Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções"

Transcrição

1 Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento linear, diferentes experimentadores poderão traçar diferentes retas, encontrando diferentes valores para os coeficientes linear e/ou angular. Um método para determinar a reta correta é dado pelo método dos mínimos quadrados. Este método consiste em determinar o coeficiente angular a e o coeficiente linear b da equação da reta: y = a.x + b. Em geral, a relação entre duas grandezas físicas não é linear, e é fundamental descobrir de que tipo é e quais são os parâmetros que a caracterizam. Sabe-se que numa relação linear é muito simples o processo de se determinar os parâmetros envolvidos (neste caso o coeficiente linear e angular), portanto, quando se observa que o gráfico obtido não é uma reta, pode-se linearizá-lo através de uma mudança de variáveis, transformando em retas mesmo curvas aparentemente complexas. Este processo de transformar um gráfico curvo em uma reta denomina-se linearização. Para isso, um certo grau de familiaridade com as representações gráficas das principais funções matemáticas é recomendável, pois deve-se ter uma noção sobre que tipo de função matemática poderia gerar uma curva igual a indicada pela seqüência de pontos experimentais no gráfico. Nesta aula vamos analisar os dois casos mais freqüentes: a relação tipo potência e do tipo exponencial. 2. OBJETIVOS Determinar os coeficientes angular e linear da equação da reta, y = a.x + b, através do método dos mínimos quadrados; Aplicar métodos de linearização de funções não lineares: tipo potência: y = a.x n e exponencial: y = a.e b.x. 3. TEORIA 3.1. O Método dos Mínimos Quadrados (ou Regressão Linear)

2 O ajuste de curvas pelo método dos mínimos quadrados é importante, pois ao contrário do método gráfico, é independente da avaliação do experimentador. Este método consiste em minimizar o erro quadrático médio (S) das medidas. Considere então um conjunto de N medidas (x i, y i ), com i assumindo valores inteiros desde 1 até N. S é definido como: N N S = S i = y y i 2 i=1 i=1 (1) onde y é o valor da curva ajustada (y = a.x+b). O objetivo é somar os S i das N medidas e traçar uma reta que torne a soma dos S i mínima. Matematicamente isso corresponde a S = 0 a e S = 0. É razoável b acreditar que para que isso aconteça a reta desejada deve passar entre todos os pontos experimentais. Destas duas expressões extraímos os valores dos parâmetros a e b. O resultado é: N N N i=1 i=1 y i i=1 i=1 2 a = N x iy i i=1 x i N N x 2 N i x i (2) b = N 2 N N N i=1 x i i=1 y i i=1 x i y i i=1 x i N N x 2 N i=1 i i=1 x 2 i (3) N onde usou-se a notação de somatório: i=1 x i = x 1 + x x N. Exemplo de Determinação dos Coeficientes Angular e Linear Considere uma medida de movimento retilíneo uniforme (MRU) efetuado por um carrinho no laboratório. Foram medidos tanto sua posição x (em metros) quanto o tempo t (em segundos) e os resultados estão conforme a tabela 1. Construa o gráfico que representa o movimento e determine a velocidade e a posição inicial do carrinho usando o método dos mínimos quadrados.

3 Tabela 1. Valores experimentais da posição de um carrinho em função do tempo. X - tempo (s) Y - posição (m) 0,100 0,51 0,200 0,59 0,300 0,72 0,400 0,80 0,500 0,92 Para usarmos o método dos mínimos quadrados, sugere-se a construção de uma tabela, conforme indicado abaixo, lembrando que aqui o eixo x corresponde ao tempo t e o eixo y, à posição x: Tabela 2. Tabela contendo os valores de x, y, x.y e x 2, e suas respectivas somatórias. x(s) y(m) x.y x 2 0,100 0,51 0,051 0,0100 0,200 0,59 0,120 0,0400 0,300 0,72 0,220 0,0900 0,400 0,80 0,320 0,1600 0,500 0,92 0,460 0,2500 Σx = 1,50 Σy = 3,54 Σx.y = 1,17 Σx 2 = 0,55 Com esses resultados, basta substituir os valores nas fórmulas para a e b, e lembrar que neste caso temos N = 5 medidas: a = 5 1,17 1,50 3,54 5 0,55 (1,50) 2 = 5,85 5,31 2,75 2,25 = 0,54 0,50 = 1,08 b = 0,55 3,54 1,17 1,50 5 0,55 (1,50) 2 = 1,95 1,76 2,75 2,25 = 0,19 0,50 = 0,38 Portanto, temos que y = 1,08.x + 0,38 e se substituirmos os valores de x da tabela 1 na função obtemos os seguintes valores de y:

4 Posição (m) Tabela 3. Valor da posição de um carrinho estimado através do método dos mínimos quadrados em função do tempo. Y - posição (m) X - tempo (s) (método dos mínimos quadrados) 0,100 0,49 0,200 0,60 0,300 0,70 0,400 0,81 0,500 0,92 Fazendo o gráfico dos resultados da tabela 1 com a tabela 3 temos: 1,0 0,9 dados experimentais método dos mínimos quadrados 0,8 0,7 0,6 y = 0,29 m 0,5 x = 0,30 s 0,4 logo: x 0 = 0,38 m v = 0,29/0,30 = 0,97 m/s 0,3 0,0 0,1 0,2 0,3 0,4 0,5 Tempo (s) Figura 1. Evolução da posição do móvel em função do tempo. Observe que o valor da velocidade calculado pelos dados da tabela 1 é igual a 0,97 m/s enquanto que para a curva determinada pelo método dos mínimos quadrados é de 1,08 m/s, ou seja, este é o valor mais próximo do valor real da velocidade do carrinho.

5 Exercício: 1. Estudando o movimento de um carrinho, efetuado ao longo de um trilho de ar (movimento retilíneo uniforme) obteve-se os seguintes dados experimentais, após: Posição (mm) t 1 (s) t 2 (s) t 3 (s) t 4 (s) t 5 (s) t (s) σ t (s) 879 0,14 0,15 0,14 0,12 0, ,20 0,22 0,24 0,25 0, ,32 0,33 0,29 0,34 0, ,44 0,45 0,46 0,46 0, ,52 0,52 0,51 0,53 0, ,64 0,72 0,70 0,69 0,60 Uma posição para o sensor de medida no trilho foi escolhida e então mediu-se o tempo gasto pelo carrinho para atingi-lo. Esta medida foi feita 5 vezes, correspondendo aos valores t 1, t 2, t 3, t 4 e t 5. Em seguida repetiu-se o procedimento para outras 5 posições do sensor ao longo do trilho. Determine utilizando o método dos mínimos quadrados a velocidade do carrinho e sua posição inicial com os erros associados. 3.2 Linearização de Funções Na maioria das vezes as funções que descrevem os fenômenos físicos não são lineares, ou seja, não são funções do tipo y = a.x + b. Nestes casos, quando construímos o gráfico de y = f(x) no papel milimetrado não obtemos uma reta. Vejamos alguns exemplos: Exemplo 1. Pêndulo simples: Na tabela abaixo (fora do padrão), L é o comprimento do fio de um pêndulo simples e T é o valor médio do período de oscilação desse pêndulo, obtido de 10 medidas. Faça um gráfico de T em função de L (ou seja, T L). Adote ΔT = 0,05 s e ΔL = 0,05 m. L (m) 1,44 1,32 1,22 1,10 0,94 0,71 0,53 0,41 0,29 0,16 T (s) 2,40 2,31 2,22 2,12 1,94 1,70 1,53 1,30 1,16 0,79

6 Comprimento de onda, (m) Período, T (s) 2,6 2,4 2,2 2,0 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 Comprimento, L (cm) Exemplo 2. Velocidade do som no ar: para determinar a velocidade do som no ar, mediu-se o comprimento de onda λ em função da freqüência f. Os dados são mostrados na tabela a seguir. f (Hz) λ (m) 0,3405 0,4340 0,5800 0,8655 1,7155 3,4556 Conhecendo as incertezas Δλ = 0,0005 m e Δf = 2 Hz, construir o gráfico λ = f(f) Frequência, f (Hz) Observe que a função matemática que relaciona T e L no exemplo 1 e λ e f no exemplo 2 não são funções lineares. Neste caso vem a seguinte

7 Quadrado do Período, T 2 (s) pergunta: O que fazer se as grandezas não têm relação linear? Na maioria das vezes a relação entre duas grandezas físicas não é linear e é fundamental descobrir de que tipo é e quais são os parâmetros que caracterizam a relação entre as grandezas. Uma das maneiras de se fazer isso é linearizar o gráfico. Isto pode ser feito de dois modos: a) Fazendo uma mudança adequada de variável; b) Mudando o tipo de papel (monolog ou di-log) ou escala (no caso do uso do programa Excel). A) Mudança de variável A mudança de variável é muito útil quando já conhecemos a relação funcional que existe entre as grandezas que estão sendo estudadas. Exemplo 3. No caso de pêndulo simples sabemos que, sendo T o período, L o comprimento do fio e g a aceleração da gravidade local, então: T = 2π L g T2 = 4π2 g L (4) A Equação 4 mostra que a função matemática entre T 2 e L é linear, sendo 4π 2 /g o coeficiente angular da reta. Vamos construir o gráfico de T 2 L e verificar se isso acontece mesmo. Determinação da aceleração da gravidade ,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 Comprimento, L (cm)

8 Comprimento de onda, (m) Escolhendo dois pontos do gráfico e procedendo como especificado anteriormente, encontraremos que a função matemática entre T 2 e L é T 2 = 3,950L. Portanto, temos uma técnica para determinar a aceleração da gravidade, isto é: 4π 2 g = 3,950 g = 4π 2 3,950 g = 9,990 m/s 2 Exemplo 4. A velocidade do som v, a freqüência f e o comprimento de onda λ estão relacionadas por v = λ. f λ = v f λ = v. f 1 (5) A Equação 5 mostra que a função matemática entre λ e 1/f é linear, sendo v o coeficiente angular da reta. Vamos construir o gráfico de λ f -1 e verificar se isso acontece mesmo. Determinação da velocidade do som no ar 3,5 3,0 2,5 2,0 1,5 1,0 y = 0,865 m 0,5 x = 0,0025 s logo: v = 0,865/0,0025 = 346 m/s 0,0 0,000 0,002 0,004 0,006 0,008 0,010 Inverso da Frequência, 1/f (s) Escolhendo dois pontos do gráfico e procedendo como especificado no exemplo 3, encontraremos que a função matemática entre λ e 1/f é λ = 346,0(1/f) Comparando com a Equação 5, obtemos a velocidade do som no ar: v = 346,0 m/s

9 B) Mudando o tipo de papel (ou escala) Neste caso é feita uma mudança no tipo de papel (ou escala, no caso do uso do programa Excel) que está sendo empregado(a) na construção do gráfico. Um tipo muito útil de escala é a logarítmica. Nesta escala, a distância D entre duas marcas sucessivas não é constante, ela varia logaritmicamente (Figura 1): D = log(g) log(g 0 ), isto é, ela é feita de tal maneira que a distância entre 1 e 2 é proporcional a (log2 - log1); a distância entre 2 e 3 é proporcional a: (log3 - log2), por isso as distâncias entre marcas sucessivas não são constantes. Numa escala logarítmica, então, a escala é linear com o logaritmo da grandeza! Figura 2. Escala logarítmica. A Figura 2 mostra uma escala logarítmica maior, em que a graduação correspondente à origem do eixo é g 0 = Figura 3. Representação das décadas em uma escala logarítmica. Note que existem trechos que se repetem: as décadas. Cada década corresponde a uma potência de 10 da grandeza g a ser representada no eixo. A escala mostrada acima apresenta 3 décadas. Portanto, quando for necessário o uso de escalas logarítmicas, o primeiro cuidado é reescrever todos os valores a serem representados na escala em notação científica, para definir quantas décadas serão necessárias e em qual das décadas os valores serão representados. Exemplo 5. Representar numa escala logarítmica os seguintes valores: A = 0,2 kg = kg C = 30 kg = 3, kg B = 5,0 kg = 5, kg D = 85 kg = 8, kg

10 Vê-se então que serão necessárias 3 décadas para representar estes valores. Colocando na origem a graduação g 0 = e os valores serão marcados, como mostrados na figura da página seguinte Existem no mercado 2 tipos de papeis com escalas logarítmicas: Mono-log: um dos eixos é uma escala linear e o outro é uma escala logarítmica. Di-log: neste papel os dois eixos são escalas logarítmicas. Quando se usa o software Excel basta construir o gráfico a partir de uma tabela x,y. Em seguida, para mudar a escala de cada eixo clique com o botão direito do mouse sobre o eixo x, por exemplo, e vá em "Formatar eixo". Nas opções que aparecem, basta selecionar o quadro "Escala logarítmica" e definir a base desejada ( a mais convencional é a base 10, para o caso de uma equação exponencial, y = a.e nx, utiliza-se a base 2,718). A escala logarítmica é muito útil quando estamos tratando com funções do tipo potência (y = a.x n ) e do tipo exponencial (y = a.e nx ). Estas funções sempre podem ser linearizadas com o uso de escalas logarítmicas. i) Função tipo potência Quando se suspeita que a relação x e y é da forma y = a.x n, procedese do seguinte modo: Aplica-se o logaritmo a ambos os lados da equação: log y = log (a.x n ) log y = log a + n.log x (6) Fazendo log y = Y, log a = A e log x = X, obtém-se: Y = A + nx, que é a equação de uma reta, sendo n o coeficiente angular da reta e a potência da função que relaciona x e y. Portanto, vê-se que é possível transformar uma relação tipo potência em uma relação linear aplicando o logaritmo.

11 ii) Função exponencial Outro tipo de relação entre duas grandezas física muito comum e bem simples é a exponencial: y = a.e bx. Ela também pode ser linearizada através de uma mudança de variáveis ou então fazer um gráfico em um papel milimetrado, colocando os valores medidos de y no eixo das ordenadas e colocar e bx no eixo das abscissa e não as medidas x. Outra possibilidade é utilizar um papel onde um dos eixos tem escala logarítmica e o outro linear. Quando se suspeita que a relação x e y é da forma y = a.e bx, procedese do seguinte modo: Aplica-se o logaritmo natural a ambos os lados da equação: ln y = ln (a.e bx ) ln y = ln a + bx ln e ln y = ln a + bx (7) Fazendo ln y = Y, ln a = A, obtém-se: Y = A + bx, que é a equação de uma reta, sendo b o coeficiente angular da reta. Para obter o coeficiente angular da reta nos dois casos é feito do seguinte modo: Papel di-log: Neste caso teremos (Figura 4): Relação de potência: y = a.x n, a =?, n =? Papel Milimetrado Papel Di-log y 2 P 2 y y y 1 P 1 x A x 1 x x 2 y Figura 4. Determinação das constantes 1 no papel di-log. a) Escolha dois pontos P 1 e P 2 de fácil leitura no papel di-log:

12 P 1 = (x 1,y 1 ) e P 2 = (x 2,y 2 ) b) Substituindo as coordenadas dos pontos P 1 e P 2 na Equação 6, teremos: log y 1 = log a + n log x 1 log y 2 = log a + n log x 2 (7a) (7b) Subtraindo as equações 7a e 7b e resolvendo para n: log y 1 - log y 2 = log a + n log x 1 - log a - n log x 2 n = log y 1 log y 2 log x 1 log x 2 Tendo encontrado n, é só voltar a uma das equações 7a ou 7b e encontrar a. Papel mono-log: Neste caso teremos (Figura 5): Relação exponencial: y = a.e b.x, a =?, b =? Papel Milimetrado Papel Mono-log y 2 y y P 2 y 1 P 1 A x x 1 x 2 x y 1 y Figura 5. Determinação das constantes 1 no papel mono-log. a) Escolha dois pontos P 1 e P 2 de fácil leitura no papel mono-log: P 1 = (x 1,y 1 ) e P 2 = (x 2,y 2 ) b) Substituindo as coordenadas dos pontos P 1 e P 2 na Equação 7, teremos: log y 1 = log a + b. x 1 log y 2 = log a + b. x 2 (8a) (8b)

13 Subtraindo as equações 8a e 8b e resolvendo para b: log y 1 - log y 2 = log a + b. x 1 - log a - b. x 2 b = log y 1 log y 2 x 1 x 2 Tendo encontrado b, é só voltar a uma das equações 8a ou 8b e encontrar a. Exercícios: 1. Efetue a linearização das funções abaixo: a) y = 5x 2 b) y = 3e 2x c) y = 5e x d) y = x Diversos fenômenos físicos como o decaimento radioativo segue uma lei matemática que é uma função de uma exponencial negativa. Outro fenômeno mais próximo é o decréscimo de temperatura de uma xícara de café. Dada uma temperatura inicial de 205ºC (exagerando obviamente), podemos ver que o seu decréscimo será uma exponencial negativa até atingir uma temperatura ambiente, 1 grau por exemplo (exagerando novamente). Utilizando então os dados da tabela abaixo, vemos o comportamento na figura 6: Tempo (horas) Temperatura (ºC)

14 Temperatura ( C) 300 Decréscimo de Temperatura Tempo (horas) Figura 6. Temperatura em função do tempo de uma hipotética xícara de café. Determine: (a) o coeficiente angular da reta no gráfico monolog. (b) o coeficiente linear da reta no gráfico monolog. (c) a equação da reta no gráfico monolog. (d) a função exponencial que gerou o gráfico da figura 6.

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I

Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I Experiência 02 CONSTRUÇÃO DE GRÁFICOS E PÊNDULO SIMPLES 1. OBJETIVOS Ao término das atividades

Leia mais

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela.

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela. FUNÇÕES Em matemática, uma função é dada pela relação entre duas ou mais quantidades. A função de uma variável f(x) relaciona duas quantidades, sendo o valor de f dependente do valor de x. Existem várias

Leia mais

III. MEDIDAS. Nas disciplinas de Física Experimental é indispensável o conhecimento e o domínio do conteúdo deste texto.

III. MEDIDAS. Nas disciplinas de Física Experimental é indispensável o conhecimento e o domínio do conteúdo deste texto. CONSTRUÇÃO DE GRÁFICOS E LINEARIZAÇÃO Fíísiica Experiimentall Departamento de Fíísiica Centro de Ciiênciias Tecnollógiicas/UDESC III. MEDIDAS III.. Introdução Entre os diversos recursos à disposição dos

Leia mais

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais.

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7aula Janeiro de 2012 CONSTRUÇÃO DE GRÁFICOS I: Papel Milimetrado Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7.1

Leia mais

Universidade Federal Rural de Pernambuco

Universidade Federal Rural de Pernambuco Universidade Federal Rural de Pernambuco Departamento de Morfologia e Fisiologia Animal Área de Biofísica Traçando Gráficos Prof. Romildo Nogueira 1. Introduzindo o tema No trabalho experimental lida-se

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

Capítulo III Interpretação gráfica de dados

Capítulo III Interpretação gráfica de dados Capítulo III Interpretação gráfica de dados Este texto foi baseado no texto das apostilas Introdução à interpretação gráfica de dados, gráficos e equações, 1990, dos Profs. Fuad Saad, Paulo Yamamura e

Leia mais

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é:

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é: Modellus Atividade 3 Queda livre. Do alto de duas torres, uma na Terra e outra na Lua, deixaram-se cair duas pedras, sem velocidade inicial. Considerando que cada uma das pedras leva 3,0s atingir o solo

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica.

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica. Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos em escala di-logarítmica.

Leia mais

Laboratório de Física Básica 2

Laboratório de Física Básica 2 Objetivo Geral: Determinar a aceleração da gravidade local a partir de medidas de periodo de oscilação de um pêndulo simples. Objetivos específicos: Teoria 1. Obter experimentalmente a equação geral para

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

ANÁLISE GRÁFICA DOS RESULTADOS EXPERIMENTAIS

ANÁLISE GRÁFICA DOS RESULTADOS EXPERIMENTAIS ANÁLISE GRÁFICA DOS RESULTADOS EXPERIMENTAIS Após a realização de um experimento, deseja-se estabelecer a função matemática que relaciona as variáveis do fenómeno físico estudado. Nos nossos experimentos

Leia mais

12-Função Horária da Posição do Movimento Uniforme

12-Função Horária da Posição do Movimento Uniforme 12-Função Horária da Posição do Movimento Uniforme Vamos agora chegar a uma função que nos vai fornecer a posição de um móvel sobre uma trajetória em qualquer instante dado. Para isto, vamos supor que

Leia mais

Ajuste de Curvas. Ajuste de Curvas

Ajuste de Curvas. Ajuste de Curvas Ajuste de Curvas 2 AJUSTE DE CURVAS Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente

Leia mais

PRATICA EXPERIMENTAL. Introdução:

PRATICA EXPERIMENTAL. Introdução: PRATICA 2: Corpos em queda livre PRATICA EXPERIMENTAL Introdução: Ao deixar um corpo cair próximo da terra, este corpo será atraído verticalmente para baixo. Desprezando-se se a resistência do ar, todos

Leia mais

Tópico 2. Conversão de Unidades e Notação Científica

Tópico 2. Conversão de Unidades e Notação Científica Tópico 2. Conversão de Unidades e Notação Científica Toda vez que você se refere a um valor ligado a uma unidade de medir, significa que, de algum modo, você realizou uma medição. O que você expressa é,

Leia mais

PROJETO SALA DE AULA

PROJETO SALA DE AULA PROJETO SALA DE AULA 1. Identificação: Título: APRENDENDO FUNÇÕES BRINCANDO Série: 1º série do Ensino Fundamental Softwares Necessários: Cabri-Géomètre, Jogos de Funções e Graphmatica Tempo previsto: Seis

Leia mais

Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência

Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência Por: George Schlesinger Existem diversos tipos de gráficos: linhas, barras, pizzas etc. Estudaremos aqui os gráficos

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

Tratamento de Dados Utilizando o SciDAVis Tutorial Parte 1 Como construir um gráfico e fazer um ajuste linear

Tratamento de Dados Utilizando o SciDAVis Tutorial Parte 1 Como construir um gráfico e fazer um ajuste linear LABORATÓRIO DE FÍSICA EXPERIMENTAL 1 DEPARTAMENTO DE FÍSICA - DAFIS UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR Tratamento de Dados Utilizando o SciDAVis Tutorial Parte 1 Como construir um gráfico

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

PLANO DE AULA Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul Campus Bento Gonçalves

PLANO DE AULA Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul Campus Bento Gonçalves PLANO DE AULA Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul Campus Bento Gonçalves Projeto PIBID-IFRS-BG Área: Física Plano de Aula para Aplicação de Atividade Experimental Nº

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Tópico 8. Aula Prática: Sistema Massa-Mola

Tópico 8. Aula Prática: Sistema Massa-Mola Tópico 8. Aula Prática: Sistema Massa-Mola. INTRODUÇÃO No experimento anterior foi verificado, teoricamente e experimentalmente, que o período de oscilação de um pêndulo simples é determinado pelo seu

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU Movimento Retilíneo Uniforme (MRU) velocímetro do automóvel da figura abaixo marca sempre a mesma velocidade. Quando um móvel possui sempre a mesma velocidade e se movimenta sobre uma reta dizemos que

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

Unidade: Vetores e Forças. Unidade I:

Unidade: Vetores e Forças. Unidade I: Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Movimentos Periódicos Para estudar movimentos oscilatórios periódicos é conveniente ter algum modelo físico em mente. Por exemplo, um

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos

Leia mais

5910179 Biofísica I Turma de Biologia FFCLRP USP Prof. Antônio C. Roque Segunda lista de exercícios

5910179 Biofísica I Turma de Biologia FFCLRP USP Prof. Antônio C. Roque Segunda lista de exercícios Lista sobre funções no Excel A ideia desta lista surgiu em sala de aula, para ajudar os alunos a conhecer de modo prático as principais funções matemáticas que aparecem em biologia. Inicialmente, para

Leia mais

Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades. Representação Gráfica de Funções

Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades. Representação Gráfica de Funções Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades BC 0005 Bases Computacionais da Ciência Representação Gráfica de Funções Prof a Maria das Graças Bruno Marietto graca.marietto@ufabc.edu.br

Leia mais

ROTEIRO 20 PÊNDULO SIMPLES E PÊNDULO FÍSICO

ROTEIRO 20 PÊNDULO SIMPLES E PÊNDULO FÍSICO ROTEIRO 20 PÊNDULO SIMPLES E PÊNDULO FÍSICO INTRODUÇÃO Estamos cercados de oscilações, movimentos que se repetem. Neste roteiro vamos abordar oscilações mecânicas para uma classe de osciladores harmônicos

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

Método dos mínimos quadrados - ajuste linear

Método dos mínimos quadrados - ajuste linear Apêndice A Método dos mínimos quadrados - ajuste linear Ao final de uma experiência muitas vezes temos um conjunto de N medidas na forma de pares (x i, y i ). Por exemplo, imagine uma experiência em que

Leia mais

Correlação e Regressão Linear

Correlação e Regressão Linear Correlação e Regressão Linear A medida de correlação é o tipo de medida que se usa quando se quer saber se duas variáveis possuem algum tipo de relação, de maneira que quando uma varia a outra varia também.

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

15 + 17 + 19 +... + 35 + 37 = 312

15 + 17 + 19 +... + 35 + 37 = 312 MATEMÁTICA 1 Para uma apresentação de dança, foram convidadas 31 bailarinas. Em uma de suas coreografias, elas se posicionaram em círculos. No primeiro círculo, havia 15 bailarinas. Para cada um dos círculos

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 04 Prof. Dr. Marco Antonio Leonel Caetano Guia de Estudo para Aula 04 Aplicação de Produto Escalar - Interpretação do produto escalar

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA. Princípios e Fenômenos da Mecânica

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA. Princípios e Fenômenos da Mecânica UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professores: Alexandre e Felipe Discente: Camila de Oliveira Silva Turma: 2A Matrícula: 2009028716

Leia mais

FÍSICA - MOVIMENTO CIRCULAR UNIFORME - PARÂMETROS SITE: www.sofstica.com.br Responsável: Sebastião Alves da Silva Filho Data: 02.12.

FÍSICA - MOVIMENTO CIRCULAR UNIFORME - PARÂMETROS SITE: www.sofstica.com.br Responsável: Sebastião Alves da Silva Filho Data: 02.12. O MOVIMENTO CIRCULAR Podemos definir movimento circular como todo aquele em que a trajetória percorrida por um móvel corresponde a uma circunferência. Não custa insistir, ainda uma vez, que a circunferência

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 1º EM DATA : / / BIMESTRE 3º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

EXEMPLO NUMÉRICO DA CLASSIFICAÇÃO GEOTÉCNICA MCT

EXEMPLO NUMÉRICO DA CLASSIFICAÇÃO GEOTÉCNICA MCT Exemplos Numéricos: Classificação Geotécnica MCT EXEMPLO NUMÉRICO DA CLASSIFICAÇÃO GEOTÉCNICA MCT Depois de selecionada a jazida e feita a coleta de solo devem ser realizados os ensaios de Compactação

Leia mais

MÓDULO 1 - Abrindo o Winplot e construindo gráficos

MÓDULO 1 - Abrindo o Winplot e construindo gráficos 1 MÓDULO 1 - Abrindo o Winplot e construindo gráficos 1 - Abrindo o Winplot Para abrir o Winplot.exe clique duas vezes no ícone. Abrirá a caixa: Clique (uma vez) no botão. Surgirá uma coluna: Clique no

Leia mais

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados 2aula Janeiro de 2012 TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS Objetivos: Familiarizar o aluno com os algarismos significativos, com as regras de arredondamento e as incertezas

Leia mais

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g).

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g). Protocolos das Aulas Práticas 3 / 4 QUEDA LIVRE. Resumo Uma esfera metálica é largada de uma altura fixa, medindo-se o tempo de queda. Este procedimento é repetido para diferentes alturas. Os dados assim

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

Módulo 4 PREVISÃO DE DEMANDA

Módulo 4 PREVISÃO DE DEMANDA Módulo 4 PREVISÃO DE DEMANDA Conceitos Iniciais Prever é a arte e a ciência de predizer eventos futuros, utilizando-se de dados históricos e sua projeção para o futuro, de fatores subjetivos ou intuitivos,

Leia mais

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é:

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é: Integral Origem: Wikipédia, a enciclopédia livre. No cálculo, a integral de uma função foi criada para originalmente determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas

Leia mais

O coeficiente angular

O coeficiente angular A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir

Leia mais

Trabalhando com funções envolvendo operações financeiras no EXCEL

Trabalhando com funções envolvendo operações financeiras no EXCEL Trabalhando com funções envolvendo operações financeiras no EXCEL Material elaborado por: Leandra Anversa Fioreze Professora de Matemática do Centro Universitário Franciscano 1. Iniciando uma planilha

Leia mais

Atividade 4 Movimento circular uniforme.

Atividade 4 Movimento circular uniforme. Modellus Atividade 4 Movimento circular uniforme. Amarrou-se uma pedra a um fio e pôs-se a rodar com movimento circular uniforme. As equações do movimento, para um sistemas de coordenadas com origem no

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas,

1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas, MODELAÇÃO E DETERMINAÇÃO DE PARÂMETROS CINÉTICOS FILIPE GAMA FREIRE 1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas, etc. a que chamaremos y

Leia mais

Medidas elétricas I O Amperímetro

Medidas elétricas I O Amperímetro Medidas elétricas I O Amperímetro Na disciplina Laboratório de Ciências vocês conheceram quatro fenômenos provocados pela passagem de corrente elétrica num condutor: a) transferência de energia térmica,

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

unidades das medidas para as seguintes unidades: km 2, hm 2, dam 2, m 2, dm 2,

unidades das medidas para as seguintes unidades: km 2, hm 2, dam 2, m 2, dm 2, Estudo Dirigido de Física Experimental 1 1ª FASE 1. A notação científica facilita a transformação de unidades. Faça as transformações lembrando de manter o mesmo número de algarismos significativos. a)

Leia mais

O Excel é um software de Planilha Eletrônica integrante dos produtos do Microsoft Office.

O Excel é um software de Planilha Eletrônica integrante dos produtos do Microsoft Office. EXCEL O Excel é um software de Planilha Eletrônica integrante dos produtos do Microsoft Office. É composto das seguintes partes: Pasta de Trabalho um arquivo que reúne várias planilhas, gráficos, tabelas,

Leia mais

Estatística Aplicada Lista de Exercícios 7

Estatística Aplicada Lista de Exercícios 7 AULA 7 CORRELAÇÃO E REGRESSÃO Prof. Lupércio F. Bessegato 1. Ache os valores de a e b para a equação de regressão Y = a + bx, usando o conjunto de dados apresentados a seguir, sem fazer cálculos (sugestão:

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

COMO USAR O EXCEL PARA PROJETAR AS ENTRADAS DO FLUXO DE CAIXA DIÁRIO

COMO USAR O EXCEL PARA PROJETAR AS ENTRADAS DO FLUXO DE CAIXA DIÁRIO COMO USAR O EXCEL PARA PROJETAR AS ENTRADAS DO FLUXO DE CAIXA DIÁRIO! Como projetar uma linha de tendência no Excel?! Como escolher a curva que melhor se ajusta a uma determinada origem de dados?! Como

Leia mais

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 *

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR 1 Graduando Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * 2 Pesquisador - Orientador 3 Curso de Matemática, Unidade Universitária

Leia mais

Problemas de Mecânica e Ondas 11

Problemas de Mecânica e Ondas 11 Problemas de Mecânica e Ondas 11 P. 11.1 ( Exercícios de Física, A. Noronha, P. Brogueira) Dois carros com igual massa movem-se sem atrito sobre uma mesa horizontal (ver figura). Estão ligados por uma

Leia mais

UTILIZAÇÃO DE RECURSOS ESTATÍSTICOS AVANÇADOS DO EXCEL PREVISÃO

UTILIZAÇÃO DE RECURSOS ESTATÍSTICOS AVANÇADOS DO EXCEL PREVISÃO UTILIZAÇÃO DE RECURSOS ESTATÍSTICOS AVANÇADOS DO EXCEL PREVISÃO! Fazendo regressão linear! Relacionando variáveis e criando uma equação para explicá-las! Como checar se as variáveis estão relacionadas!

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Tópico 4. Como Elaborar um Relatório e Apresentar os Resultados Experimentais

Tópico 4. Como Elaborar um Relatório e Apresentar os Resultados Experimentais Tópico 4. Como Elaborar um Relatório e Apresentar os Resultados Experimentais 4.1. Confecção de um Relatório 4.1.1. Organização do relatório Um relatório é uma descrição detalhada, clara e objetiva de

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática Introdução ao GeoGebra software livre 0 CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS Curso de Matemática Primeiros Passos Com o Software Livre GeoGebra Março de 2010 Prof. Ilydio Pereira de Sá Introdução ao

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Aula 1: Medidas Físicas

Aula 1: Medidas Físicas Aula 1: Medidas Físicas 1 Introdução A Física é uma ciência cujo objeto de estudo é a Natureza. Assim, ocupa-se das ações fundamentais entre os constituíntes elementares da matéria, ou seja, entre os átomos

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

Provas Comentadas OBF/2011

Provas Comentadas OBF/2011 PROFESSORES: Daniel Paixão, Deric Simão, Edney Melo, Ivan Peixoto, Leonardo Bruno, Rodrigo Lins e Rômulo Mendes COORDENADOR DE ÁREA: Prof. Edney Melo 1. Um foguete de 1000 kg é lançado da superfície da

Leia mais

Movimento em 1D. Objetivos: Descrever o movimento de um corpo em 1 dimensão; Resolver problemas de movimento em 1D a aceleração constante.

Movimento em 1D. Objetivos: Descrever o movimento de um corpo em 1 dimensão; Resolver problemas de movimento em 1D a aceleração constante. Movimento em 1D Objetivos: Descrever o movimento de um corpo em 1 dimensão; Resolver problemas de movimento em 1D a aceleração constante. Movimento em 1D Limitações do problema tratado: o corpo não possui

Leia mais

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S.

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Por Prof. Alberto Ricardo Präss Adaptado de Física de Carlos Alberto Gianotti e Maria Emília Baltar OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Todo movimento que se repete em intervelos de tempo

Leia mais

Medir a aceleração da gravidade... com um telemóvel! Fisiquipédia 9

Medir a aceleração da gravidade... com um telemóvel! Fisiquipédia 9 Medir a aceleração da gravidade... com um telemóvel! Acelerómetros Uma das medidas de segurança de computadores e smarthphones modernos é a incorporação de um acelerómetro nestes aparelhos. Como o nome

Leia mais

PARA A CONSTRUÇÃO DOS GRÁFICOS

PARA A CONSTRUÇÃO DOS GRÁFICOS 1 PARA A CONSTRUÇÃO DOS GRÁFICOS Apresentamos dois materiais feitos por estudantes do Curso de Psicologia da Faculdade de Ciências Humanas e da Saúde para construção de gráficos. As instruções das páginas

Leia mais

O caso estacionário em uma dimensão

O caso estacionário em uma dimensão O caso estacionário em uma dimensão A U L A 6 Meta da aula Aplicar o formalismo quântico no caso de o potencial ser independente do tempo. objetivos verificar que, no caso de o potencial ser independente

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

LABORATÓRIO DE FÍSICA

LABORATÓRIO DE FÍSICA LABORATÓRIO DE FÍSICA CONTEÚDO PÁG. INFORMAÇÕES SOBRE O CURSO... ERROS E DESVIOS... ALGARISMOS SIGNIFICATIVOS... INCERTEZAS... CÁLCULOS SEM PROPAGAÇÃO DE INCERTEZAS... CONSTRUÇÃO E INTERPRETAÇÃO DE GRÁFICOS...

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CAPACITORES E CIRCUITOS RC COM ONDA QUADRADA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CAPACITORES E CIRCUITOS RC COM ONDA QUADRADA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CAPACITORES E CIRCUITOS RC COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar o comportamento

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Métodos Matemáticos para Gestão da Informação

Métodos Matemáticos para Gestão da Informação Métodos Matemáticos para Gestão da Informação Aula 05 Taxas de variação e função lineares III Dalton Martins dmartins@gmail.com Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Primeira Edição junho de 2005 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais