Este material traz a teoria necessária à resolução das questões propostas.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Este material traz a teoria necessária à resolução das questões propostas."

Transcrição

1 Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem e de argumentação. Diagramas e estruturas lógicas Esta amostra é parte integrante do volume completo que consta de 80 questões apenas de Raciocínio Lógico e visa preparar para os principais concursos realizados no País. Este material traz a teoria necessária à resolução das questões propostas. Peça já o seu exemplar completo através do Prof. Marcelo Silva Todos os direitos reservados. Proibida a distribuição ou reprodução, ainda que parcial, dessa publicação sem autorização prévia.

2 O PRINCÍPIO ADITIVO Enunciamos abaixo o que chamamos de Princípio Aditivo: Se A e B são dois conjuntos disjuntos (conjuntos sem elementos em comum), com m e n elementos, respectivamente, então A e B possui m + n elementos. Para ilustrar o Princípio Aditivo, apresentamos alguns problemas abaixo. PROBLEMA 1 Numa caixa existem 20 bolas brancas e 15 bolas verdes. De quantas maneiras podemos selecionar 1 bola? Existem = 35 bolas. Logo, podemos selecionar 1 bola de 35 maneiras. PROBLEMA 2 Numa lanchonete há 6 sabores de doces e 4 sabores de salgados. Suponha que Sofia só pretenda comer um doce ou comer um salgado. Quantos são os possíveis pedidos que Sofia pode fazer? Ou Sofia escolhe um tipo de doce dentre os 6 ou 1 tipo de salgado dentre os 6. Portanto, Sofia pode fazer 10 pedidos diferentes. PROBLEMA 3 Dos 20 alunos de uma classe, 7 foram reprovados em Biologia, 8 em Química e 3 em Biologia e Química. O número de maneiras diferentes de escolher um aluno reprovado em Biologia ou em Química será igual a? Nesta situação, os eventos são: E 1 = {x ; x é reprovado em Biologia} e E 2 = {x ; x é reprovado em Química}. Atenção!!! Nesse caso, os eventos NÃO são mutuamente exclusivos (existe interseção entre eles), pois há alunos reprovados nas duas matérias. Aí, não simplesmente somamos as quantidades de elementos, somamos e subtraímos o número de elementos da interseção, conforme a fórmula: n E1 n E2 n E1 E 2 Solucionando o problema, temos:

3 n E n E n E E n E n E n E E O PRINCÍPIO MULTIPLICATIVO Para ilustrar o Princípio Multiplicativo comecemos com o problema seguinte: PROBLEMA 4 Uma pessoa pode viajar no trecho Natal/Recife/Natal de ônibus, automóvel, avião, navio ou trem. Se o meio de transporte da ida não é o mesmo da volta, de quantas maneiras essa pessoa pode realizar a viagem? Se a pessoa for de ônibus, ela pode voltar de avião, navio ou trem, o que lhe fornece 3 maneiras distintas de fazer o percurso de ida e volta. Notando ônibus por O, avião por A, navio por N e trem por T, podemos indicar as 3 maneiras distintas de fazer o percurso por: (O, A), (O, N), (O, T) De maneira análoga, se a pessoa for de avião, há novamente 3 modos distintos de fazer o percurso de ida e volta: (A, O), (A, N), (A, T) Se a pessoa for de navio, há, também, 3 modos distintos de fazer o percurso de ida e volta: (N, O), (N, A), (N, T) Analogamente, se fizer o percurso de ida usando o trem: (T, O), (T, A), (T, N) Essas maneiras podem ser dispostas no seguinte quadro Observe que as possibilidades (O, O), (A, A), (N, N) e (T, T) não são possíveis, já que o

4 meio de transporte de ida não pode ser o mesmo meio de transporte de volta. O quadro acima mostra-nos, basta contar todas as possibilidades, que existem 4 x 3 = 12 maneiras distintas de viajar no trecho Natal/Recife/Natal, usando meios de transportes distintos para a ida e a volta. Podemos interpretar o problema da seguinte maneira: para a escolha do transporte de ida temos 4 opções distintas. Uma vez escolhido o transporte de ida, a escolha do transporte de volta pode ser feita de 3 maneiras distintas. Logo, o total de possibilidades é 4 x 3 = 12. O problema acima motiva um princípio básico da Análise Combinatória: o Princípio Multiplicativo, que enunciamos a seguir. PRINCÍPIO MULTIPLICATIVO Se uma decisão d1 pode ser tomada de m maneiras e se, uma vez tomada a decisão d1, a decisão d2 puder ser tomada de n maneiras então o número de maneiras de se tomarem as decisões d1 e d2 sucessivamente é m.n PROBLEMA 5 Existem quantos números naturais com quatro algarismos ímpares distintos? Os algarismos ímpares são: 1, 3, 5, 7, 9. Um número com 4 algarismos é da forma: abcd. A escolha de um algarismo para ocupar a posição a pode ser feita de 5 maneiras. Uma vez escolhido o algarismo para a posição a, restam 4 possibilidades para a escolha do algarismo da posição b. Para a posição c, restam 3 possibilidades. Para a posição d restam 2. Pelo Princípio Multiplicativo, a quantidade de números de 4 algarismos ímpares distintos é: 5 x 4 x 3 x 2 = 120. PROBLEMA 6 (Prominp Cesgranrio Nov/2006) Seu Ernesto e filhos vendem planos de saúde por telefone. Esta semana, eles decidiram ligar somente para os telefones de sua cidade que começam por 259, e que não possuem algarismos repetidos. Se, na cidade de Seu Ernesto, os números telefônicos têm 8 dígitos, qual o número máximo de ligações que eles farão esta semana? Os números de telefones têm o seguinte formato:

5 2 5 9 _ - Dos dez algarismos disponíveis, Seu Ernesto não pode contar mais com três, pois não é permitido repetição: Assim para a quarta posição, temos 7 possibilidades de escolhas entre os algarismos restantes: _ - 7 alternativas (0, 1, 3, 4, 6, 7 ou 8) E assim, sucessivamente... 6 alternativas _ - 7 alternativas (0, 1, 3, 4, 6, 7 ou 8) Assim, pelo princípio multiplicativo, teremos 7x6x5x4x possibilidades. O número máximo de ligações será de Dica: Assim, fica claro que o grande detalhe em questões que envolvam um dos dois princípios acima (aditivo ou multiplicativo), é a correta escolha de qual deles usar. Portanto, tenha bastante calma na interpretação de cada questão.

6 PROBLEMA 7 Um alfabeto consiste de três letras: A, B, C. Nesta língua, uma palavra é uma seqüência arbitrária de não mais do que três letras. Quantas palavras existem nesta língua? Basta contar quantas palavras existem com uma, duas ou três letras e somar esses valores. Com uma letra existem 3 palavras: A, B e C. Com duas letras existem 3 x 3 = 9 palavras e com três letras existem 3 x 3 x 3 = 27 letras. Portanto, nesta língua existem = 39 palavras. PROBLEMA 08 Dispondo-se de 10 bolas, 7 apitos e 12 camisas, de quantas maneiras distintas estes objetos podem ser distribuídos entre duas pessoas, de modo que cada uma receba, ao menos, 3 bolas, 2 apitos e 4 camisas? Na distribuição das bolas, a primeira pessoa pode receber: 3 (esta é a quantidade mínima), 4, 5, 6 ou 7 (essa é a quantidade máxima possível para a primeira), pois a segunda pessoa tem de receber no mínimo 3 bolas. Isto é, existem 5 possibilidades de se fazer a distribuição das bolas. Na distribuição dos apitos, fazendo um raciocínio análogo (parecido), a primeira pessoa pode receber: 2, 3, 4 ou 5 deles (devem sobrar, no mínimo 2 apitos para a segunda pessoa, por isso que a primeira pessoa só poderá receber até 5 apitos). Isto é, existem 4 possibilidades. Para as camisas, a distribuição se dá com 5 possibilidades: a primeira pessoa pode receber 4, 5, 6, 7 ou 8 delas. Portanto, pelo princípio multiplicativo, o número pedido é igual a: 5 x 4 x 5 = 100. Muito mais exercícios são encontrados na Apostila Completa. Agora, um pouco de Diagramas Lógicos: O ou exclusivo (disjunção exclusiva) é verdadeiro apenas se a quantidade de operadores verdadeiros for ímpar, ou melhor, se APENAS uma proposição for verdadeira. Eis a tebelaverdade que ilustra essa propriedade: Ou exclusivo p q. pv q F F F F V V V F V V V F

7 PROBLEMA 39 (Fiscal do Trabalho 98 ESAF) Maria tem três carros: um Gol, um Corsa e um Fiesta. Um dos carros é branco, o outro é preto, e o outro é azul. Sabe-se que: 1) ou o Gol é branco, ou o Fiesta é branco, 2) ou o Gol é preto, ou o Corsa é azul, 3) ou o Fiesta é azul, ou o Corsa é azul, 4) ou o Corsa é preto, ou o Fiesta é preto. Portanto, as cores do Gol, do Corsa e do Fiesta são, respectivamente: a) branco, preto, azul b) preto, azul, branco c) azul, branco, preto d) preto, branco, azul e) branco, azul, preto O enunciado informa que: - Maria tem três carros: um Gol, um Corsa e um Fiesta. - Um dos carros é branco, o outro é preto, e o outro é azul. Também temos, no enunciado, as seguintes premissas: P 1 : ou o Gol é branco, ou o Fiesta é branco. P 2 : ou o Gol é preto, ou o Corsa é azul. P 3 : ou o Fiesta é azul, ou o Corsa é azul. P 4 : ou o Corsa é preto, ou o Fiesta é preto. Dica importante: Para resolvermos uma questão desse tipo, devemos: 1º) considerar que todas as premissas são verdadeiras; 2º) atribuir um valor lógico (V ou F) para uma das proposições simples; e 3º) finalmente, substituir este valor lógico (escolhido no passo anterior) nas premissas e verificar se está correto, ou seja, se não vai se observar alguma contradição entre os resultados obtidos. Vamos escolher a proposição Fiesta é branco que aparece na 1ª premissa, e atribuir o valor lógico V. Vamos executar os seguintes passos, mostrados abaixo, para testar esta hipótese criada por nós, ou seja, para sabermos se está certo que a premissa Fiesta é branco é V. Teste da hipótese: Fiesta é branco é V. 1º. F 1º. V P1. ou o Gol é branco, ou o Fiesta é branco. 4º. F 3º. V P2. ou o Gol é preto, ou o Corsa é azul.

8 1º. F 2º. V P3. ou o Fiesta é azul, ou o Corsa é azul. 3º. F 1º. F P4. ou o Corsa é preto, ou o Fiesta é preto. 1º passo) Da hipótese Fiesta é branco é V (em P1), e como cada carro possui cores diferentes, teremos: Gol é branco é F (em P1), Fiesta é azul é F (em P3) e Fiesta é preto é F (em P4). 2º passo) P3 deve ser verdadeira, daí Corsa é azul é V. 3ºpasso) Atribuir: Corsa é preto é F (em P4) e Corsa é azul é V (em P2). 4º passo) P2 é uma disjunção exclusiva, daí Gol é preto tem que ser F. Houve alguma contradição entre os resultados obtidos? Claro que sim, pois obtemos que o Gol não é preto, nem branco e nem azul! Daí, a hipótese Fiesta é branco é Falsa! Vamos estabelecer outra hipótese (com relação ao Fiesta): Fiesta é preto é Verdade! (que aparece na 4ª premissa). Teste da hipótese: Fiesta é preto é V. 2º. V 1º. F P1. ou o Gol é branco, ou o Fiesta é branco. 1º. F 3º. V P2. ou o Gol é preto, ou o Corsa é azul. 1º. F 3º. V P3. ou o Fiesta é azul, ou o Corsa é azul. Não esqueça que apenas uma proposição pode ser Verdadeira para a premissa analisada seja verdadeira, ok? 1º. F 1º. V P4. ou o Corsa é preto, ou o Fiesta é preto. 1º passo) A hipótese é Fiesta é preto é V (em P4), e como cada carro deve ter cor diferente, teremos: Corsa é preto é F (em P4), Fiesta é branco é F (em P1), Gol é preto é F (em P2) e Fiesta é azul é F (em P3). 2º passo) P1 deve ser verdadeira, daí Gol é branco é V. 3º passo) P2 e P3 devem ser verdadeiras, daí Corsa é azul é V. Houve alguma contradição entre os resultados obtidos? Agora não houve! Resultados obtidos: Fiesta é preto! Gol é branco! Corsa é azul! Portanto, a resposta é a alternativa E.

9 Prezados amigos, espero que tenham gostado do material até aqui. Lembramos que o volume completo deste trabalho consta de 80 questões interessantes, resolvidas com a mesma linha didática desta amostra e pode ser adquirido através do nosso , nas opções: R$ 5,00 (vendido separadamente) R$ 10,00 (juntamente com as demais apostilas de Matemática( vols. I, II, III e IV). À disposição de todos para esclarecimentos e pedidos: Forte abraço e Sucesso. Prof. Marcelo Silva

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas

Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Professor: Arthur Lima AULA 05: RESUMO Caro aluno, Para finalizar nosso curso, preparei um resumo de toda a teoria vista nas

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO Prof. Ilydio Pereira de Sá www.magiadamatematica.com MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO Princípio Fundamental da Contagem

Leia mais

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal?

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? Temos 5 grupos com 5 possibilidades cada uma, então: 5.5=25 casais Se fossem duplas: Teríamos 10

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Técnico do TRT/4ª Região (Rio

Leia mais

Prof. Paulo Henrique Raciocínio Lógico

Prof. Paulo Henrique Raciocínio Lógico Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre

Leia mais

Revisão de combinatória

Revisão de combinatória A UA UL LA Revisão de combinatória Introdução Nesta aula, vamos misturar os vários conceitos aprendidos em análise combinatória. Desde o princípio multiplicativo até os vários tipos de permutações e combinações.

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. 1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,

Leia mais

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Professor: Custódio Nascimento 1- Análise da prova Neste artigo, faremos a análise das questões de cobradas na prova

Leia mais

Construção do Boxplot utilizando o Excel 2007

Construção do Boxplot utilizando o Excel 2007 1 Construção do Boxplot utilizando o Excel 2007 (1 Passo) Vamos digitar os dados na planilha. Para isso temos três banco de dados (Dados 1, Dados 2 e Dados 3), no qual irão gerar três Boxplot. Figura 1

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 Este é o 7º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times:

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times: Raciocínio Lógico- Vinicius Werneck 1. Em um campeonato de futebol, a pontuação acumulada de um time é a soma dos pontos obtidos em cada jogo disputado. Por jogo, cada time ganha três pontos por vitória,

Leia mais

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a Comentadas pelo professor: Vinicius Werneck Raciocínio Lógico 1- Prova: ESAF - 2012 - Receita Federal - Auditor Fiscal da Receita Federal Sabendo-se que o conjunto X é dado por X = {x R x² 9 = 0 ou 2x

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

AULA SEIS: Diagramas Lógicos

AULA SEIS: Diagramas Lógicos 1 AULA SEIS: Diagramas Lógicos Olá, amigos! Iniciamos nossa presente aula com uma notícia: hoje trataremos de um assunto que estava previsto para ser estudado em um encontro futuro. Todavia, melhor analisando,

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região

Leia mais

Exercícios resolvidos sobre Definição de Probabilidade

Exercícios resolvidos sobre Definição de Probabilidade Exercícios resolvidos sobre Definição de Probabilidade Nesta Unidade de estudo, até este ponto você aprendeu definições de probabilidade e viu como os conceitos se aplicam a várias situações. Observe agora

Leia mais

TRABALHO DE MATEMÁTICA II

TRABALHO DE MATEMÁTICA II TRABALHO DE MATEMÁTICA II Prof. Sérgio Tambellini 2 o Trimestre / 2012 2 o Azul Questão 04 GRUPO 1 (FUVEST2010) Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os

Leia mais

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações Contagem Prof. Dr. Leandro Balby Marinho Matemática Discreta Prof. Dr. Leandro Balby Marinho 1 / 39 UFCG CEEI Motivação Contagem e combinatória são partes importantes da matemática discreta. Se resumem

Leia mais

Construção de tabelas verdades

Construção de tabelas verdades Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais

Leia mais

Aplicações de Combinatória e Geometria na Teoria dos Números

Aplicações de Combinatória e Geometria na Teoria dos Números Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como

Leia mais

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos? Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ. Questão Sistemas de Numeração No sistema de numeração de base 2, o numeral mais simples de

Leia mais

Excel Planilhas Eletrônicas

Excel Planilhas Eletrônicas Excel Planilhas Eletrônicas Capitulo 1 O Excel é um programa de cálculos muito utilizado em empresas para controle administrativo, será utilizado também por pessoas que gostam de organizar suas contas

Leia mais

PROVA COMENTADA Parte 1 TRT 4ª REGIÃO

PROVA COMENTADA Parte 1 TRT 4ª REGIÃO youyou PROVA COMENTADA Parte 1 TRT 4ª REGIÃO Técnico Judiciário RACIOCÍNIO LÓGICO Professor: Alex Lira Aula Prova 01 Prof. Alex Lira www.concurseiro24horas.com.br 1 10 COMPRA COLETIVA DE CURSOS PARA CONCURSOS

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos amigos concurseiros. Seguem breves comentários à prova de RLQ do ATA- MF. Não encontramos nenhuma questão passível de recurso. Mas, se vocês tiverem visualizado alguma coisa e quiserem debater

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva: PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do

Leia mais

QUESTÕES. t = 7, o valor de t é o número: SIMULADO. Olá pessoal! Como vocês estão?

QUESTÕES. t = 7, o valor de t é o número: SIMULADO. Olá pessoal! Como vocês estão? Olá pessoal! Como vocês estão? Nesse artigo apresento a vocês um simulado com questões de Raciocínio Lógico, Matemática e Matemática Financeira. Para os candidatos aos cargos de Auditor e Analista Tributário

Leia mais

1. Introdução ao uso da calculadora

1. Introdução ao uso da calculadora 1. Introdução ao uso da calculadora O uso da calculadora científica no curso de Estatística é fundamental pois será necessário o cálculo de diversas fórmulas com operações que uma calculadora com apenas

Leia mais

Múltiplos Estágios processo com três estágios Inquérito de Satisfação Fase II

Múltiplos Estágios processo com três estágios Inquérito de Satisfação Fase II O seguinte exercício contempla um processo com três estágios. Baseia-se no Inquérito de Satisfação Fase II, sendo, por isso, essencial compreender primeiro o problema antes de começar o tutorial. 1 1.

Leia mais

O princípio multiplicativo

O princípio multiplicativo A UA UL L A O princípio multiplicativo Introdução A palavra Matemática, para um adulto ou uma criança, está diretamente relacionada com atividades e técnicas para contagem do número de elementos de algum

Leia mais

QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 7

QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 7 QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 7 1. (TRF 4ª região 2014 Analista Judiciário) Da duração total de um julgamento, 7 3 do tempo foi utilizado pelos advogados de defesa e acusação,

Leia mais

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso.

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso. Respostas de MAIO Dia 1: O menor número de ovos é 91. Dia 2: O nível da água baixa. No barquinho, a moeda desloca a mesma massa de água que a do barquinho, portanto, um volume maior que o da moeda. Na

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Lição 1 - Criação de campos calculados em consultas

Lição 1 - Criação de campos calculados em consultas 1 de 5 21-08-2011 22:15 Lição 1 - Criação de campos calculados em consultas Adição de Colunas com Valores Calculados: Vamos, inicialmente, relembrar, rapidamente alguns conceitos básicos sobre Consultas

Leia mais

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matemática Divisores e Múltiplos Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por

Leia mais

Associação Educacional Dom Bosco Curso de Engenharia 1º ano

Associação Educacional Dom Bosco Curso de Engenharia 1º ano Formatação condicional utilizando o valor da célula O que é? Algumas vezes é preciso destacar os valores, ou seja, como colocar em vermelho ou entre parênteses, os negativos, e de outra cor os positivos,

Leia mais

Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco

Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco 1 / 24 Contagem (2) Anjolina Grisi de Oliveira Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 24 O princípio da multiplicação de outra forma O princípio da multiplicação

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

ARQUITETURA DE COMPUTADORES. Sistemas de Numeração. 1 Arquitetura de Computadores

ARQUITETURA DE COMPUTADORES. Sistemas de Numeração. 1 Arquitetura de Computadores ARQUITETURA DE COMPUTADORES Sistemas de Numeração 1 Sistemas de Numeração e Conversão de Base Sistema Decimal É o nosso sistema natural. Dígitos 0,1,2,3,4,5,6,7,8 e 9. Números superiores a 9; convencionamos

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula Divisibilidade II Definição 1. Dados dois inteiros a e b, com a 0, dizemos que a divide b ou que a é um divisor

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

Arquitetura de Rede de Computadores

Arquitetura de Rede de Computadores TCP/IP Roteamento Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 4. Roteamento i. Máscara de Rede ii. Sub-Redes iii. Números Binários e Máscara de Sub-Rede iv. O Roteador

Leia mais

Orientação a Objetos

Orientação a Objetos 1. Domínio e Aplicação Orientação a Objetos Um domínio é composto pelas entidades, informações e processos relacionados a um determinado contexto. Uma aplicação pode ser desenvolvida para automatizar ou

Leia mais

Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV

Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV Simulado 02 de Matemática Financeira Questões FGV 01. Determine o valor atual de um título descontado (desconto simples por fora) dois meses

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o

Leia mais

1. Sistemas de numeração

1. Sistemas de numeração 1. Sistemas de numeração Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo seria organizar,

Leia mais

QUADRADO MÁGICO - ORDEM 4

QUADRADO MÁGICO - ORDEM 4 CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de igual ao número de ); b) domínio: com elementos assumindo valores

Leia mais

REGRAS DO POKER. Link:http://www.jogatina.com/regras-como-jogar-poker.html

REGRAS DO POKER. Link:http://www.jogatina.com/regras-como-jogar-poker.html REGRAS DO POKER Link:http://www.jogatina.com/regras-como-jogar-poker.html Com mais de 100 milhões de jogadores em todo o planeta, a modalidade de poker Texas Hold'em No Limits também pode ser jogada aqui

Leia mais

Francisco Ramos. 100 Problemas Resolvidos de Matemática

Francisco Ramos. 100 Problemas Resolvidos de Matemática Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES

Leia mais

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

Endereçamento IP 09/05/2014. Endereçamento IP CLASSE B CLASSE A CLASSE A CLASSE C

Endereçamento IP 09/05/2014. Endereçamento IP CLASSE B CLASSE A CLASSE A CLASSE C Endereçamento IP Endereçamento IP Prof. Marcel Santos Silva marcel@magres.com.br É uma sequência de números composta de 32 bits. Esse valor consiste num conjunto de quatro grupos de 8 bits. Cada conjunto

Leia mais

Princípio da Casa dos Pombos II

Princípio da Casa dos Pombos II Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 8 Princípio da Casa dos Pombos II Nesta aula vamos continuar praticando as ideias da aula anterior, aplicando o

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ 1. Questão Sistemas de Numeração No sistema de numeração de base, o numeral mais simples de

Leia mais

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA)

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA) RESOLUÇÃO DA a AVALIAÇÃO DE MATEMÁTICA COLÉGIO ANCHIETA-BA - UNIDADE II-013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 01. (UEPB) Dados os conjuntos A = {1,

Leia mais

Lista de Exercícios 4: Soluções Sequências e Indução Matemática

Lista de Exercícios 4: Soluções Sequências e Indução Matemática UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,

Leia mais

Probabilidade. Contagem

Probabilidade. Contagem Probabilidade Contagem Problema da Contagem no Estudo da Probabilidade Conforme definição clássica, podemos determinar uma probabilidade calculando a relação entre o total de eventos de sucesso e o total

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com)

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) 1. O dominó Você já deve conhecer o dominó. Não vamos pensar no jogo de dominós

Leia mais

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA QUESTÕES DISCURSIVAS AÁLISE COMBIATÓRIA ) (PUC-SP) O novo sistema de placas de veículos utiliza um grupo de 3 letras(dentre 6 letras ) e um grupo de 4 algarismos (por exemplo: ABC-03). Uma placa dessas

Leia mais

Parece claro que há uma, e uma só, conclusão a tirar destas proposições. Esa conclusão é:

Parece claro que há uma, e uma só, conclusão a tirar destas proposições. Esa conclusão é: Argumentos Dedutivos e Indutivos Paulo Andrade Ruas Introdução Em geral, quando se quer explicar que géneros de argumentos existem, começa-se por distinguir os argumentos dedutivos dos não dedutivos. A

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 Este é o 6º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

Princípio da Casa dos Pombos I

Princípio da Casa dos Pombos I Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 7 Princípio da Casa dos Pombos I O princípio da casa dos pombos também é conhecido em alguns países (na Rússia,

Leia mais

Sistema de Numeração e Aritmética Básica

Sistema de Numeração e Aritmética Básica 1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para

Leia mais

TC1 REVISÃO ENEM MATEMÁTICA ALEXANDRINO

TC1 REVISÃO ENEM MATEMÁTICA ALEXANDRINO TC1 REVISÃO ENEM MATEMÁTICA ALEXANDRINO 1.Considere o seguinte jogo de apostas: Numa cartela com 0 números disponíveis, um apostador escolhe de a 10 números. Dentre os números disponíveis, serão sorteados

Leia mais

Raciocínio Lógico - Parte II

Raciocínio Lógico - Parte II Apostila escrita pelo professor José Gonçalo dos Santos Contato: jose.goncalo.santos@gmail.com Raciocínio Lógico - Parte II Sumário 1. Operações Lógicas sobre Proposições... 1 2. Tautologia, contradição

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

Usando o Excel ESTATÍSTICA. Funções

Usando o Excel ESTATÍSTICA. Funções Funções Podemos usar no Excel fórmulas ou funções. Anteriormente já vimos algumas fórmulas. Vamos agora ver o exemplo de algumas funções que podem ser úteis para o trabalho de Excel. Para começar podemos

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2

SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2 SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2 1.1 Introdução... 2 1.2 Estrutura do IP... 3 1.3 Tipos de IP... 3 1.4 Classes de IP... 4 1.5 Máscara de Sub-Rede... 6 1.6 Atribuindo um IP ao computador... 7 2

Leia mais

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá.

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá. INTRODUÇÃO A lógica de programação é extremamente necessária para as pessoas que queiram trabalhar na área de programação, seja em qualquer linguagem de programação, como por exemplo: Pascal, Visual Basic,

Leia mais

Universidade do Algarve

Universidade do Algarve Universidade do Algarve Campeonato de Matemática SUB14 2005/2006 Problema 2 O troco do João O João comprou um sumo, no bar da escola, que lhe custou 1,08 euros. Pagou com 2 euros e recebeu de volta 8 moedas.

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

Batalha Naval Algoritmos de Busca. Correlações curriculares Matemática: Números: maior que, menor que, iguais a.

Batalha Naval Algoritmos de Busca. Correlações curriculares Matemática: Números: maior que, menor que, iguais a. Atividade 6 Batalha Naval Algoritmos de Busca Sumário Computadores são freqüentemente requisitados a encontrar informação em grandes coleções de dados. Estes precisam desenvolver métodos rápidos e eficientes

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais