Lista de Exercícios 4: Soluções Sequências e Indução Matemática

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios 4: Soluções Sequências e Indução Matemática"

Transcrição

1 UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja, é possível atribuir associar) a cada número racional um número natural Abaixo, os números racionais positivos estão representados na forma de um par ordenado onde o primeiro número representa o numerador e o segundo o denominador Começando do número racional par ordenado, ) é possível associar o número natural e, seguindo o sentido das setas, atribuir o próximo número natural definindo assim uma sequência de enumeração Dado o número racional positivo p q, qual é o número natural correspondente?, ), ), ), ) 5, ), ), 5), 5), 5), 5) 5, 5), 5), ), ), ), ) 5, ), ), ), ), ), ) 5, ), ), ), ), ), ) 5, ), ), ), ), ), ) 5, ), ) De acordo com o enunciado acima, a enumeração dos números racionais irá ocorrer da forma apresentada a seguir o número natural associado a cada número racional está entre colchetes): Pontos a observar:, ), ), ), ) 5, ), ) [], 5), 5), 5), 5) 5, 5), 5) [] [0], ), ), ), ) 5, ), ) [0] [] [9], ), ), ), ) 5, ), ) [] [9] [] [8], ), ), ), ) 5, ), ) [] [5] [8] [] [7], ), ), ), ) 5, ), ) [] [] [] [7] [5] [] a a a a 5 a a Diagonais O número racional positivo p q é representado pelo par ordenado p, q);

2 A soma dos índices p e q dos pares ordenados ao longo de cada diagonal é a mesma Na primeira diagonal temos apenas um par ordenado, ie,, ), e a soma vale A partir da segunda diagonal, as somas dos índices valem,, 5, etc; Na primeira diagonal temos um par ordenado, na segunda dois, na terceira três e assim sucessivamente Isso significa que em cada diagonal temos p + q) pares ordenados; Quando a soma p + q é um número ímpar, a enumeração ocorre de baixo para cima e, quando é par, ocorre de cima para baixo; Para calcular o número natural k associado ao número racional p, q) temos que saber quantos pares ordenados existem nas diagonais anteriores à diagonal onde se encontra o par p, q) Essa é a soma de a p + q), representada por S: S [p + q) ] [p + q) ] Finalmente, deve-se determinar o sentido da enumeração de baixo para cima, ou vice-versa) para o par p, q): se p + q) mod 0 fimse então k S + p senão k S + q // p + q) é um número par, ie, a diagonal é de descida? // Sim, devemos somar a S o valor de p, que é o termo que cresce // Não, devemos somar a S o valor de q, que é o termo que cresce Observe que quando o sentido da enumeração é de cima para baixo ao longo da diagonal, o número p deve ser somado a S para determinar a posição correta da enumeração Quando o sentido da enumeração for o contrário, o número q deve ser somado Prove por indução matemática que n nn + )n + ), n a) Passo base: Para n, e nn+)n+) O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k kk + )k + ), k k + k + ) k + )k + )k + ) k + k + ) kk + )k + ) + k + ) kk + )k + ) + k + ) k + )[kk + ) + k + )] k + )[k + k + k + ] k + )k + 7k + ) k + )k + )k + )

3 Prove por indução matemática que n ) n, n a) Passo base: Para n, O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k ) k, k k ) + k + ) k + ), k k ) + k + ) k + k + ) k + ) Prove por indução matemática que n n), n Essa prova pode ser dividida em duas partes: i) prova do somatório do lado direito e substituição pela fórmula fechada, e ii) prova do somatório do lado esquerdo Sabe-se que a soma n, n, vale nn+) esta prova pode ser obtida por indução matemática) Assim, temos que n n n + ), n a) Passo base: Para n, +) O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k k k + ), k k + k + ) k + ) k + ), k k + k + ) k k + ) + k + ) k k + ) k k + ) + k + )k + ) + k + ) k + k + ) k + ) k + ) k + )k + )

4 5 Prove por indução matemática que n n + n, n a) Passo base: Para n, e + O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k k + k kk + ), k k + k + ) k + ) + k + ) k + )[k + ) + ] k + )k + ), k k + k + ) kk + ) + k + ) k + k + k + k + k + k + )k + ) Prove por indução matemática que n ii + ) i a) Passo base: Para n, n i ii + ) passo base é verdadeiro nn )n + ), inteiros n i ii + ) + ) e nn )n+) O b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k+ k ii + ) i k ii + ) i kk )k + ) kk + )k + ) k ii + ) i k ii + ) + kk + ) i kk )k + ) + kk + )

5 kk )k + ) + kk + ) kk + )[k ) + ] kk + )k + ) 7 Ache a fórmula fechada para a soma nn + ) inteiros n e prove o seu resultado por indução matemática Somando os primeiros termos e simplificando temos que: o que leva a conjectura que para todos os inteiros positivos n, nn + ) n n + a) Passo base: Para n,, que é o valor da fórmula fechada O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k kk + ) k k kk + ) + k + )k + ) k + k kk + ) + k + )k + ) k k + + k + )k + ) kk + ) + k + )k + ) k + k + k + )k + ) k + ) k + )k + ) k + k + 8 Ache a fórmula fechada para o produto ) ) ) ) n 5

6 inteiros n e prove o seu resultado por indução matemática Seja a suposição que ) ) ) ) n inteiros n Deve-se provar que de fato essa suposição é verdadeira n i ) i n a) Passo base: Para n, i i ) ) e a fórmula fechada vale O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k+ ) ) ) ) k k i ) ) ) ) ) k k + ) i k k+ i ) i k + k+ i ) i k ) ) i k + i ) ) k k + ) ) k + ) k k + k + 9 Ache a fórmula fechada para a soma n ) n + ) inteiros n e prove o seu resultado por indução matemática Seja a suposição que inteiros n n ) n + ) n n + a) Passo base: Para n, n ) n+) ) +) e a fórmula fechada vale + O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k ) k + ) k k +

7 k + ) ) k + ) + ) k + k + ) + ou equivalentemente, k + ) k + ) k + k k )k + ) + k + )k + ) k k + + k + )k + ) kk + ) k + )k + ) + k + )k + ) k + k + k + )k + ) k + )k + ) k + )k + ) k + k + 0 Ache a fórmula fechada para a soma n i i )i, inteiros n e prove o seu resultado por indução matemática Seja a suposição que n i i )i n inteiros n Deve-se provar que de fato essa suposição é verdadeira a) Passo base: Para n, os dois lados da equação valem O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k+ k i )i k, k i k+ i i )i k +, k k+ i i )i k i i )i + kk + ) k + k k + k + ) 7

8 Prove o seguinte predicado P n) usando indução matemática: P n): Qualquer número inteiro positivo n 8 pode ser escrito como a soma de s e 5 s Prova por indução matemática fraca): a) Passo base: P n 0 ) P 8): Para n 0 8, temos que e o predicado P é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k então deve ser verdadeira para n k +, ie, P k) P k + ) Suponha que a fórmula seja verdadeira para n k, ie, P k) : k a + 5b, para a 0 e b 0 [hipótese indutiva] Deve-se mostrar que P k + ) : k + a + 5b, para a 0 e b 0 Dois casos a considerar para k + : i) b 0: É possível substituir um 5 por dois s quando é feita a soma de: k + a + 5b + a + 5b ) a + + 5b ) a + 5b ii) b 0: Neste caso, deve haver pelo menos três s para termos valores de n 9 Assim, temos: [Isto era o que devia ser provado] k + a + a ) + + a + 5 a + 5b Suponha que temos selos de e 7 centavos Prove que é possível ter qualquer valor de postagem de 8 centavos ou mais usando somente esses selos Prova por indução matemática forte): a) Passo base: Para os seguintes valores de postagem p é possível usar apenas selos de e 7 centavos Assim, o passo base é verdadeiro p Selos b) Passo indutivo: Vamos supor que para todos inteiros p, 8 p < k, p seja um valor de postagem que pode ser obtido apenas com selos de e 7 centavos Vamos provar que a proposição também é verdadeira para k Ao dividirmos k por temos um quociente q e um resto entre 0 e Ao dividirmos os valores de postagem p [8, ] temos também como resto os valores entre 0 e Ou seja, k pode ser expresso como um valor de postagem p entre 8 e somando de um fator múltiplo de Formalmente temos que k p mod para um valor de p [8, ] Isto é lido como: k é congruente com p módulo, o que significa que existe um valor de p [8, ] que quando dividido por deixa o mesmo resto que k quando dividido por 8

9 Prove por indução matemática que n < n, para todos inteiros n 5 a) Passo base: Para n 5, a desigualdade 5 < 5 é verdadeira Assim, o passo base é verdadeiro b) Passo indutivo: se a afirmação é verdadeira para n k, k 5 então deve ser verdadeira para n k + k < k para todos inteiros k 5 para todos inteiros k 5 pela hipótese indutiva Sabe-se também que k + ) < k+ k + ) k + k + < k + k + k + < k para k Colocando estas desigualdades juntas, temos; Seja a seqüência a, a, a, definida como k + ) < k + k + < k + k a a k 7a k, inteiros k Prove por indução matemática que a n 7 n para todos os inteiros n a) Passo base: Para n, a n a 7 O passo base é verdadeiro b) Passo indutivo: se a afirmação é verdadeira para n k, k então deve ser verdadeira para n k + a k 7 k para todos inteiros k para todos inteiros k 5 Seja a seqüência a, a, a, definida como a k+ 7 k+) 7 k a k+ 7a k, inteiros k 7 7 k ) Hipótese indutiva 7 k a a a k a k + a k, inteiros k Prove por indução matemática que a n é ímpar para todos os inteiros n Prova por indução matemática forte): 9

10 a) Passo base: A propriedade é verdadeira para n e n, já que a e a, que são ímpares b) Passo indutivo: Se k > e a propriedade é verdadeira para todos i, i < k, então deve ser verdadeira para n k Seja k > um inteiro e suponha que a i é ímpar para todos os inteiros i, i < k Deve-se mostrar que a k é ímpar Sabe-se pela definição de a, a, a,, a n a k + a k Sabe-se também que a k é ímpar pela hipótese indutiva, já que k < k e k >, e a k é par, pela definição de número par Assim, a k + a k é a soma de um número ímpar e um número par, que dá como resultado sempre um número ímpar Seja a seqüência g 0, g, g, definida como g 0 g 9 g k 5g k g k, inteiros k Prove por indução matemática que g n 5 n + 7 n para todos os inteiros n 0 Prova por indução matemática forte): a) Passo base: Para n 0, temos que g e para n, temos que g Logo, o passo base é verdadeiro b) Passo indutivo: Se k > e a propriedade é verdadeira para todos i, i < k, então deve ser verdadeira para n k Seja k > um inteiro e suponha que g k 5 k + 7 k para todos os inteiros i, i < k Deve-se mostrar que g k 5 k + 7 k para n k g k 5g k g k 55 k + 7 k ) 5 k + 7 k ) 5 k + 5 k 0 k k k 5 0) + k 5 ) k 5 + k 8 k 9 5) + k 7) 5 k + 7 k 7 Seja a seqüência h 0, h, h, definida como h 0 h h h k h k + h k + h k, inteiros k Prove por indução matemática que h n n para todos os inteiros n 0 Prova por indução matemática forte): 0

11 a) Passo base: A propriedade é verdadeira para n h n n 0 h 0 0 h h 9 b) Passo indutivo: Se k > e a propriedade é verdadeira para todos i, i < k, então deve ser verdadeira para n k Seja k > um inteiro e suponha que h i i para todos os inteiros i, i < k Deve-se mostrar que h k k Sabe-se pela definição de h k h k + h k + h k Sabe-se também que Logo, h k k h k k h k k h k h k + h k + h k k + k + k k + + ) k ) k k já que < 8 Seja a seqüência x 0, x, x, definida como x 0 0 x x k 5x k + 7x k, inteiros k Prove por indução matemática que se k é múltiplo de então x k é par Prova por indução matemática forte): a) Passo base: Ao observarmos essa sequência temos: i x i Número 0 0 par ímpar ímpar par Para os índices 0 e, múltiplos de, a proposição está correta e, assim, o passo base é verdadeiro Se continuarmos a calcular os próximos valores de x i veremos que ambos x e x 5 sáo números ímpares e x é par b) Passo indutivo: Se k e a propriedade é verdadeira para todos i, i < k, então deve ser verdadeira para n k

12 seja k k, ou seja, k é um múltiplo de Os números x k e x k são ímpares Deve-se mostrar que x k é par Sabe-se que x k 5x k + 7x k O primeiro termo terá como resultado um número ímpar já que x k é ímpar que quando elevado a uma potência cúbica multiplicado por um fator ímpar, fornece um número ímpar O segundo termo terá como resultado um número ímpar já que x k é ímpar que quando multiplicado por um fator ímpar, fornece um número ímpar Assim, como x k é o resultado da soma de dois números ímpares, temos que x k é par 9 Seja a seqüência a 0, a, a, definida como a 0 0 a 0 a k a k + k k ), inteiros k Ache a fórmula fechada para o k-ésimo termo e prove por indução matemática Ao observarmos essa sequência temos: i a i ou seja, o termo Calcule essa soma sabendo que: a k i0 k i ) i i k i i i k i i n ix i x nxn + n )x n+ x) Dica: transforme a soma n i0 ixi em uma soma n i ixi, ou seja, acrescente o termo para i n e remova os termos para i 0 e i 0 Seja a seqüência a 0, a, a, definida como a 0 0 a a k k a k, inteiros k Ache a fórmula fechada para o k-ésimo termo e prove por indução matemática

13 Ao observarmos essa sequência temos: ou seja, o termo a i i a k Se k é par então a k k ; se k é ímpar então a k k+ Prova por indução matemática forte): k a) Passo base: A propriedade é verdadeira para i 08 b) Passo indutivo: Se k > e a propriedade é verdadeira para todos i, 0 i < k, então deve ser verdadeira para n k Se i é par então a i i ; se i é ímpar então a i i+, para 0 i < k Deve-se mostrar que essa proposição é verdadeira para k Sabe-se que a k k a k Temos dois casos: i) k é par: a k k a k k k k, já que k é ímpar e a k k + ii) k é ímpar: a k k a k k k k+, já que k é par e a k k Prove por indução matemática que n, n é ímpar a) Passo base: Para n, é ímpar O passo base é verdadeiro b) Passo indutivo: se a afirmação é verdadeira para n k, k então deve ser verdadeira para n k + k, k é ímpar k+ é ímpar k+ k k + k ) + Pela hipótese indutiva k é um número ímpar que quando multiplicado por e somado com continua sendo um número ímpar

11º ano - Indução matemática

11º ano - Indução matemática 1 O conjunto dos números racionais Q é enumerável, ou seja, é possível atribuir (associar) a cada número racional um número natural Abaixo, os números racionais positivos estão representados na forma de

Leia mais

Princípio da Indução Matemática: P(1) verdadeira ( k)[p(k) verdadeira P(k+1) verdadeira] ENTÃO P(n) verdadeira para todos os n inteiros positivos

Princípio da Indução Matemática: P(1) verdadeira ( k)[p(k) verdadeira P(k+1) verdadeira] ENTÃO P(n) verdadeira para todos os n inteiros positivos Indução Matemática Princípio da Indução Matemática: P(1) verdadeira ( k)[p(k) verdadeira P(k+1) verdadeira] ENTÃO P(n) verdadeira para todos os n inteiros positivos O Princípio da Indução Matemática é

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional

Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional Ciências Exatas & Engenharias 2 o Semestre de 2015 1. Construa a tabela da verdade para

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ. Questão Sistemas de Numeração No sistema de numeração de base 2, o numeral mais simples de

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

1. Sistemas de numeração

1. Sistemas de numeração 1. Sistemas de numeração Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo seria organizar,

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA 1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva

Leia mais

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de

Leia mais

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos? Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de

Leia mais

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

Princípio da Casa dos Pombos II

Princípio da Casa dos Pombos II Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 8 Princípio da Casa dos Pombos II Nesta aula vamos continuar praticando as ideias da aula anterior, aplicando o

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Equações do segundo grau

Equações do segundo grau Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro

Leia mais

Aplicações de Combinatória e Geometria na Teoria dos Números

Aplicações de Combinatória e Geometria na Teoria dos Números Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula Divisibilidade II Definição 1. Dados dois inteiros a e b, com a 0, dizemos que a divide b ou que a é um divisor

Leia mais

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17.

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17. Prova Teoria de Números 23/04/203 Nome: RA: Escolha 5 questões.. Mostre que 2 67 + 3 34 é múltiplo de 7. Solução: Pelo teorema de Fermat 2 6 (mod 7 e 3 7 3 (mod 7. Portanto, 2 67 = 2 64+3 = ( 2 6 4 8 8

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. 1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente.

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente. 1 LEI DE OHM A LEI DE OHM é baseada em três grandezas, já vistas anteriormente: a Tensão, a corrente e a resistência. Com o auxílio dessa lei, pode-se calcular o valor de uma dessas grandezas, desde que

Leia mais

Jogos com números Números ocultos - 2ª Parte

Jogos com números Números ocultos - 2ª Parte Jogos com números Números ocultos - 2ª Parte Observe atentamente os demais números e os elementos que aparecem em cada diagrama, com o objetivo de obter a regra pela qual se formam. 1) 2) 1 3) 4) 5) 6)

Leia mais

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil.

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 36 INTRODUÇÃO A CRIPTOGRAFIA RSA Rafael Lima Oliveira¹, Prof. Dr. Fernando Pereira de Souza². ¹CPTL/UFMS, Três Lagoas,

Leia mais

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1 Soluções integrais Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo Soluções do Capítulo 1 Basta somar os valores, lembrando que seta para baixo indica valor

Leia mais

quociente razão. mesma área a partes de um tablete de chocolate

quociente razão. mesma área a partes de um tablete de chocolate 1 As sequências de atividades Vamos relembrar, Como lemos os números racionais?, Como escrevemos os números racionais?, As partes das tiras de papel, Comparando e ordenando números racionais na forma decimal

Leia mais

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9 Ésófatorar... Serámesmo? Neste equeno artigo resolveremos o roblema 2 da USAMO (USA Mathematical Olymiad) 2005: Problema. Prove que o sistema x 6 + x + x y + y = 147 157 x + x y + y 2 + y + z 9 = 157 147

Leia mais

Princípio da Casa dos Pombos I

Princípio da Casa dos Pombos I Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 7 Princípio da Casa dos Pombos I O princípio da casa dos pombos também é conhecido em alguns países (na Rússia,

Leia mais

Qual é Mesmo a Definição de Polígono Convexo?

Qual é Mesmo a Definição de Polígono Convexo? Qual é Mesmo a Definição de Polígono Convexo? Elon Lages Lima IMPA, Rio de Janeiro Quando pensamos num polígono convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Professor: Custódio Nascimento 1- Análise da prova Neste artigo, faremos a análise das questões de cobradas na prova

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA

Leia mais

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso.

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso. Respostas de MAIO Dia 1: O menor número de ovos é 91. Dia 2: O nível da água baixa. No barquinho, a moeda desloca a mesma massa de água que a do barquinho, portanto, um volume maior que o da moeda. Na

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por:

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por: Primeira Lei da Termodinâmica A energia interna U de um sistema é a soma das energias cinéticas e das energias potenciais de todas as partículas que formam esse sistema e, como tal, é uma propriedade do

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ 1. Questão Sistemas de Numeração No sistema de numeração de base, o numeral mais simples de

Leia mais

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas.

N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas. 1 N1Q1 Solução a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas. b) Há várias formas de se cobrir o tabuleiro com peças dos tipos A e B, com pelo

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Conversão de Bases e Aritmética Binária

Conversão de Bases e Aritmética Binária Conversão de Bases e Aritmética Binária Prof. Glauco Amorim Sistema de Numeração Decimal Dígitos Decimais: 0 2 3 4 5 6 7 8 9 Potências de base 0 0 0 2 0 0 3 4 0 0 00 000 0 000 Sistema de Numeração Binário

Leia mais

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Estabilidade Carlos Alexandre Mello 1 Introdução Já vimos que existem três requisitos fundamentais para projetar um sistema de controle: Resposta Transiente Estabilidade Erros de Estado Estacionário Estabilidade

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 Este é o 7º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI

Leia mais

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais...

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais... Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2 1.1 Adição e Subtração de Números Racionais...2 1.2 Multiplicação e Divisão de Números Racionais...2 2.OPERAÇÕES COM NÚMEROS DECIMAIS...4 2.1 Adição e Subtração

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

QUADRADO MÁGICO - ORDEM 4

QUADRADO MÁGICO - ORDEM 4 CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de igual ao número de ); b) domínio: com elementos assumindo valores

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2 FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO Projeto e Análise de Algoritmos II Lista de Exercícios 2 Prof. Osvaldo. 1. Desenvolva algoritmos para as operações abaixo e calcule a complexidade

Leia mais

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1. EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área

Leia mais

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados 2aula Janeiro de 2012 TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS Objetivos: Familiarizar o aluno com os algarismos significativos, com as regras de arredondamento e as incertezas

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

Matemática Discreta - 03

Matemática Discreta - 03 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 03 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

A ideia de coordenatização (2/2)

A ideia de coordenatização (2/2) 8 a : aula (1h) 12/10/2010 a ideia de coordenatização (2/2) 8-1 Instituto Superior Técnico 2010/11 1 o semestre Álgebra Linear 1 o ano das Lics. em Engenharia Informática e de Computadores A ideia de coordenatização

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2 O Método de Separação de Variáveis A ideia central desse método é supor que a solução

Leia mais

Mínimo múltiplo comum e Máximo divisor comum

Mínimo múltiplo comum e Máximo divisor comum Tema: Mínimo múltiplo comum e Máximo divisor comum INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA Mato Grosso / Campus São Vicente Prof. Msc. Jeferson G. Moriel Jr. jeferson.moriel@svc.ifmt.edu.br

Leia mais

Calcular o montante de um capital de $1.000,00, aplicado à taxa de 4 % ao mês, durante 5 meses.

Calcular o montante de um capital de $1.000,00, aplicado à taxa de 4 % ao mês, durante 5 meses. JUROS COMPOSTOS Capitalização composta é aquela em que a taxa de juros incide sobre o capital inicial, acrescido dos juros acumulados até o período de montante anterior. Neste regime de capitalização a

Leia mais

Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda

Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região

Leia mais

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá.

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá. INTRODUÇÃO A lógica de programação é extremamente necessária para as pessoas que queiram trabalhar na área de programação, seja em qualquer linguagem de programação, como por exemplo: Pascal, Visual Basic,

Leia mais

Resolução de problemas e desenvolvimento de algoritmos

Resolução de problemas e desenvolvimento de algoritmos SSC0101 - ICC1 Teórica Introdução à Ciência da Computação I Resolução de problemas e desenvolvimento de algoritmos Prof. Vanderlei Bonato Prof. Cláudio Fabiano Motta Toledo Sumário Análise e solução de

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

A equação do 2º grau

A equação do 2º grau A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.

Leia mais

VALE PARA 1, PARA 2, PARA 3,... VALE SEMPRE?

VALE PARA 1, PARA 2, PARA 3,... VALE SEMPRE? VALE PARA 1, PARA 2, PARA 3,.... VALE SEMPRE? Renate Watanabe As afirmações abaio, sobre números naturais, são verdadeiras para os números 1, 2, 3 e muitos outros. Perguntamos: elas são verdadeiras sempre?

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS

PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS A RTIGO PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS Fábio Marson Ferreira e Walter Spinelli Professores do Colégio Móbile, São Paulo Recentemente nos desafiamos

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais