Lista de Exercícios 4: Soluções Sequências e Indução Matemática

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios 4: Soluções Sequências e Indução Matemática"

Transcrição

1 UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja, é possível atribuir associar) a cada número racional um número natural Abaixo, os números racionais positivos estão representados na forma de um par ordenado onde o primeiro número representa o numerador e o segundo o denominador Começando do número racional par ordenado, ) é possível associar o número natural e, seguindo o sentido das setas, atribuir o próximo número natural definindo assim uma sequência de enumeração Dado o número racional positivo p q, qual é o número natural correspondente?, ), ), ), ) 5, ), ), 5), 5), 5), 5) 5, 5), 5), ), ), ), ) 5, ), ), ), ), ), ) 5, ), ), ), ), ), ) 5, ), ), ), ), ), ) 5, ), ) De acordo com o enunciado acima, a enumeração dos números racionais irá ocorrer da forma apresentada a seguir o número natural associado a cada número racional está entre colchetes): Pontos a observar:, ), ), ), ) 5, ), ) [], 5), 5), 5), 5) 5, 5), 5) [] [0], ), ), ), ) 5, ), ) [0] [] [9], ), ), ), ) 5, ), ) [] [9] [] [8], ), ), ), ) 5, ), ) [] [5] [8] [] [7], ), ), ), ) 5, ), ) [] [] [] [7] [5] [] a a a a 5 a a Diagonais O número racional positivo p q é representado pelo par ordenado p, q);

2 A soma dos índices p e q dos pares ordenados ao longo de cada diagonal é a mesma Na primeira diagonal temos apenas um par ordenado, ie,, ), e a soma vale A partir da segunda diagonal, as somas dos índices valem,, 5, etc; Na primeira diagonal temos um par ordenado, na segunda dois, na terceira três e assim sucessivamente Isso significa que em cada diagonal temos p + q) pares ordenados; Quando a soma p + q é um número ímpar, a enumeração ocorre de baixo para cima e, quando é par, ocorre de cima para baixo; Para calcular o número natural k associado ao número racional p, q) temos que saber quantos pares ordenados existem nas diagonais anteriores à diagonal onde se encontra o par p, q) Essa é a soma de a p + q), representada por S: S [p + q) ] [p + q) ] Finalmente, deve-se determinar o sentido da enumeração de baixo para cima, ou vice-versa) para o par p, q): se p + q) mod 0 fimse então k S + p senão k S + q // p + q) é um número par, ie, a diagonal é de descida? // Sim, devemos somar a S o valor de p, que é o termo que cresce // Não, devemos somar a S o valor de q, que é o termo que cresce Observe que quando o sentido da enumeração é de cima para baixo ao longo da diagonal, o número p deve ser somado a S para determinar a posição correta da enumeração Quando o sentido da enumeração for o contrário, o número q deve ser somado Prove por indução matemática que n nn + )n + ), n a) Passo base: Para n, e nn+)n+) O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k kk + )k + ), k k + k + ) k + )k + )k + ) k + k + ) kk + )k + ) + k + ) kk + )k + ) + k + ) k + )[kk + ) + k + )] k + )[k + k + k + ] k + )k + 7k + ) k + )k + )k + )

3 Prove por indução matemática que n ) n, n a) Passo base: Para n, O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k ) k, k k ) + k + ) k + ), k k ) + k + ) k + k + ) k + ) Prove por indução matemática que n n), n Essa prova pode ser dividida em duas partes: i) prova do somatório do lado direito e substituição pela fórmula fechada, e ii) prova do somatório do lado esquerdo Sabe-se que a soma n, n, vale nn+) esta prova pode ser obtida por indução matemática) Assim, temos que n n n + ), n a) Passo base: Para n, +) O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k k k + ), k k + k + ) k + ) k + ), k k + k + ) k k + ) + k + ) k k + ) k k + ) + k + )k + ) + k + ) k + k + ) k + ) k + ) k + )k + )

4 5 Prove por indução matemática que n n + n, n a) Passo base: Para n, e + O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k k + k kk + ), k k + k + ) k + ) + k + ) k + )[k + ) + ] k + )k + ), k k + k + ) kk + ) + k + ) k + k + k + k + k + k + )k + ) Prove por indução matemática que n ii + ) i a) Passo base: Para n, n i ii + ) passo base é verdadeiro nn )n + ), inteiros n i ii + ) + ) e nn )n+) O b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k+ k ii + ) i k ii + ) i kk )k + ) kk + )k + ) k ii + ) i k ii + ) + kk + ) i kk )k + ) + kk + )

5 kk )k + ) + kk + ) kk + )[k ) + ] kk + )k + ) 7 Ache a fórmula fechada para a soma nn + ) inteiros n e prove o seu resultado por indução matemática Somando os primeiros termos e simplificando temos que: o que leva a conjectura que para todos os inteiros positivos n, nn + ) n n + a) Passo base: Para n,, que é o valor da fórmula fechada O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k kk + ) k k kk + ) + k + )k + ) k + k kk + ) + k + )k + ) k k + + k + )k + ) kk + ) + k + )k + ) k + k + k + )k + ) k + ) k + )k + ) k + k + 8 Ache a fórmula fechada para o produto ) ) ) ) n 5

6 inteiros n e prove o seu resultado por indução matemática Seja a suposição que ) ) ) ) n inteiros n Deve-se provar que de fato essa suposição é verdadeira n i ) i n a) Passo base: Para n, i i ) ) e a fórmula fechada vale O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k+ ) ) ) ) k k i ) ) ) ) ) k k + ) i k k+ i ) i k + k+ i ) i k ) ) i k + i ) ) k k + ) ) k + ) k k + k + 9 Ache a fórmula fechada para a soma n ) n + ) inteiros n e prove o seu resultado por indução matemática Seja a suposição que inteiros n n ) n + ) n n + a) Passo base: Para n, n ) n+) ) +) e a fórmula fechada vale + O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k k ) k + ) k k +

7 k + ) ) k + ) + ) k + k + ) + ou equivalentemente, k + ) k + ) k + k k )k + ) + k + )k + ) k k + + k + )k + ) kk + ) k + )k + ) + k + )k + ) k + k + k + )k + ) k + )k + ) k + )k + ) k + k + 0 Ache a fórmula fechada para a soma n i i )i, inteiros n e prove o seu resultado por indução matemática Seja a suposição que n i i )i n inteiros n Deve-se provar que de fato essa suposição é verdadeira a) Passo base: Para n, os dois lados da equação valem O passo base é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k, k então deve ser verdadeira para n k+ k i )i k, k i k+ i i )i k +, k k+ i i )i k i i )i + kk + ) k + k k + k + ) 7

8 Prove o seguinte predicado P n) usando indução matemática: P n): Qualquer número inteiro positivo n 8 pode ser escrito como a soma de s e 5 s Prova por indução matemática fraca): a) Passo base: P n 0 ) P 8): Para n 0 8, temos que e o predicado P é verdadeiro b) Passo indutivo: se a fórmula é verdadeira para n k então deve ser verdadeira para n k +, ie, P k) P k + ) Suponha que a fórmula seja verdadeira para n k, ie, P k) : k a + 5b, para a 0 e b 0 [hipótese indutiva] Deve-se mostrar que P k + ) : k + a + 5b, para a 0 e b 0 Dois casos a considerar para k + : i) b 0: É possível substituir um 5 por dois s quando é feita a soma de: k + a + 5b + a + 5b ) a + + 5b ) a + 5b ii) b 0: Neste caso, deve haver pelo menos três s para termos valores de n 9 Assim, temos: [Isto era o que devia ser provado] k + a + a ) + + a + 5 a + 5b Suponha que temos selos de e 7 centavos Prove que é possível ter qualquer valor de postagem de 8 centavos ou mais usando somente esses selos Prova por indução matemática forte): a) Passo base: Para os seguintes valores de postagem p é possível usar apenas selos de e 7 centavos Assim, o passo base é verdadeiro p Selos b) Passo indutivo: Vamos supor que para todos inteiros p, 8 p < k, p seja um valor de postagem que pode ser obtido apenas com selos de e 7 centavos Vamos provar que a proposição também é verdadeira para k Ao dividirmos k por temos um quociente q e um resto entre 0 e Ao dividirmos os valores de postagem p [8, ] temos também como resto os valores entre 0 e Ou seja, k pode ser expresso como um valor de postagem p entre 8 e somando de um fator múltiplo de Formalmente temos que k p mod para um valor de p [8, ] Isto é lido como: k é congruente com p módulo, o que significa que existe um valor de p [8, ] que quando dividido por deixa o mesmo resto que k quando dividido por 8

9 Prove por indução matemática que n < n, para todos inteiros n 5 a) Passo base: Para n 5, a desigualdade 5 < 5 é verdadeira Assim, o passo base é verdadeiro b) Passo indutivo: se a afirmação é verdadeira para n k, k 5 então deve ser verdadeira para n k + k < k para todos inteiros k 5 para todos inteiros k 5 pela hipótese indutiva Sabe-se também que k + ) < k+ k + ) k + k + < k + k + k + < k para k Colocando estas desigualdades juntas, temos; Seja a seqüência a, a, a, definida como k + ) < k + k + < k + k a a k 7a k, inteiros k Prove por indução matemática que a n 7 n para todos os inteiros n a) Passo base: Para n, a n a 7 O passo base é verdadeiro b) Passo indutivo: se a afirmação é verdadeira para n k, k então deve ser verdadeira para n k + a k 7 k para todos inteiros k para todos inteiros k 5 Seja a seqüência a, a, a, definida como a k+ 7 k+) 7 k a k+ 7a k, inteiros k 7 7 k ) Hipótese indutiva 7 k a a a k a k + a k, inteiros k Prove por indução matemática que a n é ímpar para todos os inteiros n Prova por indução matemática forte): 9

10 a) Passo base: A propriedade é verdadeira para n e n, já que a e a, que são ímpares b) Passo indutivo: Se k > e a propriedade é verdadeira para todos i, i < k, então deve ser verdadeira para n k Seja k > um inteiro e suponha que a i é ímpar para todos os inteiros i, i < k Deve-se mostrar que a k é ímpar Sabe-se pela definição de a, a, a,, a n a k + a k Sabe-se também que a k é ímpar pela hipótese indutiva, já que k < k e k >, e a k é par, pela definição de número par Assim, a k + a k é a soma de um número ímpar e um número par, que dá como resultado sempre um número ímpar Seja a seqüência g 0, g, g, definida como g 0 g 9 g k 5g k g k, inteiros k Prove por indução matemática que g n 5 n + 7 n para todos os inteiros n 0 Prova por indução matemática forte): a) Passo base: Para n 0, temos que g e para n, temos que g Logo, o passo base é verdadeiro b) Passo indutivo: Se k > e a propriedade é verdadeira para todos i, i < k, então deve ser verdadeira para n k Seja k > um inteiro e suponha que g k 5 k + 7 k para todos os inteiros i, i < k Deve-se mostrar que g k 5 k + 7 k para n k g k 5g k g k 55 k + 7 k ) 5 k + 7 k ) 5 k + 5 k 0 k k k 5 0) + k 5 ) k 5 + k 8 k 9 5) + k 7) 5 k + 7 k 7 Seja a seqüência h 0, h, h, definida como h 0 h h h k h k + h k + h k, inteiros k Prove por indução matemática que h n n para todos os inteiros n 0 Prova por indução matemática forte): 0

11 a) Passo base: A propriedade é verdadeira para n h n n 0 h 0 0 h h 9 b) Passo indutivo: Se k > e a propriedade é verdadeira para todos i, i < k, então deve ser verdadeira para n k Seja k > um inteiro e suponha que h i i para todos os inteiros i, i < k Deve-se mostrar que h k k Sabe-se pela definição de h k h k + h k + h k Sabe-se também que Logo, h k k h k k h k k h k h k + h k + h k k + k + k k + + ) k ) k k já que < 8 Seja a seqüência x 0, x, x, definida como x 0 0 x x k 5x k + 7x k, inteiros k Prove por indução matemática que se k é múltiplo de então x k é par Prova por indução matemática forte): a) Passo base: Ao observarmos essa sequência temos: i x i Número 0 0 par ímpar ímpar par Para os índices 0 e, múltiplos de, a proposição está correta e, assim, o passo base é verdadeiro Se continuarmos a calcular os próximos valores de x i veremos que ambos x e x 5 sáo números ímpares e x é par b) Passo indutivo: Se k e a propriedade é verdadeira para todos i, i < k, então deve ser verdadeira para n k

12 seja k k, ou seja, k é um múltiplo de Os números x k e x k são ímpares Deve-se mostrar que x k é par Sabe-se que x k 5x k + 7x k O primeiro termo terá como resultado um número ímpar já que x k é ímpar que quando elevado a uma potência cúbica multiplicado por um fator ímpar, fornece um número ímpar O segundo termo terá como resultado um número ímpar já que x k é ímpar que quando multiplicado por um fator ímpar, fornece um número ímpar Assim, como x k é o resultado da soma de dois números ímpares, temos que x k é par 9 Seja a seqüência a 0, a, a, definida como a 0 0 a 0 a k a k + k k ), inteiros k Ache a fórmula fechada para o k-ésimo termo e prove por indução matemática Ao observarmos essa sequência temos: i a i ou seja, o termo Calcule essa soma sabendo que: a k i0 k i ) i i k i i i k i i n ix i x nxn + n )x n+ x) Dica: transforme a soma n i0 ixi em uma soma n i ixi, ou seja, acrescente o termo para i n e remova os termos para i 0 e i 0 Seja a seqüência a 0, a, a, definida como a 0 0 a a k k a k, inteiros k Ache a fórmula fechada para o k-ésimo termo e prove por indução matemática

13 Ao observarmos essa sequência temos: ou seja, o termo a i i a k Se k é par então a k k ; se k é ímpar então a k k+ Prova por indução matemática forte): k a) Passo base: A propriedade é verdadeira para i 08 b) Passo indutivo: Se k > e a propriedade é verdadeira para todos i, 0 i < k, então deve ser verdadeira para n k Se i é par então a i i ; se i é ímpar então a i i+, para 0 i < k Deve-se mostrar que essa proposição é verdadeira para k Sabe-se que a k k a k Temos dois casos: i) k é par: a k k a k k k k, já que k é ímpar e a k k + ii) k é ímpar: a k k a k k k k+, já que k é par e a k k Prove por indução matemática que n, n é ímpar a) Passo base: Para n, é ímpar O passo base é verdadeiro b) Passo indutivo: se a afirmação é verdadeira para n k, k então deve ser verdadeira para n k + k, k é ímpar k+ é ímpar k+ k k + k ) + Pela hipótese indutiva k é um número ímpar que quando multiplicado por e somado com continua sendo um número ímpar

Princípio da Indução Matemática: P(1) verdadeira ( k)[p(k) verdadeira P(k+1) verdadeira] ENTÃO P(n) verdadeira para todos os n inteiros positivos

Princípio da Indução Matemática: P(1) verdadeira ( k)[p(k) verdadeira P(k+1) verdadeira] ENTÃO P(n) verdadeira para todos os n inteiros positivos Indução Matemática Princípio da Indução Matemática: P(1) verdadeira ( k)[p(k) verdadeira P(k+1) verdadeira] ENTÃO P(n) verdadeira para todos os n inteiros positivos O Princípio da Indução Matemática é

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA 1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ. Questão Sistemas de Numeração No sistema de numeração de base 2, o numeral mais simples de

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de

Leia mais

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI

Leia mais

Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional

Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional Ciências Exatas & Engenharias 2 o Semestre de 2015 1. Construa a tabela da verdade para

Leia mais

1. Sistemas de numeração

1. Sistemas de numeração 1. Sistemas de numeração Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo seria organizar,

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17.

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17. Prova Teoria de Números 23/04/203 Nome: RA: Escolha 5 questões.. Mostre que 2 67 + 3 34 é múltiplo de 7. Solução: Pelo teorema de Fermat 2 6 (mod 7 e 3 7 3 (mod 7. Portanto, 2 67 = 2 64+3 = ( 2 6 4 8 8

Leia mais

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional.

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional. Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 3 - GABARITO 06 de julho de 013 1. (1,5 pontos) Determine se as afirmações

Leia mais

A ideia de coordenatização (2/2)

A ideia de coordenatização (2/2) 8 a : aula (1h) 12/10/2010 a ideia de coordenatização (2/2) 8-1 Instituto Superior Técnico 2010/11 1 o semestre Álgebra Linear 1 o ano das Lics. em Engenharia Informática e de Computadores A ideia de coordenatização

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula Divisibilidade II Definição 1. Dados dois inteiros a e b, com a 0, dizemos que a divide b ou que a é um divisor

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

Aritmética com Maple:

Aritmética com Maple: Aritmética com Maple: Capítulo 4: Objetivos: 1. Realizar operações básicas de números complexos com o Maple 2. Realizar operações com raízes usando o Maple 3. Arredondamento de números reais Partes real

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

Aplicações de Combinatória e Geometria na Teoria dos Números

Aplicações de Combinatória e Geometria na Teoria dos Números Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

Jogos com números Números ocultos - 2ª Parte

Jogos com números Números ocultos - 2ª Parte Jogos com números Números ocultos - 2ª Parte Observe atentamente os demais números e os elementos que aparecem em cada diagrama, com o objetivo de obter a regra pela qual se formam. 1) 2) 1 3) 4) 5) 6)

Leia mais

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1 Soluções integrais Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo Soluções do Capítulo 1 Basta somar os valores, lembrando que seta para baixo indica valor

Leia mais

quociente razão. mesma área a partes de um tablete de chocolate

quociente razão. mesma área a partes de um tablete de chocolate 1 As sequências de atividades Vamos relembrar, Como lemos os números racionais?, Como escrevemos os números racionais?, As partes das tiras de papel, Comparando e ordenando números racionais na forma decimal

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ 1. Questão Sistemas de Numeração No sistema de numeração de base, o numeral mais simples de

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro e Acad. Taís Aline Bruno de Azevedo.

Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro e Acad. Taís Aline Bruno de Azevedo. 1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA SECRETARIA DE ENSINO À DISTÂNCIA O NÚMERO DE OURO Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro

Leia mais

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais...

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais... Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2 1.1 Adição e Subtração de Números Racionais...2 1.2 Multiplicação e Divisão de Números Racionais...2 2.OPERAÇÕES COM NÚMEROS DECIMAIS...4 2.1 Adição e Subtração

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

Chapter 2. 2.1 Noções Preliminares

Chapter 2. 2.1 Noções Preliminares Chapter 2 Seqüências de Números Reais Na Análise os conceitos e resultados mais importantes se referem a limites, direto ou indiretamente. Daí, num primeiro momento, estudaremos os limites de seqüências

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Ciências Experimentais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Ciências Experimentais AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Ciências Experimentais Planificação Anual de Matemática A 10º ano Ano Letivo 2015/2016 TEMA

Leia mais

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Professor: Custódio Nascimento 1- Análise da prova Neste artigo, faremos a análise das questões de cobradas na prova

Leia mais

POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior.

POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior. POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior. Bruno Marques Collares, UFRGS, collares.bruno@hotmail.com Diego Fontoura Lima, UFRGS,

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda

Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

INE5403 - Fundamentos de Matemática Discreta para a Computação

INE5403 - Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 2) Fundamentos 2.1) Conjuntos e Sub-conjuntos 2.2) Números Inteiros 2.3) Funções 2.4) Seqüências e Somas 2.5) Crescimento de Funções Divisão

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

Equações do segundo grau

Equações do segundo grau Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

Título : B2 Matemática Financeira. Conteúdo :

Título : B2 Matemática Financeira. Conteúdo : Título : B2 Matemática Financeira Conteúdo : A maioria das questões financeiras é construída por algumas fórmulas padrão e estratégias de negócio. Por exemplo, os investimentos tendem a crescer quando

Leia mais

Matemática Discreta - 05

Matemática Discreta - 05 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Matemática Discreta - 03

Matemática Discreta - 03 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 03 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Princípio das casas de pombo

Princípio das casas de pombo Princípio das casas de pombo Márcia R. Cerioli IM e COPPE, UFRJ Renata de Freitas IME, UFF Petrucio Viana IME, UFF Maio de 2014 1 Introdução Neste texto, apresentamos e exemplificamos o Princípio das Casas

Leia mais

Seqüências, Limite e Continuidade

Seqüências, Limite e Continuidade Módulo Seqüências, Limite e Continuidade A partir deste momento, passaremos a estudar seqüência, ites e continuidade de uma função real. Leia com atenção, caso tenha dúvidas busque indicadas e também junto

Leia mais

PC Fundamentos Revisão 4

PC Fundamentos Revisão 4 exatasfepi.com.br PC Fundamentos Revisão 4 André Luís Duarte...mas os que esperam no Senhor renovarão as suas forças; subirão com asas como águias; correrão, e não se cansarão; andarão, e não se fatigarão.is

Leia mais

Não há 3 sem 2: O Teorema de Sharkovskii

Não há 3 sem 2: O Teorema de Sharkovskii Não há 3 sem 2: O Teorema de Sharkovskii Nuno Mestre Programa Gulbenkian Novos Talentos em Matemática Departamento de Matemática da Universidade de Coimbra 1 ESTRUTURA 1. Introdução 2. Casos p = 2 e p

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Programas simples em C

Programas simples em C Programas simples em C Problema 1. Escreve um programa em C que dados dois inteiros indique se são iguais ou qual o maior. Utilizar a construção em 5 etapas... quais? 1. Perceber o problema 2. Ideia da

Leia mais

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4 UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas

Leia mais

Limites e continuidade

Limites e continuidade Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1. EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área

Leia mais

Princípio da Casa dos Pombos I

Princípio da Casa dos Pombos I Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 7 Princípio da Casa dos Pombos I O princípio da casa dos pombos também é conhecido em alguns países (na Rússia,

Leia mais

Faculdades Pitágoras de Uberlândia. Matemática Básica 1

Faculdades Pitágoras de Uberlândia. Matemática Básica 1 Faculdades Pitágoras de Uberlândia Sistemas de Informação Disciplina: Matemática Básica 1 Prof. Walteno Martins Parreira Júnior www.waltenomartins.com.br waltenomartins@yahoo.com 2010 Professor Walteno

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números

Leia mais

Lógica de Programação

Lógica de Programação Lógica de Programação Significa o uso correto das leis do pensamento e de processos de raciocínio para a produção de soluções logicamente válidas e coerentes, que resolvam com qualidade os problemas que

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Estabilidade Carlos Alexandre Mello 1 Introdução Já vimos que existem três requisitos fundamentais para projetar um sistema de controle: Resposta Transiente Estabilidade Erros de Estado Estacionário Estabilidade

Leia mais

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com)

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) 1. O dominó Você já deve conhecer o dominó. Não vamos pensar no jogo de dominós

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h)

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h) Números Reais. Simplifique as seguintes expressões (definidas nos respectivos domínios): x a), x b) x+ +, x c) +x + x +x, d) x, e) ( x ), f) 4 x 4 x, g) x ( x ), h) 3 x 6 x, i) x x +, j) x x+ x, k) log

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

Algoritmo e Programação

Algoritmo e Programação Algoritmo e Programação Professor: José Valentim dos Santos Filho Colegiado: Engenharia da Computação Prof.: José Valentim dos Santos Filho 1 Ementa Noções básicas de algoritmo; Construções básicas: operadores,

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos.

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos. Objetivos 2. Sistemas de Numeração, Operações e Códigos Revisar o sistema de numeração decimal Contar no sistema de numeração binário Converter de decimal para binário e vice-versa Aplicar operações aritméticas

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Contagem com Recursões

Contagem com Recursões Programa Olímpico de Treinamento Curso de Combinatória Nível 3 Prof. Carlos Shine Aula 4 Contagem com Recursões Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios

Leia mais

Algoritmos de Busca em Tabelas

Algoritmos de Busca em Tabelas Dentre os vários algoritmos fundamentais, os algoritmos de busca em tabelas estão entre os mais usados. Considere por exemplo um sistema de banco de dados. As operações de busca e recuperação dos dados

Leia mais

Aula 17 Continuidade Uniforme

Aula 17 Continuidade Uniforme Continuidade Uniforme Aula 17 Continuidade Uniforme MÓDULO 2 - AULA 17 Metas da aula: Discutir o conceito de função uniformemente contínua, estabelecer o Teorema da Continuidade Uniforme e o Teorema da

Leia mais