pode ser obtida diretamente da tabela: P(>,83) = 33. Nos gráficos seguintes vemos P(>54) = P(>), sendo que esta última probabilidade não pode ser obtida diretamente da tabela. Mas, como a distribuição normal padrão é simétrica em relação à média zero, e lembrando-se da propriedade da probabilidade do evento complementar: P(>)= - P(>3) = 77 =,

9 ,9 94,9 99,9 24,9 29,9,5 -,5 - -, ,9 94,9 99,9 24,9 29,9,5 -,5 - -,5 INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Supondo que a altura de um estudante do sexo masculino, tomado ao acaso de uma universidade, tenha distribuição normal com média 7 cm e desvio padrão cm. a) P (>9cm) =? R.: 228 b) P (5<<9) =? R.:,9544 c) P ( 6) =? R.: 587 Em todos os casos é preciso encontrar os valores de correspondentes aos valores de altura. a) Como 9 é maior do que 7, o valor de associado será positivo. Usando a equação = (x - )/ podemos encontrar o valor de correspondente a 9: = (9-7)/ = 2,. Então P(>9) = P(>2,). Os gráficos respectivos são mostrados a seguir: P(>2,) pode ser obtida diretamente da tabela: P(>2,) = 228. b) Precisamos calcular os escores associados aos valores 5 e 9. Como 5 é menor do que 7, o valor de associado será negativo, e como 9 é maior do que 7, o valor associado de será positivo (já calculado na letra a). Usando a equação = (x - )/ podemos encontrar os valores de correspondentes a 5 e 9: = (5-7)/ =, 2 = (9-7)/ = 2,. Então P(5<<9) = P(,<<2,). Os gráficos respectivos são mostrados a seguir: A área sombreada corresponde a P(,<<2,). Esta probabilidade NÃO pode ser obtida diretamente da tabela. Mas, devido à simetria da distribuição normal padrão em relação à média zero: P(>2,) = P(<,). Além disso, sabe-se que a soma de todas as probabilidades precisa ser igual a, o que permite obter: P(,<<2,) = P(<,) P(>2,) = P(>2,) P(>2,). P(>2,) pode ser obtida diretamente da tabela (ver letra a): P(>2,) = 228. Substituindo na fórmula: P(5<<9) = P(,<<2,) = P(>2,) P(>2,) = =,9544 c) Como 6 é menor do que 7, o valor de associado será negativo. Usando a equação = (x - )/ podemos encontrar o valor de correspondente a 6: = (6-7)/ = -,. Então P(<6) = P(<-,). Os gráficos respectivos são mostrados a seguir: 9

10 4 47, ,5 7 77, ,5 7,5 5 22,5 29,85 37,35 44,85 52,35 59,85,5 -,5 - -,5 4 47, ,5 7 77, ,5 7,5 5 22,5 29,85 37,35 44,85 52,35 59,85,5 -,5 - -, ,9 94,9 99,9 24,9 29,9,5 -,5 - -,5 INE 5 Gabarito da Lista de Exercícios de Probabilidade A probabilidade procurada não pode ser obtida diretamente da tabela: esta define as probabilidades de ser MAIOR do que um certo valor. Entretanto, devido à simetria da distribuição normal padrão em relação à média zero: P(<6) = P(<-,) = P(>,) = 587 ) Admitindo que a distribuição de Q.I. de crianças de uma certa escola, seja normal com média pontos e desvio padrão 5 pontos, calcule: a) Probabilidade de uma criança, tomada ao acaso nesta escola, acusar Q.I. superior a 2 pontos? R.: 98 b) Probabilidade de uma criança, tomada ao acaso nesta escola, acusar Q.I. na faixa de 9 a pontos? R.: 972 a) Como 2 é maior do que, o valor de associado será positivo. Usando a equação = (x - )/ podemos encontrar o valor de correspondente a 2: = (2-)/5 =,33. Então P(>2) = P(>,33). Os gráficos respectivos são mostrados a seguir: P(>,33) pode ser obtida diretamente da tabela: P(>,33) = 98. b) Precisamos calcular os escores associados aos valores 9 e. Como 9 é menor do que, o valor de associado será negativo, e como é maior do que, o valor associado de será positivo. Usando a equação = (x - )/ podemos encontrar os valores de correspondentes a 9 e : = (9-)/5 = -,67 2 = (-)/5 =,67. Então P(9<<) = P(-,67<<,67). Os gráficos respectivos são mostrados a seguir:

11 ,84 9,84 7,84 25,84 33,84,5 -,5 - -,5 INE 5 Gabarito da Lista de Exercícios de Probabilidade A área sombreada corresponde a P(-,67<<,67). Esta probabilidade NÃO pode ser obtida diretamente da tabela. Mas, devido à simetria da distribuição normal padrão em relação à média zero: P(>,67) = P(<-,67). Além disso, sabe-se que a soma de todas as probabilidades precisa ser igual a, o que permite obter: P(-,67<<,67) = P(<-,67) P(>,67) = P(>,67) P(>,67). P(>,67) pode ser obtida diretamente da tabela: P(>,67) = 54. Substituindo na fórmula: P(9<<) = P(-,67<<,67) = P(>,67) P(>,67) = = 972 2) Suponha que em certa região, o peso dos homens adultos tenha distribuição normal com média 7 kg e desvio padrão 6 kg. E o peso das mulheres adultas tenha distribuição normal com média 6 kg e desvio padrão 2 kg. Ao selecionar uma pessoa ao acaso, o que é mais provável: uma mulher com mais de 75 kg, ou um homem com mais de 9 kg? R.: Ambos têm a mesma probabilidade, 56. Em todos os casos é preciso encontrar os valores de correspondentes aos valores de peso. Precisamos encontrar a probabilidade de selecionar um homem com mais de 9 kg e comparar com a probabilidade de selecionar uma mulher com mais de 75 kg. Para o peso dos homens. Procuramos P(>9). Como 9 é maior do que 7 (média de peso dos homens), o valor associado de será positivo. Usando a equação = (x - )/ podemos encontrar o valor de correspondente a 9: = (9-7)/6 =,25. Então P(>9) = P(>,25). Os gráficos respectivos são mostrados a seguir: P(>,25) pode ser obtida diretamente da tabela: P(>,25) = 56. Para o peso das mulheres. Procuramos P(>75). Como 75 é maior do que 6 (média de peso das mulheres), o valor associado de será positivo. Usando a equação = (x - )/ podemos encontrar o valor de correspondente a 75: = (75-6)/2 =,25. O mesmo resultado obtido para os homens. Então: P(Peso homens > 9kg) = P(Peso mulheres > 75 kg) = P(>,25) = 56 3) Um professor aplica um teste e obtém resultados distribuídos normalmente com média 5 e desvio padrão. Se as notas são atribuídas segundo o esquema a seguir, determine os limites numéricos para cada conceito: A: % superiores; (R.: 62,8) B: notas acima dos 7% inferiores e abaixo dos % superiores; (R.: 55,2) C: notas acima dos 3% inferiores e abaixo dos 3% superiores; (R.: 44,8) D: notas acima dos % inferiores e abaixo dos 7% superiores; (R.: 37,2) E: % inferiores Sugestão: faça um desenho da distribuição normal com os percentuais (áreas). O problema é definir as faixas de percentuais, obter os valores de correspondentes e depois os valores das notas que definem os conceitos. Veja os gráficos abaixo.

12 5, 2 25, 3 35, 4 45, 5 55, 6 65, 69,9 74,9 79,9 84,9 89,9,,,5, -,5 -, -,,5 INE 5 Gabarito da Lista de Exercícios de Probabilidade P(> 4 ) = P(> 3 ) = P(> 2 ) =,7 P(> ) =,9 Procurando na tabela da distribuição normal padrão: 4,28, x 4 = 5 +,28 = 62,8 3 3, x 3 = = 55,3 P(> 2 ) =,7, P(>- 2 ) =,7 = , x 2 = 5 = 44,7 P(> ) =,9, P(>- ) =,9 = -,28 -,28, x = 5 -,28 = 37,2 As notas então serão 37,2, 44,7, 55,3 e 62,8. 2

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS Lista de Exercícios - Modelos Probabilísticos 1 INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS 35) Em um sistema de transmissão de dados existe uma probabilidade igual a 0,05 de um dado ser transmitido

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/2013 41. A idade média de todos

Leia mais

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO MEDIDAS DE DISPERSÃO 1) (PETROBRAS) A variância da lista (1; 1; 2; 4) é igual a: a) 0,5 b) 0,75 c) 1 d) 1,25 e) 1,5 2) (AFPS ESAF) Dada a seqüência de valores 4, 4, 2, 7 e 3 assinale a opção que dá o valor

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL

Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL Faculdade de Medicina Universidade Federal do Ceará Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL - Uma curva de distribuição pode descrever a forma da distribuição

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Exercícios Resolvidos da Distribuição Binomial

Exercícios Resolvidos da Distribuição Binomial . a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

A Curva Normal Luiz Pasquali

A Curva Normal Luiz Pasquali Capítulo 3 A Curva Normal Luiz Pasquali 1 A História da Curva Normal A curva normal, também conhecida como a curva em forma de sino, tem uma história bastante longa e está ligada à história da descoberta

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16 Lista de Probabilidade Básica com gabarito 1. Considere a experiência que consiste em pesquisar famílias com três crianças, em relação ao sexo das mesmas, segundo a ordem de nascimento. (a)determine o

Leia mais

Leia o texto abaixo para resolver as questões sobre população e amostra.

Leia o texto abaixo para resolver as questões sobre população e amostra. Leia o texto abaixo para resolver as questões sobre população e amostra. População e amostra População e amostra referem-se ao conjunto de entes cujas propriedades desejamos averiguar. População estatística

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Aula 10 Testes de hipóteses

Aula 10 Testes de hipóteses Aula 10 Testes de hipóteses Na teoria de estimação, vimos que é possível, por meio de estatísticas amostrais adequadas, estimar parâmetros de uma população, dentro de certo intervalo de confiança. Nos

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Estatística Aplicada ao Serviço Social Módulo 1:

Estatística Aplicada ao Serviço Social Módulo 1: Estatística Aplicada ao Serviço Social Módulo 1: Introdução à Estatística Importância da Estatística Fases do Método Estatístico Variáveis estatísticas. Formas Iniciais de Tratamento dos Dados Séries Estatísticas.

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se

Leia mais

Lista de Exercícios. Vetores

Lista de Exercícios. Vetores Lista de Exercícios Vetores LINGUAGEM DE PROGRAMAÇÃO PROF. EDUARDO SILVESTRI. WWW.EDUARDOSILVESTRI.COM.BR ATUALIZADO EM: 13/03/2007 Página 1/1 1. Faça um programa que crie um vetor de inteiros de 50 posições

Leia mais

Introdução à Estatística Inferencial Luiz Pasquali

Introdução à Estatística Inferencial Luiz Pasquali Capítulo 4 Introdução à Estatística Inferencial Luiz Pasquali Os temas deste capítulo são: Teste Estatístico Hipótese estatística Pressuposições no teste de hipótese Regras de decisão Erros tipo I e tipo

Leia mais

Olá pessoal! Sem mais delongas, vamos às questões.

Olá pessoal! Sem mais delongas, vamos às questões. Olá pessoal! Resolverei neste ponto a prova para AFRE/SC 2010 realizada pela FEPESE no último final de semana. Nosso curso teve um resultado muito positivo visto que das 15 questões, vimos 14 praticamente

Leia mais

Histogramas. 12 de Fevereiro de 2015

Histogramas. 12 de Fevereiro de 2015 Apêndice B Histogramas Uma situação comum no laboratório e na vida real é a de se ter uma grande quantidade de dados e deles termos que extrair uma série de informações. Encontramos essa situação em pesquisas

Leia mais

SISTEMA CLÁSSICO DE REDUÇÃO

SISTEMA CLÁSSICO DE REDUÇÃO Page 1 of 6 SISTEMA CLÁSSICO DE REDUÇÃO Este documento irá ensinar-lhe como pode fazer um desdobramento reduzido, segundo o processo clássico (italiano) para qualquer sistema 5/50, em particular para o

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE MAT30 200/ O objetivo destas notas é ilustrar como a ideia de fazer aproximações permite uma compreensão melhor de diversos problemas de combinatória e probabilidade..

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Descreve de uma forma adequada o

Descreve de uma forma adequada o EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada

Leia mais

Dedicado, Exclusivamente, A Todos Aqueles Que Querem A Aprovação!

Dedicado, Exclusivamente, A Todos Aqueles Que Querem A Aprovação! 1 Questões De Estatística Da Banca ESAF Que Você Precisa Aprender Como Resolver Antes De Fazer A Prova Do Concurso De Auditor-Fiscal Da Receita Federal 2014 Dedicado, Exclusivamente, A Todos Aqueles Que

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

A equação do 2º grau

A equação do 2º grau A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.

Leia mais

Aula 11 Esperança e variância de variáveis aleatórias discretas

Aula 11 Esperança e variância de variáveis aleatórias discretas Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o

Leia mais

Teorema Central do Limite e Intervalo de Confiança

Teorema Central do Limite e Intervalo de Confiança Probabilidade e Estatística Teorema Central do Limite e Intervalo de Confiança Teorema Central do Limite Teorema Central do Limite Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística MAE6 Noções de Estatística Grupo A - º semestre de 007 Exercício ( pontos) Uma máquina de empacotar um determinado produto o faz segundo uma distribuição normal, com média µ e desvio padrão 0g. (a) Em

Leia mais

Aula 5 Metodologias de avaliação de impacto

Aula 5 Metodologias de avaliação de impacto Aula 5 Metodologias de avaliação de impacto Metodologias de Avaliação de Impacto Objetiva quantificar as mudanças que o projeto causou na vida dos beneficiários. Plano de Aula Método experimental: regressão

Leia mais

Exercícios resolvidos sobre Definição de Probabilidade

Exercícios resolvidos sobre Definição de Probabilidade Exercícios resolvidos sobre Definição de Probabilidade Nesta Unidade de estudo, até este ponto você aprendeu definições de probabilidade e viu como os conceitos se aplicam a várias situações. Observe agora

Leia mais

Olá pessoal. Foram bem? Até que a prova não foi difícil! Vamos corrigir.

Olá pessoal. Foram bem? Até que a prova não foi difícil! Vamos corrigir. Olá pessoal. Foram bem? Até que a prova não foi difícil! Vamos corrigir. Resolução Lembre-se das fórmulas: coeficiente de variação (x) = coeficiente de correlação (x, y) = desvio padrão (x) média (x) covariância

Leia mais

Hipótese Estatística:

Hipótese Estatística: 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois

Leia mais

Aula 5 Técnicas para Estimação do Impacto

Aula 5 Técnicas para Estimação do Impacto Aula 5 Técnicas para Estimação do Impacto A econometria é o laboratório dos economistas, que busca reproduzir o funcionamento do mundo de forma experimental, como se faz nas ciências naturais. Os modelos

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

4) Quais dos seguintes pares de eventos são mutuamente exclusivos:

4) Quais dos seguintes pares de eventos são mutuamente exclusivos: INE 7002 LISTA DE EXERCÍCIOS PROBABILIDADE Lista de Exercícios - Probabilidade 1 1) Lâmpadas que se apresentam em perfeitas condições são ensaiadas quanto ao tempo de vida. Um instrumento é acionado no

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida Universidade do Estado do Rio Grande do Norte Rua Almino Afonso, 478 - Centro Mossoró / RN CEP: 59.610-210 www.uern.br email: reitoria@uern.br ou Fone: (84) 3315-2145 3342-4802 Óptica Geométrica Dr. Edalmy

Leia mais

Método dos mínimos quadrados - ajuste linear

Método dos mínimos quadrados - ajuste linear Apêndice A Método dos mínimos quadrados - ajuste linear Ao final de uma experiência muitas vezes temos um conjunto de N medidas na forma de pares (x i, y i ). Por exemplo, imagine uma experiência em que

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

Estrutura de Repetição Simples

Estrutura de Repetição Simples Instituto de Ciências Eatas e Biológicas ICEB Lista de Eercícios Básicos sobre Laço Estrutura de Repetição Simples Eercício 01 Escreva um programa que imprima todos os números inteiros de 0 a 50. A seguir,

Leia mais

Segurança da Informação e Proteção ao Conhecimento. Douglas Farias Cordeiro

Segurança da Informação e Proteção ao Conhecimento. Douglas Farias Cordeiro Segurança da Informação e Proteção ao Conhecimento Douglas Farias Cordeiro Risco O risco é medido por sua probabilidade de ocorrência e suas consequências; Pode se realizar uma análise qualitativa ou quantitativa;

Leia mais

RQ Edição Fevereiro 2014

RQ Edição Fevereiro 2014 RQ Edição Fevereiro 2014 18. Um noivo foi postar os convites de casamento nos Correios. Durante a pesagem das cartas, percebeu que todas tinham 0,045 kg, exceto uma, de 0,105 kg. Em um primeiro instante,

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Exercícios Resolvidos da Distribuição de Poisson

Exercícios Resolvidos da Distribuição de Poisson . a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado

Leia mais

Apresentação de Dados em Tabelas e Gráficos

Apresentação de Dados em Tabelas e Gráficos Apresentação de Dados em Tabelas e Gráficos Os dados devem ser apresentados em tabelas construídas de acordo com as normas técnicas ditadas pela Fundação Instituto Brasileiro de Geografia e Estatística

Leia mais

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos. Soluções dos Exercícios de Vestibular referentes ao Capítulo 1: 1) (UERJ, 2011) Uma máquina contém pequenas bolas de borracha de 10 cores diferentes, sendo 10 bolas de cada cor. Ao inserir uma moeda na

Leia mais

Medidas e Incertezas

Medidas e Incertezas Medidas e Incertezas O que é medição? É o processo empírico e objetivo de designação de números a propriedades de objetos ou eventos do mundo real de forma a descreve-los. Outra forma de explicar este

Leia mais

Teste de Hipótese para uma Amostra Única

Teste de Hipótese para uma Amostra Única Teste de Hipótese para uma Amostra Única OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Estruturar problemas de engenharia de tomada de decisão, como

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

Lista de Exercícios - Distribuição Normal

Lista de Exercícios - Distribuição Normal Lista de Exercícios - Distribuição Normal Monitor: Giovani e Prof. Jomar 01. Em indivíduos sadios, o consumo renal de oxigênio tem distribuição Normal de média 12 cm³/min e desvio padrão 1,5 cm³/min. Determinar

Leia mais

Universidade Federal Fluminense

Universidade Federal Fluminense Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 9: Intervalo de Confiança. 1. Um pesquisador está estudando a resistência de um determinado

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

CMg Q P RT P = RMg CT CF = 100. CMg

CMg Q P RT P = RMg CT CF = 100. CMg Pindyck & Rubinfeld, Capítulo 8, Oferta :: EXERCÍCIOS 1. A partir dos dados da Tabela 8.2, mostre o que ocorreria com a escolha do nível de produção da empresa caso o preço do produto apresentasse uma

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais