I.INTRODUÇÃO A MATEMÁTICA.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "I.INTRODUÇÃO A MATEMÁTICA."

Transcrição

1 I.INTRODUÇÃO A MATEMÁTICA. 1. HISTÓRIA DA MATEMÁTICA Matemática é uma ciência que foi criada a fim de contar e resolver problemas com uma razão de existirem, foi criada a partir dos primeiros seres racionais há milhões de anos dos Homo Sapiens, sendo uma grande necessidade humana. Nossos ancestrais também necessitavam de conhecimento dentre os quais poderiam se comunicar, comerciar e trocar. Dentro da ciência complexa podemos encontrar os seguintes princípios Adição, subtração, multiplicação, divisão, raiz quadrada, potência, frações, razões, eqüações, ineqüações, termos, leis, conjuntos, etc. Vários povos se destacaram, como os egípcios, sumérios, babilônios e gregos. Grandes mentes surgiram e inventaram outros princípios mais complexos e mais difíceis. 2. ESCRITA ORGANACIONAL: A escrita é algo importante dentro dos estudos matemáticos, eles devem ficar organizados de forma que se possa comprende-los e localiza-los sempre que houver necessidade. A escrita é a expressão do pensamento, que deve estar organizado e separados de duas formas : resolução e rascunho. 1. RESOLUÇÃO : Parte do desenvolvimento das operações. 2. RASCUNHO: Artíficos usados para auxiliar o desenvolvimento das operações. Dados (25+2 = x +3-2 = y = z) Resolução rascunho 25+2 = X=27 Página : 1 3. RASCIOCÍNIO LÓGICO: Organizações de pensamento, trata do estabelecimento de relação lógica entre os entes. È necessário ocorrer uma mudaça no pensamento, organizando em etapas, sem se preocupar com o final de todas as operações, pois isso se tornará uma consequencia = x +3-2=y = z ( 1º x, 2º y, 3º z) 4. NÚMEROS: 1. TRATAMENTOS: Para todas as operações é necessário organizar os números antes das operações. Organização: Organizam-se para dois lados, antes e depois da vírgula. Quando a vírgula não é colocada, subentende que os números não escritos são zeros. R$.35 R$.35,00 Ordem : ( M.CDU) Coloca-se os números em ordem de unidade, dezena, centena, milhar, etc Separações: A cada três unidades, separam-se os números por ponto, partindo da vírgula , Tamanhos: Todos os números a esquerda da vírgula são maiores que um e os da direita são menores , (o numero 3 é trinta unidades maior e o numero 2 representa duas partes de dez de uma unidade inteira. sinais (=) igual : separa dois termos ou equivale-as.

2 (<> ou ) difetente. (:) esta para. (<)menor que (>) maior que (<=)menor ou igual que (>=) maior ou iqual que (~) proporcional ( ou =~) aproximado (v) ou (^) e (/) tal que ( ) infinito ( ) somatório ( ) variação (...) portanto (... )porque 5. OPERAÇÕES FUNDAMENTAIS COM NÚMEROS 1. * ADIÇÃO: Definição: É a primeira operação fundamental, é o ato de adicionar ou adir algo, reunir todas as frações ou totalidades de algo. A adição é chamada de operação e a soma dos números chamamos de resultado da operação = 15 Parcelas : 10 e 5 ; Soma ou resultado: 15 Sinal : ( + ) Página : 2 Sinal para a adição de dois ou mais números Propriedade comutativa: A ordem das parcelas não alteram o produto e possuem a mesma soma. Propriedade associativa: EX: (5+4) + 2 = 11 ou 5 + (4+2) = 11 a + (b+c) = (a+c) + b Na adição de três parcelas, é indiferente associar as duas primeiras e posteriormente a terceira 2. SUBTRAÇÃO Definição: É o ato ou efeito de subtrair algo, ou seja, diminuir alguma coisa. O resultado desta operação de subtração denomina-se diferença ou resto. 9 5 = 4 Diferença: Os números 9 e 5 Minuendo 9 Subtraendo: 5 Resto: 5 propriedades Sinal : ( - ) Sinal para a subtração de dois ou mais números Propriedade comutativa admite propriedade comutativa propriedade associativa

3 não aceita a propriedade associativa. (10 4) 2 10 (4-2) subtração e adição A subtração é inversa a adição subtração pode ser considerada como a operação inversa da adição = 9 equivale a 7= = 9 equivale a 2= 9-7 Y + a = c ou a + y = c Aplicação: Suponha que a e c são dois números naturais conhecidos e y também é um número natural, mas desconhecido De que modo é possível calcular o valor de y? Desta forma: a + c = a ou a + y = c y = a - c 3. MULTIPLICAÇÃO Definição: Denomina-se a operação matemática, que consiste em repetir um número, chamado multiplicando, tantas vezes quantas são as unidades de outro, chamado multiplicador, para achar um terceiro número que representa o produto dos dois. Definindo ainda, multiplicação é a adição de parcelas iguais, onde o produto é o resultado da operação multiplicação; e os fatores são os números que participam da operação. a. b = c fatores: a.b multiplicando: a multiplicador: b produto da operação: c Página : 3 Sinais : ( x ou * ou. ou espaço vazio ) Nas literaturas podemos encontrar diferentes símbolos que podem simbolizar a multiplicação. a + a = a x 2 = a*2 = a.2 ou simplesmente 2a Propriedade comutativa permite comutar (ou trocar/mudar) a ordem dos fatores a. b = b. a ou a x b = b x a Propriedade associativa: aceita a propriedade associativa. (4.5). 6 = 4.(5.6) = DIVISÃO Definição É o ato de dividir ou fragmentar algo. É a operação na matemática em que se procura achar quantas vezes um número contém em outro ou mesmo pode ser definido como parte de um todo que se dividiu. À divisão dá o nome de operação e o resultado é chamado de Quociente. Nomenclatura 8 4 = 2 ou 9 : 4 = 2, com resto 1, onde Dividendo = D: 8 ou 9 Divisor = d : 4 Quociente= q : 2 Resto = r : 0 ou 1 Prova do resultado: quociente. divisor + resto = dividendo. : 2 x = 8

4 divisão exata: D:d = q (o resto é subentendido igual a zero). divisão não-exata : D = d.q + r Sinais : ( ou : ou / ) Nas literaturas podemos encontrar diferentes símbolos que podem simbolizar a divisão. a : 2 = a 2 = a 2 ou simplesmente a/2 Propriedade comutativa Não permite comutar (ou trocar/mudar) a ordem dos números. a. b = b. a ou a x b = b x a 15 : 5 é diferente de 5: 15 Propriedade associativa: não tem a propriedade associativa, pois (12:6) : 2 = 1 é diferente de 12:(6:2) = 4 propriedade de distributiva da divisão exata: é o ato de decompor o dividendo em números mais fáceis de dividir. exemplo: (10 + 6) : 2 = 16 :2 = 8 (10+6):2 = 10:2 + 6 :2 = 5+3 = 8 Página : 4 Divisão por zero Se tem-se dez maçãs e deseja-se distribuir entre zero pessoas, quantas maçãs cada pessoa receberá? Cada "pessoa" não recebe zero maçãs, pelo simples fato de não haver pessoas para receber maçãs. A divisão por zero não possui sentido, é indefinida. 6. ORDEM DAS 4 OPERAÇÕES Numa expressão a ordem para efetuar as operações são: 1º) Parênteses 2º) Colchetes 3º) Chaves Operações: 1º) Potencias e Radiciações (raizes) 2º) Divisão e Multiplicação (na ordem em que aparecerem, ou seja, se aparecer 1º a multiplicação pode-se resolver, se aparecer primeiro a divisão resolve primeiro) 3º) Adição e Subtração 2+3{2[3(4/2)]}-6/ {2[3(2)]}-6/ {2[6]}-6/ {12}-6/ / / / /10 20/10 =2 7. RESULTADO DE SINAIS DAS 4 OPERAÇÕES 1. SOMA E SUBTRAÇÃO sinais iguais = somo e conservo o sinal

5 sinais diferentes = subtraio e conservo o sinal do maior termo = = = +2 resumindo: (-) com (-) dá (-) (+) com (+) dá (+) (+) com (-) ou (-) com (+) : Sinal do maior número ganha 2. MULTIPLICAÇÃO E DIVISÃO (+) com (+) dá (+) (-) com (-) dá (+) (+) com (-) ou (-) com (+) dá (-) Resumindo sinais iguais, dá (+) sinais diferentes, dá (-) ex: (-3).(5) = -15 (-2).(-4) = +8 (4).(3) = 12 (-6)(+5) = EXERCÍCIOS: 1) Efetue as seguintes operações: a) (+ 3)+(+ 7)-(+ 25) b) ( 9)+ ( 8)+ ( 10) c) (+12)+ ( 10) ( 12) d) (+15) (+ 25)+( 35) e) ( 12)+ ( 35) (+ 30) f) (+ 5) (+ 8) ( 2) (0) g) ( 8) ( 7) ( 4) (1) h) (+15) ( 2) (+ 4) (+ 2) i) (+15) (+ 5) j) ( 20) (+10) l) (+10) ( 2) m) ( 2) ( 1) Página : 5 n) ( ) (3 + 5) o) [( ) (1+ 5)]: (3 + 3) p) [6 1][( ) (1+ 5)]: (3 + 3) q) [ (4 5 6)] r) { 5 + [ (9 4) 3]} s) : 6 t) : 6 u) Calcule o valor das expressões: 60 ( ) 16 6 ( ) 63 ( ) ( ) ( ) + 21 ( ) 3 - Escolha uma letra para representar um número desconhecido e escreva uma expressão para as seguintes frases: a) a soma de 10 com um número desconhecido. b) a diferença entre 15 e um númerodesconhecido. c) A diferença entre um número desconhecido e Calcule o número nas igualdades: a) 37 n = 13 c)210 = n 30 b) 53 = n + 14 d) n 5 - Escolha uma letra para representar um número desconhecido e escreva uma expressão para as seguintes frases: a) A soma de um número desconhecido com 42 é igual a 76. b) A diferença entre um número desconhecido e 18 é igual a 63. c) A diferença entre 128 e um número desconhecido é igual a 84. Agora, calcule o número em cada sentença. 6 Responda às seguintes questões: a) Quanto é o triplo de 125 b) Quanto é o quíntuplo de Calcule os produtos: a) 2 x 25 x 7 c) 4 x 6 x 25 b) 13 x 2 x 1 x 8 d) 14 x 36 x 0 8 A oferta abaixo estava em uma loja. Qual é a diferença entre os preços do plano à vista e do plano a prazo?

6 9 - Numa escola existem 228 alunos e 12 professores. Foram contratados, para uma excursão, 3 ônibus com 45 lugares cada um e 5 microônibus com 28 lugares cada um. Haverá lugar para todos os alunos e professores da escola? 10 Determine o quociente e o resto das divisão a) 48 : 16 d) 253 : 18 b) 192 : 32 e) 1242 : 23 c) 2400 : 800 f) 1208: Um comerciante colocou 385 litros de óleo em latas de 15 litros cada uma. a) Quantas latas cheias foram obtidas? b) Houve alguma lata incompleta? Em caso afirmativo, quantos litros continha essa lata? carros estão em fila à espera para atravessar um rio. A balsa pode transportar, no máximo, 25 carros de cada vez. a) Quantas viagens, com lotação máxima, poderão ser feitas? b) Quantas viagens serão necessárias para atravessar todos os carros? 13 - Calcule o valor das expressões aritméticas: a) 12 x 3 ( x 12 ) : 11 b)180 + { 2 x [5 x 3 + ( 8 x 4 2 x 9 ) (19 x 3 37 )]} c) 82 + { 33 x [ 132 : ( 7 1 ) x ( 18 7 ) 3 x 32 } d) (25 5 x 4 ) : 5 + {[ 37 ( 6 X 5 + X 1 )] : } {[5 2 + ( ) x 2 ] : 3 1 } : OPERAÇÕES SECUNDÁRIAS DA MATEMÁTICA. 1. FRAÇÕES Definição: Surgiu pela necessidade dos Egípcios em marcar as terras a 3000 ac. A necessidade pela divisão de Então surgiu o conceito de número fracionário. O símbolo a/b significa a:b, sendo a e b números naturais e b diferente de zero. Se a é múltiplo de b, então a/b é um número natural. Exemplo: Roberval comeu 3/4 de um chocolate. Isso significa que, se dividíssemos o chocolate em 4 partes iguais, Roberval teria comido 3 partes: Página : 6 Na figura acima, as partes pintadas seriam as partes comidas por Roberval, e a parte branca é a parte que sobrou do chocolate. a/b Fração; a/b Numerador; a Denominador: b Classificação das frações Fração própria: O numerador é menor que o denominador: 2/3, 1/4,3/5. Fração imprópria: o numerador é maior ou igual ao denominador. 4/3, 5/5, 6/4. Fração aparente: O numerador é múltiplo do denominador.6/3, 24/12, 8/4. Frações equivalentes São frações que para o numerador e o denominador apresentam o mesmo múltiplo sendo um mesmo número natural, diferente de zero. Exemplo 1: 1/2, 2/4, 4/8 são equivalentes Para obter frações equivalentes à fração 1/2.

7 Simplificação de frações É a divisão dos termos da fração pelo mesmo fator. Exemplo: 9/12, ( 3) = 3/4. Página : 7 Multiplicação e divisão de números fracionários Na multiplicação de números fracionários, devemos multiplicar numerador por numerador, e denominador por denominador, assim como é mostrado nos exemplos abaixo: Adição e subtração de números fracionários Temos que analisar dois casos: 1º) denominadores iguais Somar os numeradores e conservar o denominador. Subtrair os numeradores e conservar o denominador. exemplos: 4/7 + 2/7 = 6/7 5/7 2/7 = 3/7 2º) denominadores diferentes Para somar frações com denominadores diferentes, uma solução é obter frações equivalentes, de denominadores iguais ao mmc(menor múltimo comum) dos denominadores das frações. Exemplo: 4/5 + 5/2. Obtendo o mmc dos denominadores temos mmc(5,2) = 10. Na divisão de números fracionários, devemos multiplicar a primeira fração pelo inverso da segunda, como é mostrado no exemplo abaixo: Potenciação e radiciação de números fracionários Potenciação Ocorre a elevação do numerador e o denominador a esse expoente. exemplos: (10:5).4 = 8 (10:2).5 = 25 radiciação:, quando aplicamos a raiz quadrada a um número fracionário, estamos aplicando essa raiz ao numerador e ao denominador, conforme o exemplo abaixo:

8 Exercícios: a) Um carro na estrada faz 12 km por litro de gasolina. Quantos litros de gasolina serão necessários para fazer uma viagem de 420 km? b) Em uma divisão, o denominador ou divisor é 5, o quociente é 5 é o resto é 2. Qual o valor do numerador ou dividendo? c) Quanto vale três quintos de R$100? d) Um aluno é obrigado a freqüentar 3/4 das aulas do curso de cálculo. Se o curso possui 60 aulas,quantas aulas o aluno deverá frequentar? e) Dois terços do comprimento de um terreno medem 90 metros. Qual o comprimento total do terreno? f) Qual a área aproximada do Brasil se 2/5 dessa área são km2? g) Uma indústria adquiriu um novo maquinário para sua linha de montagem. Na compra, a indústria pagou um terço do valor do equipamento. No mês seguinte, um quinto do valor Página : 8 do equipamento foi pago. Estes pagamentos totalizaram R$ Quanto ainda resta pagar? 2. POTENCIAÇÃO (EXPONENCIAÇÃO) Definição Potenciação significa multiplicar um número real (base) por ele mesmo X vezes, onde X é a potência (número natural). 3 2 (leia-se três elevado ao quadrado, ou três elevado à segunda potência ou ainda três elevado à dois ). Base: 3 Expoente ou potência: 2 Multiplica-se o 3 por ele mesmo. 3.3 = 9. Então 3 3 = = 3. 9 = 27 Sinais : ( a x ou a^x ou aex ) Nas literaturas podemos encontrar diferentes símbolos que podem simbolizar a potenciação. Multiplicação de bases iguais: mantenha a base e some os expoentes: a n. a m = a n+m Divisão de bases iguais: mantenha a base e subtraia os expoentes: (a n ) / (a m ) = a n-m Potência de potência mantenha a base e multiplique os expoentes:

9 (a m ) n = a m. n Página : 9 Particularidades: Diferenças As potências abaixo NÃO são iguais: (a m ) n <> a mn (2 2 ) 3 = =2 6 =64 e = =2 5 =32 Desmembramento de potências: (a. b) n = a n. b n (a/b) n = a n /b n, b diferente de zero. (2.3) 3 = =8.27=216. (2/3) 3 = 2.3 /3 3 =8/27= 0,296. Potenciação com números negativos Observe os exemplos abaixo: a) (-3) 2 = (-3). (-3) = 9 b) (-3) 3 = (-3). (-3). (-3) = 9. (-3) = -27 c) -3 2 = -3.3= -9 d) -3 3 = = = -27 Com parênteses o sinal acompanha o número e ao contrário não. Exercícios: 01 - Calcular o valor de cada expressão: 2- Efetuar as operações com potências redutíveis a mesma base: 3 - Reduzir cada expressão a uma única potência: Simplificar cada fração: 3. RADICIAÇÃO (RAIZES) Definição Radiciação é o inverso da potenciação. Exemplo

10 a) Se elevarmos um número X à quinta potência e depois tirar a raiz quinta do resultado, voltamos ao número X.(2 5 =32 = 5 32 = 2 b) Para acharmos a raiz cúbica de oito (), devemos nos perguntar qual o número que multiplicado por ele mesmo três vezes resulta 8, ou seja, qual o número que elevado na potência 3 resulta 8?. A resposta é 2, pois 2 3 =2 2 2=8 =r Página : 10 Zero vezes zero sempre será zero, não importa quantas "n" vezes ele aparecer. Um vezes um é sempre 1 Esta podemos provar pela definição de raiz. Qual o número que multiplicado uma vez por ele mesmo resulta ele? Ele mesmo! raiz: r índice n radicando a radical. Para facilitar as coisas, existe um meio de transformarmos uma raiz em uma potência. Assim fica muito mais fácil, pois podemos utilizar as mesmas propriedade de potenciação. Se colocarmos esta raiz na forma de potência temos: a n/n e a fração n/n vale 1, então: a n/n = a 1 = a "a" está elevado em uma potência diferente de 1. Propriedades operatórias: como fazer operações com raizes (multiplicação, divisão...). conserva a base e soma os expoentes. Propriedades fundamentais: Se transformarmos a multiplicação de raizes em multiplicação de potências, podemos utilizar a propriedade de multiplicação de dois números na mesma potência.

11 Página : 11 Novamente se transformarmos a raiz em potência, teremos: Agora o que devemos fazer é voltar de potência para raiz: 10. EXERCICIOS

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

MATEMÁTICA BÁSICA E CALCULADORA

MATEMÁTICA BÁSICA E CALCULADORA DISCIPLINA MATEMÁTICA FINANCEIRA PROFESSOR SILTON JOSÉ DZIADZIO APOSTILA 01 MATEMÁTICA BÁSICA E CALCULADORA A matemática Financeira tem como objetivo principal estudar o valor do dinheiro em função do

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Matemática Financeira RECORDANDO CONCEITOS

Matemática Financeira RECORDANDO CONCEITOS 1 Matemática Financeira RECORDANDO CONCEITOS Propriedades da matemática Prioridades: É importante relembrar e entender alguns conceitos da matemática, que serão muito úteis quando trabalharmos com taxas.

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

REVISÃO E AVALIAÇÃO DA MATEMÁTICA

REVISÃO E AVALIAÇÃO DA MATEMÁTICA 2 Aula 45 REVISÃO E AVALIAÇÃO DA 3 Vídeo Arredondamento de números. 4 Arredondamento de números Muitas situações cotidianas envolvendo valores destinados à contagem, podem ser facilitadas utilizando o

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 jl.matematica@outlook.com Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é

Leia mais

Raciocínio Lógico-Matemático

Raciocínio Lógico-Matemático Raciocínio Lógico-Matemático Índice Operações com Números Inteiros e Racionais Números Naturais... 02 Números Inteiros... 05 Números Racionais (Frações e Operações)... 26 Números Decimais... 45 Expressões

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais...

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais... Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2 1.1 Adição e Subtração de Números Racionais...2 1.2 Multiplicação e Divisão de Números Racionais...2 2.OPERAÇÕES COM NÚMEROS DECIMAIS...4 2.1 Adição e Subtração

Leia mais

MATEMÁTICA PARA CONCURSOS

MATEMÁTICA PARA CONCURSOS MATEMÁTICA PARA CONCURSOS Sumário Números Naturais ------------------------------------------- 03 Conjuntos numéricos: racionais e reais ------------------- 05 Divisibilidade -------------------------------------------------

Leia mais

Fundamentos Tecnológicos

Fundamentos Tecnológicos 1 2 Potenciação Fundamentos Tecnológicos Potenciação, radiciação e operações algébricas básicas Prof. Flavio Fernandes Dados um número real positivo a e um número natural n diferente de zero, chama-se

Leia mais

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES REVISÃO Disciplina: Cálculo e Estatística Aplicada Professor: Dr. Fábio Saraiva da

Leia mais

MATEMÁTICA BÁSICA. Operações

MATEMÁTICA BÁSICA. Operações MATEMÁTICA BÁSICA Regras dos Sinais a) Adição (+) Soma (+) + (+) = (+) (-) + (-) = (-) (+) + (-) = Sinal do Maior (-) + (+) = Sinal do Maior (+6) + (+3) = +6 +3 = 9 (-6) + (-3) = -6-3 = -9 (+6) + (-3)

Leia mais

MATEMÁTICA NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO);

MATEMÁTICA NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO); NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO); Conjunto dos Números Inteiros Z Definimos o conjunto dos números inteiros como a reunião do conjunto dos

Leia mais

2º ANO CONTEÚDO ROCESSO SELETIVO 2016. O aluno deverá demonstrar habilidades de:

2º ANO CONTEÚDO ROCESSO SELETIVO 2016. O aluno deverá demonstrar habilidades de: 2º ANO de: reconhecer letras; reconhecer sílabas; estabelecer relação entre unidades sonoras e suas representações gráficas; ler palavras; ler frases; localizar informação explícita em textos; reconhecer

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. 1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

Expoentes fracionários

Expoentes fracionários A UUL AL A Expoentes fracionários Nesta aula faremos uma revisão de potências com expoente inteiro, particularmente quando o expoente é um número negativo. Estudaremos o significado de potências com expoentes

Leia mais

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 1.º Período Conteúdos Programados Previstas Dadas Números e Operações Utilizar corretamente os numerais ordinais até vigésimo. Ler e representar

Leia mais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

Sistema de Numeração e Aritmética Básica

Sistema de Numeração e Aritmética Básica 1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA PLANOS DE CURSO PARA 6º E 7º ANOS Campina Grande, 2011 -

Leia mais

ESCRITURÁRIO DO BANCO DO BRASIL

ESCRITURÁRIO DO BANCO DO BRASIL APOSTILA DE MATEMÁTICA PARA ESCRITURÁRIO DO BANCO DO BRASIL Encontre o material de estudo para seu concurso preferido em www.acheiconcursos.com.br Conteúdo: 1. Números inteiros, racionais e reais; problemas

Leia mais

Nome:... Curso Técnico em... Período:...

Nome:... Curso Técnico em... Período:... TÑÉáà Ät wx `tàxåöà vt Uöá vt Nome:... Curso Técnico em... Período:... Cascavel 01/01 A P O S T I L A D E M A T E M Á T I C A BÁSICA I Operações matemáticas envolvendo apenas números: Há duas situações

Leia mais

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS Nome: Ano: 3º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº 02 Assunto: JUROS E PORCENTAGENS 1) Porcentagem Definição: É uma fração que indica a participação de uma quantidade sobre um todo.

Leia mais

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Números Inteiros Números Naturais Desde os tempos mais remotos, o homem sentiu a necessidade de verificar quantos elementos figuravam em um conjunto. Antes que soubessem contar, os pastores verificavam

Leia mais

Matemática - Séries Iniciais. Currículo Matemática. Currículos Instututo Alfa e Beto 69

Matemática - Séries Iniciais. Currículo Matemática. Currículos Instututo Alfa e Beto 69 Matemática - Séries Iniciais Currículo Matemática Currículos Instututo Alfa e Beto 69 Matemática - Séries Iniciais 1º ANO 2º ANO 3º ANO 4º ANO 5º ANO DOMÍNIO: NÚMEROS E OPERAÇÕES 1: SISTEMA DE NUMERAÇÃO

Leia mais

Sistemas de Numeração. Engenharia da Computação 3 Período Alex Vidigal Bastos

Sistemas de Numeração. Engenharia da Computação 3 Período Alex Vidigal Bastos UNIPAC Sistemas Digitais Sistemas de Numeração Engenharia da Computação 3 Período Alex Vidigal Bastos 1 Agenda Objetivos Introdução Sistema Binário Sistema Octal Sistema Hexadecimal Aritméticas no Sistema

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC)

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC) Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Instalador e Reparador de Redes de Computadores MATEMÁTICA

Leia mais

QUESTÃO 11 Nas expressões numéricas que seguem dois números estão escondidos sobre as letra A e B, veja: 3. A 4 = 11 B : 4 + 12 = 28

QUESTÃO 11 Nas expressões numéricas que seguem dois números estão escondidos sobre as letra A e B, veja: 3. A 4 = 11 B : 4 + 12 = 28 Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 6 Ọ ANO EM 201 Disciplina: MateMática Prova: desafio nota: QUESTÃO 11 Nas expressões numéricas que seguem dois números estão escondidos

Leia mais

ARQUITETURA DE COMPUTADORES. Sistemas de Numeração. 1 Arquitetura de Computadores

ARQUITETURA DE COMPUTADORES. Sistemas de Numeração. 1 Arquitetura de Computadores ARQUITETURA DE COMPUTADORES Sistemas de Numeração 1 Sistemas de Numeração e Conversão de Base Sistema Decimal É o nosso sistema natural. Dígitos 0,1,2,3,4,5,6,7,8 e 9. Números superiores a 9; convencionamos

Leia mais

Organização de Computadores. Cálculos Binários e Conversão entre Bases Aritmética Binária

Organização de Computadores. Cálculos Binários e Conversão entre Bases Aritmética Binária Organização de Computadores Capítulo 4 Cálculos Binários e Conversão entre Bases Aritmética Binária Material de apoio 2 Esclarecimentos Esse material é de apoio para as aulas da disciplina e não substitui

Leia mais

Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo abaixo) para Pré-IME, Pré-ITA, EsPCEx, EEAer, ENEM.

Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo abaixo) para Pré-IME, Pré-ITA, EsPCEx, EEAer, ENEM. O ALGEBRISTA Autor: Laércio Vasconcelos www.laercio.com.br Livro de ÁLGEBRA do ensino fundamental (6º ao 9º ano) Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Matemática. Elementar II Caderno de Atividades

Matemática. Elementar II Caderno de Atividades Matemática Elementar II Caderno de Atividades Autor Leonardo Brodbeck Chaves 2009 2008 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores

Leia mais

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas.

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas. Roteiro da aula MA091 Matemática básica Aula 5 MMC e frações. Horas. Francisco A. M. Gomes UNICAMP - IMECC Março de 2015 1 2 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de

Leia mais

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA UTILIZANDO O EDITOR DE EQUAÇÕES MICROSOFT EQUATION, NO MICROSOFT WORD Juliane Sbaraine

Leia mais

Sistemas de Numeração

Sistemas de Numeração Professor Menezes SISTEMA DE NUMERAÇÃO 1-1 Sistemas de Numeração Observe que alguns números decimais a possuem uma representação muito curiosa no sistema binário: 1 decimal = 1 binário; 2 decimal = 10

Leia mais

Livro de álgebra para ensino fundamental 2 ( 6º ao 9º ano)

Livro de álgebra para ensino fundamental 2 ( 6º ao 9º ano) O ALGEBRISTA Autor: Laércio Vasconcelos www.laercio.com.br Livro de álgebra para ensino fundamental ( º ao º ano) Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) Pré-IME, Pré-ITA,

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Sistemas Numéricos e a Representação Interna dos Dados no Computador

Sistemas Numéricos e a Representação Interna dos Dados no Computador Capítulo 2 Sistemas Numéricos e a Representação Interna dos Dados no Computador 2.0 Índice 2.0 Índice... 1 2.1 Sistemas Numéricos... 2 2.1.1 Sistema Binário... 2 2.1.2 Sistema Octal... 3 2.1.3 Sistema

Leia mais

Construção na orla marítima

Construção na orla marítima Reforço escolar M ate mática Construção na orla marítima Dinâmica 4 9º Ano 2º Bimestre Professor DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Algébrico Simbólico Equação do 2º. Grau

Leia mais

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação COMPUTAÇÕES NUMÉRICAS.0 Representação O sistema de numeração decimal é o mais usado pelo homem nos dias de hoje. O número 0 tem papel fundamental, é chamado de base do sistema. Os símbolos 0,,, 3, 4, 5,

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L10) a Colocarei aqui algumas explicações e exemplos de exercícios para que você possa fazer todos com segurança e tranquilidade, no entanto,

Leia mais

Matriz Curricular de Matemática 6º ao 9º ano 6º ano 6º Ano Conteúdo Sistemas de Numeração Sistema de numeração Egípcio Sistema de numeração Romano Sistema de numeração Indo-arábico 1º Trimestre Conjunto

Leia mais

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO Atualizado em Prof. Rui Mano E mail: rmano@tpd.puc rio.br SISTEMAS DE NUMERAÇÃO Sistemas de Numer ação Posicionais Desde quando se começou a registrar informações sobre quantidades, foram criados diversos

Leia mais

Paquímetro: sistema inglês

Paquímetro: sistema inglês Paquímetro: sistema inglês Um problema Agora que o pessoal da empresa aprendeu a leitura de paquímetros no sistema métrico, é necessário aprender a ler no sistema inglês. Este é o assunto a ser estudado

Leia mais

OPERADOR DE COMPUTADOR

OPERADOR DE COMPUTADOR OPERADOR DE COMPUTADOR MATEMÁTICA CAPITULO 1 - NÚMEROS NATURAIS Os números 0, 1, 2, 3, 4, 5...; são chamados naturais, e a sequência dos números naturais é infinita. Assim como você, todas as pessoas usam

Leia mais

RELATÓRIO I Data: 23.04.2015

RELATÓRIO I Data: 23.04.2015 RELATÓRIO I Data: 23.04.2015 Discutir conteúdos trabalhados em sala de aula, sucessor, antecessor, oposto, simétrico, módulo, expressões numéricas envolvendo adição e subtração de números inteiros. 1)

Leia mais

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução O que é cálculo numérico? Corresponde a um conjunto

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Agrupamento de Escolas António Rodrigues Sampaio Planificação Anual das Atividades Letivas

Agrupamento de Escolas António Rodrigues Sampaio Planificação Anual das Atividades Letivas Departamento Curricular: 1º ciclo Ano de escolaridade: 3º ano Área Curricular: MATEMÁTICA Ano letivo:2015/2016 Perfil do aluno à saída do 1º ciclo: Participar na vida sala de aula, da escola e da comunidade

Leia mais

6 Paquímetro: sistema inglês. Agora que o pessoal da empresa aprendeu a. Um problema. Leitura de polegada milesimal

6 Paquímetro: sistema inglês. Agora que o pessoal da empresa aprendeu a. Um problema. Leitura de polegada milesimal A U A UL LA Paquímetro: sistema inglês Um problema Agora que o pessoal da empresa aprendeu a leitura de paquímetros no sistema métrico, é necessário aprender a ler no sistema inglês. Este é o assunto a

Leia mais

Unidade 3: Sistemas de Numeração Conversões Entre Quaisquer Bases e Aritmética em Bases Alternativas Prof. Daniel Caetano

Unidade 3: Sistemas de Numeração Conversões Entre Quaisquer Bases e Aritmética em Bases Alternativas Prof. Daniel Caetano Arquitetura e Organização de Computadores 1 Unidade 3: Sistemas de Numeração Conversões Entre Quaisquer Bases e Aritmética em Bases Alternativas Prof. Daniel Caetano Objetivo: Apresentar métodos genéricos

Leia mais

CIRCULAÇÃO DOS PADRÕES NORTE-AMERICANO E FRANCÊS NA MATEMÁTICA DURANTE O BRASIL OITOCENTISTA

CIRCULAÇÃO DOS PADRÕES NORTE-AMERICANO E FRANCÊS NA MATEMÁTICA DURANTE O BRASIL OITOCENTISTA CIRCULAÇÃO DOS PADRÕES NORTE-AMERICANO E FRANCÊS NA MATEMÁTICA DURANTE O BRASIL OITOCENTISTA Marcus Aldenisson de Oliveira Universidade Tiradentes/GPHPE/Bolsa PIBIC/CNPQ marcus_deninho@hotmail.com Ellen

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

2. Noções de Matemática Elementar

2. Noções de Matemática Elementar 2. Noções de Matemática Elementar 1 Notação cientíca Para escrever números muito grandes ou muito pequenos é mais cómodo usar a notação cientíca, que consiste em escrever um número na forma n é o expoente

Leia mais

Apresentação da Disciplina 4. Módulo I 6-64

Apresentação da Disciplina 4. Módulo I 6-64 π 1 2 Apresentação da Disciplina 4 Módulo I 6-64 3 Prezado aluno, O estudo da matemática sempre foi um dos grandes fascínios do ser humano. Não só por ela poder resolver problemas práticos do dia a dia,

Leia mais

PROGRAMAS PARA OS CANDIDATOS A VAGAS 2016 3 o Ano Ensino Fundamental

PROGRAMAS PARA OS CANDIDATOS A VAGAS 2016 3 o Ano Ensino Fundamental 3 o Ano Textos Ler, entender e interpretar contos infantis e textos informativos. Gramática Será dada ênfase à aplicação, pois ela é entendida como instrumento para que o aluno se expresse de maneira adequada

Leia mais

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação.

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação. Apostila de Cálculo Zero Este material visa auxiliar os estudos em Matemática promovendo a revisão de seu conteúdo básico, de forma a facilitar o aprendizado nas disciplinas de cálculo e também melhorar

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

- 45.000 Testes e exercícios. - 5.600 Provas de concursos anteriores. Por R$ 24,90

- 45.000 Testes e exercícios. - 5.600 Provas de concursos anteriores. Por R$ 24,90 CD-ROM APOSTILAS PARA CONCURSOS - 400 Apostilas específicas e genéricas. (PDF e Word) - 45.000 Testes e exercícios. - 5.600 Provas de concursos anteriores. Por R$ 4,90 Pague quando receber o CD-ROM! Saiba

Leia mais

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { }

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { } CURSO: ASTRONOMIA APLICADA À NAVEGAÇÃO PROFESSOR: ALEXANDRE RIBEIRO ANDRADE MÓDULO 1: MATEMÁTICA APLICADA NA ASTRONOMIA NÁUTICA Apostila 1: Sistema de Unidades utilizadas na Navegação e na Astronomia,

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

ÍNDICE DOS CONCEITOS, RELAÇÕES E OPERAÇÕES NAS ATIVIDADES E JOGOS DO LIVRO 2 O ANO

ÍNDICE DOS CONCEITOS, RELAÇÕES E OPERAÇÕES NAS ATIVIDADES E JOGOS DO LIVRO 2 O ANO ÍNDICE DOS CONCEITOS, RELAÇÕES E OPERAÇÕES NAS ATIVIDADES E JOGOS DO LIVRO 2 O ANO Páginas 1. A ORGANIZAÇÃO E O TRATAMENTO DE INFORMAÇÕES 1.1- Através de gráficos... 2, 9, 20, 65, 116 1.2- Através de tabelas...

Leia mais

Aula 1: Conhecendo a Calculadora

Aula 1: Conhecendo a Calculadora Nome completo do(a) aluno(a): Nº Ano: Turma: Data: / / Aula 1: Conhecendo a Calculadora Nosso objetivo é que vocês consigam identificar os conteúdos matemáticos já aprendidos na sala de aula de uma forma

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente C

Gabarito Extensivo MATEMÁTICA volume 1 Frente C Gabarito Extensivo MATEMÁTICA volume 1 Frente C 01) B Helô Bicicleta São João Regina Ônibus São Pedro Ana Moto Santo Antonio Corretas I e II 0) Basta calcular o MMC entre 1, 34 e 84.3.5.7 = 40 Após 40

Leia mais

Preparação para o teste intermédio de Matemática 8º ano

Preparação para o teste intermédio de Matemática 8º ano Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos

Leia mais

Exemplo de Subtração Binária

Exemplo de Subtração Binária Exemplo de Subtração Binária Exercícios Converta para binário e efetue as seguintes operações: a) 37 10 30 10 b) 83 10 82 10 c) 63 8 34 8 d) 77 8 11 8 e) BB 16 AA 16 f) C43 16 195 16 3.5.3 Divisão binária:

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 5.º ANO PLANIFICAÇÃO GLOBAL ANO LETIVO 2012/2013 Planificação Global 5º Ano 2012-2013 1/7 NÚMEROS

Leia mais

Prof. Msc. Edmundo Tork Matemática Básica. + % a b

Prof. Msc. Edmundo Tork Matemática Básica. + % a b Prof. Msc. Edmundo Tork Matemática Básica π n x α φ + % a b χ β Sumário Números Inteiros... 0 Números Naturais... 0 Operações Fundamentais com Números Naturais... 0 Exercícios... 0 Mínimo Múltiplo Comum...

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

Equações do segundo grau

Equações do segundo grau Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro

Leia mais

PROVA BANCO DO BRASIL MAIO DE 2013 (FCC) TIPO 001

PROVA BANCO DO BRASIL MAIO DE 2013 (FCC) TIPO 001 PROVA BANCO DO BRASIL MAIO DE 2013 (FCC) TIPO 001 16. Após a finalização de um concurso de conhecimentos gerais, os dados foram organizados e apresentados em um infográfico, conforme abaixo. Sabe-se que,

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais