Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ
|
|
- Renata Ferretti Arantes
- 5 Há anos
- Visualizações:
Transcrição
1 Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ 1. Questão Sistemas de Numeração No sistema de numeração de base, o numeral mais simples de 3 é: a) b) c) 1100 d) 1001 e) 11 Para passar um número qualquer da base 10 para a base dividimos o mesmo por sucessivamente até encontrar quociente igual a 1: Lendo da direita para a esquerda começando pelo último quociente e indo até o primeiro resto obtemos o número na base : 310 = Opção. Questão O setor público registra déficit de R$ 33,091 bilhões em Se x é igual ao número de zeros dessa quantia, desprezados os zeros dos centavos, então o número x escrito no sistema binário é: a) 10 ( ) b) 100 ( ) c) 101 ( ) d) 110 ( ) e) 111 ( ) quantia bilhões pode ser representada por uma potência de 10: 9 1 bilhão = = 10 ssim: 9 33, 091 bilhões = 33, = Como são 7 zeros, precisamos passar para a base : 710 = 111 Observação: Cuidado com essa questão, pois há uma armadilha ; é preciso contar o zero entre o 3 e o 9 ( ). Opção E 1
2 3. Questão Curso Mentor tabela abaixo está escrita no sistema binário. Determine o único elemento que satisfaça a sequência a) b) c) d) e) O melhor caminho para esta questão talvez seja colocar cada número da tabela no sistema de base 10 e verificar mais claramente qual a regra de formação dela: Opção 4. Questão Sistema Decimal de Numeração No número ( 111 ) 3, qual o valor relativo do algarismo que ocupa a segunda ordem quando escrito no sistema decimal? Para passar o número para a base 10 usamos o seguinte procedimento: = ( ) Portanto: 1113 = = 133 Separando em ordens: 133 = Resposta: Questão Escrevendo-se o algarismo 5 à direita de um certo número, ele fica aumentado de 48 unidades. Que número é esse? De acordo com o enunciado temos: O que nos dá: a5 = a a + 5 = a
3 Solucionando esta equação teremos: 10a a = a = 43 a = 9 a = 7 Tirando a prova real: 75 = Resposta: 7 6. Questão Operações Fundamentais Um dado elevador pode transportar, com segurança, no máximo, uma tonelada. Supondo-se que esse elevador esteja transportando três pessoas com 67 kg cada, seis pessoas com 75 kg cada e três pessoas com 8 kg cada, qual o número máximo de pessoas com 56 kg cada que ainda poderiam ser transportadas sem risco de sobrecarga? Solução 1: Somando o peso das pessoas já no elevador: = = 897 O peso total já é de 897 kg. Colocando mais um passageiro de 56 kg: = 953 Caso seja colocado mais um passageiro de 56 kg: = 1009 O que ultrapassa uma tonelada. Portanto só é possível colocar mais um passageiro além dos que já estão no elevador. Solução : O problema pode ser solucionado usando inequações: n 56 < n 56 < n < n < 56 n < 1,83 Como n deve ser natural seu valor é 1. Resposta: 1 7. Questão Números Primos Determine três números naturais consecutivos cujo produto é 504. Vamos fatorar 504:
4 Note que as combinações destes fatores separadas em três grupos nos darão os números possíveis. pesar disso, nossa pesquisa será mais restrita, pois os números devem ser consecutivos e começando por isso não será possível, pois os próximos números seriam 3 e 4, o que é impossível. Veja: 3? Com não é possível 5, passemos para 6. Há um fator para 7, mas não há fatores suficientes para fazer 8. Confira: 3 = = 1 O próximo teste é 7, 8 e 9. Que é nossa resposta. Para que fique ainda mais claro, abaixo, listamos as possibilidades de combinações: 8. Questão Parcelas da fatoração Números 3 3 7, e , 4 e , 1 e , 7 e , 4, e , 6 e , 7 e , 8 e , 8 e , 7 e 4 O número de divisores do número 40 é: a) 8 b) 6 c) 4 d) e) 0 Resposta: 7,8 e 9 Seja N um número qualquer cuja fatoração encontra-se abaixo: a b c N = x y z... O número de divisores positivos D de qualquer número N pode ser dado pela expressão: D = ( a + 1) ( b + 1) ( c + 1 )... Fatorando 40: O total de divisores positivos será: D = D = 8 ( ) ( ) Opção 4
5 9. Questão Curso Mentor soma dos dois maiores fatores primos de 10 é: a) 9 b) 8 c) 10 d) 5 e) 7 Fatorando 10: Daí: S = S = 8 Opção 10. Questão Se N = 30, qual o número de divisores positivos de N que são também múltiplos de 15? Vamos fatorar N: Reescrevendo esta fatoração: ( ) N = 3 5 N = 3 5 ( ) N = Note que excluindo a parcela com resultado 15 temos: D = D = 16 ( ) ( ) ( ) Esses 16 divisores serão obrigatoriamente múltiplos de 15, pois estão multiplicados por 15. Resposta: Ângulos 11. Questão Na figura, é paralelo a CD. O valor do ângulo EC ˆ é: 40 C x 35 E D a) 35 b) 40 c) 50 d) 55 e) 75 5
6 Traçando uma paralela auxiliar a e CD passando por E: 40 a b E D Usando as propriedades de duas paralelas cortadas por uma transversal, vemos que a = 40 e b = 35 então: x = a + b x = 75 Opção E 35 C 1. Questão Triângulos Considere o quadrilátero da figura abaixo e calcule a medida do ângulo x em função das medidas de a, b e c. a b R c Primeiro, traçamos o prolongamento de um dos lados até interceptar o outro lado: a b R x c Note que x é ângulo externo do triângulo maior, logo: x = a + b Pelo mesmo motivo: R = x + c Substituindo uma equação na outra: R = a + b + c x 6
7 13. Questão Curso Mentor R = a + b + c No triângulo C, = C e  = 80. Os pontos D, E e F estão sobre os lados C, C e respectivamente. Se CE = CD e F = D, então o ângulo EDF ˆ é igual a: F E C D a) 30 b) 40 c) 50 d) 60 e) 70 Como = C temos que ˆ = Cˆ = 50. Do enunciado temos CE = CD, logo CED ˆ = CDE ˆ = 65. Também do enunciado, temos F = D, então FD ˆ = DF ˆ = 65. Olhando a figura percebemos que: CDE ˆ + DF ˆ + EDF ˆ = 180 Logo: EDF ˆ = EDF ˆ = 50 Opção C 14. Questão Em qual dos polígonos convexos a soma dos ângulos internos mais a soma dos ângulos externos é de 1080? a) Pentágono b) Hexágono c) Heptágono d) Octógono e) Eneágono soma dos ângulos internos de um polígono convexo é dada pela expressão: S = 180 n i ( ) soma dos ângulos externos é dada por: Se = 360 Do enunciado: S + S = 1080 i ( ) e 180 n = n = n = n = O polígono tem 6 lados, logo é o hexágono. Opção 7
8 15. Questão Os polígonos CDEFGH, GHL e HIJ são regulares. Calcule o ângulo LI ˆ. E D F G L C H I J Como GHL é equilátero temos GHL ˆ = 60. Calculando o ângulo interno do octógono: ( ) a 180 n i = a i = n 8 ai = 135 Calculando então o ângulo LH ˆ : LH ˆ = LH ˆ = 75 Observando o triângulo HL, temos: H = HL Portanto: ˆ ˆ 105 HL = LH = O triângulo IH é retângulo em H e isósceles (IH = H ), o que nos dá: IH ˆ = 45 Da figura: LI ˆ = IH ˆ + HL ˆ ˆ 105 ˆ 195 LI = 45 + LI = LI ˆ = 97, 5 ou LI ˆ = 97 30' 16. Questão Círculo Num círculo tomam-se, no mesmo sentido de percurso, os arcos = 110, C = 60 e CD. Sabendo-se que o ângulo D ˆ = 65, determine a soma dos ângulos Ê e ˆF formados respectivamente, pelos prolongamentos das cordas e DC e das cordas C e D. 8
9 Façamos primeiro a figura do enunciado: D C 60 F E Como D ˆ = 65 o arco D vale 130, portanto o arco CD vale 70. partir disso: + C + CD + D = = 360 = = 10 Para calcular os ângulos em E e F devemos lembrar do que segue abaixo: D F Seja o triângulo CF. O ângulo em é metade do arco CD: CD Â = Olhando agora para o ângulo externo em C teremos: ˆ C = Usando o ângulo externo em C do triângulo CF: ˆF + ˆ = C ˆ Então: CD CD Fˆ + = Fˆ = CD ˆF = Usando este resultado no problema: ˆ ˆ F + E = + C Fˆ + Eˆ = 50 9
10 17. Questão Sendo Curso Mentor = x e CD = y, o valor de x + y é: x 100 D 40 y C a) 90 b) 10 c) 140 d) 150 e) 160 O arco D vale: D = CD ˆ D = 80 D é subentendido pelo ângulo D ˆ : ˆ D D = D ˆ = 40 Sendo E a interseção das cordas, a soma dos ângulos do triângulo E: ˆ + ˆ + Eˆ = 180 ˆ = 180 Somando todos os arcos: Â = 60 + C + CD + D = 360 x y + 80 = 360 x + y = 160 Opção E 18. Questão Na figura, é o diâmetro da circunferência de centro O; OX e OY são respectivamente bissetrizes de OC ˆ e OD. ˆ Desta forma XOY ˆ mede: O X 38 Y C D a) 76 b) 96 c) 109 d) 138 e) 181 Do enunciado temos que: ˆ XOC Podemos então escrever a soma: OC ˆ = e ˆ YOD OD ˆ 10 = C + CD + D = 180
11 Somando 38 : Curso Mentor XOC ˆ + YOD ˆ + 38 = 180 XOC ˆ + YOD ˆ = 71 XOY ˆ = 109 Opção C 19. Questão Considere a figura abaixo: Linhas Proporcionais O M P N R Se MOP ˆ = NOR ˆ, OM = 3 cm, OP = cm e ON = 4 cm, determine a medida de OR. Traçando o segmento RN vemos que os ângulos subentendem o mesmo arco ON: O ˆ OMP e ˆ ORN são congruentes, pois 3 4 M P N R Como os triângulos OMP e ORN têm dois ângulos iguais, eles são semelhantes (pelo caso ). Podemos então escrever: OP OM = ON OR 3 = OR = 6 4 OR O segmento OR vale, então, 6 cm. 11
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ. Questão Sistemas de Numeração No sistema de numeração de base 2, o numeral mais simples de
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ. Questão Sistemas de Numeração No sistema de numeração de base, o numeral mais simples de é:
Soluções de Questões de Matemática CEFET/RJ
Soluções de Questões de Matemática CEFET/RJ de outubro 00 Esta apostila contém soluções comentadas das questões de matemática de provas de seleção para o Ensino Médio no Centro Federal de Educação Celso
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ. Questão Sistemas de Numeração No sistema de numeração de base, o numeral mais simples de é:
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que
AV1 - MA 13-2011 UMA SOLUÇÃO. b x
Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,
Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana
Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade
MATEMÁTICA ANGULOS ENTRE RETAS E TRIÂNGULOS. 3. A medida do complemento: a) do ângulo de 27º 31 é: b) do ângulo de 16º 15 28 é:
MATEMÁTICA Prof. Adilson ANGULOS ENTRE RETAS E TRIÂNGULOS 1. Calcule o valor de x e y observando as figuras abaixo: a) b) 2. Calcule a medida de x nas seguintes figuras: 3. A medida do complemento: a)
Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ
Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre
Construções Fundamentais. r P r
1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular
Unidade didáctica: circunferência e polígonos. Matemática 9º ano
Unidade didáctica: circunferência e polígonos Matemática 9º ano POLÍGONOS. Ângulos de um polígono DEFINIÇÃO: Um polígono é uma superfície plana limitada por uma linha poligonal fechada. Em qualquer polígono
a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.
OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 ALTERNATIVA B A diferença entre o que há na primeira balança e o que há a balança do meio é exatamente o que há na última balança; logo, na última balança deve aparecer a marcação 64 41 = 23
Aula 12 Áreas de Superfícies Planas
MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número
Aula 10 Triângulo Retângulo
Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira
Sistemas de Numerações.
Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema
Análise Combinatória. Prof. Thiago Figueiredo
Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as
Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.
1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,
Vestibular 2ª Fase Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis
Conversão de Bases e Aritmética Binária
Conversão de Bases e Aritmética Binária Prof. Glauco Amorim Sistema de Numeração Decimal Dígitos Decimais: 0 2 3 4 5 6 7 8 9 Potências de base 0 0 0 2 0 0 3 4 0 0 00 000 0 000 Sistema de Numeração Binário
Unidade 4 Formas geométricas planas
Sugestões de atividades Unidade 4 Formas geométricas planas 6 MTMÁTI 1 Matemática 1. O relógio, representado abaixo, indica exatamente 8 horas. TracieGrant/Shutterstock c) um ângulo de 120 ; d) um ângulo
GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar
GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,
AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?
Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de
Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso
Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio
Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais
É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do
Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos
Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO
GABARITO NÍVEL 1 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 1) C 6) A 11) D 16) C 2) D 7) C 12) C 17) D 3) E 8) B 13) E 18) A 4) E 9) B 14)
Geometria Euclidiana Plana Parte I
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Geometria Euclidiana Plana Parte I Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção O que veremos
Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental
a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor
Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto
Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum
Conceitos e fórmulas
1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que
Definição de Polígono
Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais
x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?
Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões
Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro
Programa Olímpico de Treinamento urso de Geometria - Nível 2 Prof. Rodrigo Pinheiro ula 1 Introdução Nesta aula, aprenderemos conceitos iniciais de geometria e alguns teoremas básicos que utilizaremos
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,
Solução da prova da 1 a fase OBMEP 2008 Nível 1
OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,
5. DESENHO GEOMÉTRICO
5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e
REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.
NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a
Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.
Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique
Prof. Jorge. Estudo de Polígonos
Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem
Aula 5 Quadriláteros Notáveis
Aula 5 Quadriláteros Notáveis Paralelogramo Definição: É o quadrilátero convexo que possui os lados opostos paralelos. A figura mostra um paralelogramo ABCD. Teorema 1: Se ABCD é um paralelogramo, então:
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
Contagem I. Figura 1: Abrindo uma Porta.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?
REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA
1 TEORIA 1 DEFININDO ESPELHOS PLANOS Podemos definir espelhos planos como toda superfície plana e polida, portanto, regular, capaz de refletir a luz nela incidente (Figura 1). Figura 1: Reflexão regular
CURSO DE GEOMETRIA LISTA
GEOMETRI Ângulos Obs.: Dois ângulos são congruentes quando têm a mesma abertura. Exemplos: Ângulos complementares Soma (medida) 90º Ângulos suplementares Soma (medida) 180º issetriz bissetriz de um ângulo
. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.
OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto
Princípio da Casa dos Pombos I
Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 7 Princípio da Casa dos Pombos I O princípio da casa dos pombos também é conhecido em alguns países (na Rússia,
ESCALAS. Escala numérica objeto. é a razão entre a dimensão gráfica e a dimensão real de um determinado. d/d = 1/Q
ESCLS Importância da escala: O uso de uma escala é indispensável quando se faz necessário representar um objeto graficamente mantendo a proporção entre suas partes ou em relação a outros objetos. Escala
NÍVEL 1 7 a Lista. 1) Qual é o maior dos números?
NÍVEL 1 7 a Lista 1) Qual é o maior dos números? (A) 1000 + 0,01 (B)1000 0,01 (C) 1000/0,01 (D) 0,01/1000 (E) 1000 0,01 ) Qual o maior número de 6 algarismos que se pode encontrar suprimindo-se 9 algarismos
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
Aplicações de Combinatória e Geometria na Teoria dos Números
Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao
CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES
B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos
01 Os anos do calendário chinês, um dos mais antigos que a história registra, começam sempre
01 Os anos do calendário chinês, um dos mais antigos que a história registra, começam sempre em uma lua nova, entre 21 de janeiro e 20 de fevereiro do calendário gregoriano. Eles recebem nomes de animais,
1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.
1 A AVALIAÇÃO ESPECIAL UNIDADE I -014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Questão 01. (UESC-Adaptada) (x + )!(x + )! O valor de x N, que
5 Equacionando os problemas
A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar
(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).
Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,
Olimpíadas Portuguesas de Matemática
XXV OPM Final o dia 7 Categoria A Justifica convenientemente as tuas respostas e indica os principais cálculos Não é permitido o uso de calculadoras http://wwwpt/~opm Duração: horas Questão : 6 pontos
Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta:
Desenho geométrico Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Linha que estabelece a menor distância entre 2 pontos. Por 1 ponto podem passar infinitas retas. Por 2
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema
Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a
A) 1 B) 26 C) 3 D) 4 E) 5 A) 9 B) 9 C) 4 D) 3 E) 8
MATEMÁTCA 0. A Empresa Pernambuco S/A revende uma determinada peça automotiva. A gerência comercial da empresa aplica a seguinte regra para venda do produto: a diferença entre o preço de venda e o preço
Este material traz a teoria necessária à resolução das questões propostas.
Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem
EQUAÇÕES E INEQUAÇÕES DE 1º GRAU
1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª
EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.
EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área
quociente razão. mesma área a partes de um tablete de chocolate
1 As sequências de atividades Vamos relembrar, Como lemos os números racionais?, Como escrevemos os números racionais?, As partes das tiras de papel, Comparando e ordenando números racionais na forma decimal
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU
FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA
Raio é o segmento de recta que une um ponto da circunferência com o seu centro.
Catarina Ribeiro 1 Vamos Recordar: Circunferência de centro C e raio r é o lugar geométrico de todos os pontos do plano que estão à mesma distância r de um ponto fixo C. Círculo de centro C e raio r é
Pré-Seleção OBM Nível 3
Aluno (a) Pré-Seleção OBM Nível 3 Questão 1. Hoje é sábado. Que dia da semana será daqui a 99 dias? a) segunda-feira b) sábado c) domingo d) sexta-feira e) quinta feira Uma semana tem 7 dias. Assim, se
Capítulo 1. x > y ou x < y ou x = y
Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos
Lista de Exercícios Sistemas de Numeração
Lista de Exercícios Sistemas de Numeração 1- (Questão 5 BNDES Profissional Básico Análise de Sistemas - Suporte ano 010) Um administrador de sistemas, ao analisar o conteúdo de um arquivo binário, percebeu
CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.
Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.
Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.
PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.
MATEMÁTICA PARA CONCURSOS II
1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma
Problemas de volumes
Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução
Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *
Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b
Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir
Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.
MATEMÁTICA 3 A SÉRIE - E. MÉDIO
1 MTEMÁTI 3 SÉRIE - E. MÉDIO Prof. Rogério Rodrigues O TEOREM DE TLES NOME :... NÚMERO :... TURM :... 2 VI - O TEOREM DE TLES VI. 1) Tudo é água Do último terço do séc. VII à primeira metade do séc. VI
1. Usando Linguagem Natural, descreva o algoritmo que resolve o seguinte problema:
1. Usando Linguagem Natural, descreva o algoritmo que resolve o seguinte problema: - Numa escola, decidiu-se fazer o censo de alunos. Criou-se uma base de dados onde os registros são estruturados da seguinte
Lista de Exercícios 4: Soluções Sequências e Indução Matemática
UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.
TIPOS DE REFLEXÃO Regular Difusa
Reflexão da luz TIPOS DE REFLEXÃO Regular Difusa LEIS DA REFLEXÃO RI = raio de luz incidente i normal r RR = raio de luz refletido i = ângulo de incidência (é formado entre RI e N) r = ângulo de reflexão
Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência
Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,
PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010
PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas
Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto
Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de
Jeandervall. Roteamento
Roteamento Configurar um roteador parece um tanto quanto complicado, porem não é uma tarefa impossível. O detalhe é que é preciso tomar muita a atenção na ora de configurar as rotas. Recomenda-se que antes
Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan
Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matemática Divisores e Múltiplos Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por
O problema do jogo dos discos 1
O problema do jogo dos discos 1 1 Introdução Roberto Ribeiro Paterlini Departamento de Matemática da UFSCar Temos aplicado o problema do jogo dos discos em classes de estudantes de Licenciatura em Matemática
Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma
Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns
Projeto Rumo ao ITA Exercícios estilo IME
Exercícios estilo IME PROGRAMA IME ESPECIAL ANÁLISE COMBINATÓRIA PROF. PAULO ROBERTO 01. Em um baile há seis rapazes e dez moças. Quantos pares podem ser formados para a dança: a) sem restrição; b) se
16 Comprimento e área do círculo
A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.
INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE
INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.
Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 04 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (OBEMEP- ADAPTADO) Laura e sua avó Ana acabaram de descobrir que,
13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau
MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes
5 LG 1 - CIRCUNFERÊNCIA
40 5 LG 1 - CIRCUNFERÊNCIA Propriedade: O lugar geométrico dos pontos do plano situados a uma distância constante r de um ponto fixo O é a circunferência de centro O e raio r. Notação: Circunf(O,r). Sempre