Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano"

Transcrição

1 Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de volume Síntese Prismas Todos os prismas têm em comum as seguintes características: têm duas bases iguais e paralelas (bases do prisma); as restantes faces são quadriláteros (faces laterais do prisma). Propriedades dos prismas N.º de vértices do prisma = 2 n.º de vértices do polígono da base N.º de arestas do prisma = 3 n.º de lados do polígono da base N.º de faces do prisma = 2 + n.º de lados do polígono da base Pirâmides Todas as pirâmides têm em comum as seguintes características: têm uma base (base da pirâmide); têm um vértice exterior ao plano que contém a base (vértice da pirâmide); as restantes faces são triângulos (faces laterais da pirâmide). Propriedades das pirâmides N.º de vértices da pirâmide = 1 + n.º de vértices do polígono da base N.º de arestas da pirâmide = 2 n.º de lados do polígono da base N.º de faces da pirâmide = 1 + n.º de lados do polígono da base Esfera A esfera é limitada por uma superfície curva, que tem o nome de superfície esférica. Cone Todos os cones têm em comum as seguintes características: têm uma base circular; têm apenas um vértice; a superfície lateral é curva. Pág. 1

2 Cilindro Todos os cilindros têm em comum as seguintes características: têm duas bases circulares iguais e paralelas; a superfície lateral é curva. Poliedros Os sólidos geométricos limitados apenas por superfícies planas são poliedros. Os sólidos geométricos que têm pelo menos uma superfície curva não são poliedros. Relação de Euler Em todos os prismas e pirâmides a soma do números de faces (F) com o número de vértices (V) é igual à soma do número de arestas (A) com dois. Relação de Euler: 2 Planificações de sólidos geométricos Exemplos: (para cada um dos sólidos geométricos apresentados existem várias planificações possíveis, das quais apenas tens uma para exemplificar) CUBO PRISMA TRIANGULAR PIRÂMIDE QUADRANGULAR CILINDRO CONE Pág. 2

3 Volume O volume de um corpo é a porção de espaço que este ocupa. Sólidos equivalentes Sólidos com o mesmo volume dizem-se equivalentes. Unidades medida de volume m 1000 dm cm mm 0, km 0, hm 0,001 dam m Capacidade A capacidade de um recipiente é a quantidade de líquido que este pode conter. Unidades de medida de capacidade 10 dl 100 cl 1000 ml 0,001 kl 0,01 hl 0,1 dal Conversão de capacidade em volume dm Fórmulas para o cálculo do volume de sólidos Volume do paralelepípedo retângulo í â!"# $ & ' ( )* ' ' $ & Volume do cubo +#) ' ' ' ' ' ' ' Volume do cilindro / +,,! ( - ' / 0 Á +í+# ' ' Pág. 3

4 Nas próximas páginas encontrarás questões de provas finais de Matemática do 2.º Ciclo seguidas de novas propostas semelhantes. Não te esqueças que podes, e deves, consultar a síntese inicial sempre que tiveres alguma dúvida. Bom trabalho! Prova Final de Matemática ( Caderno 2) Prova Final de Matemática ( Caderno 2) Prova Final de Matemática ( Caderno 2) Pág. 4

5 Prova Final de Matemática ( Caderno 2) Prova Final de Matemática ( Caderno 2) 1. Quantas faces tem uma pirâmide com a mesma base que um prisma que tem 9 arestas? Assinala com X a opção correta Quantas arestas tem um prisma com a mesma base que uma pirâmide 6 com vértices? Assinala com X a opção correta Pág. 5

6 3. Quantos vértices tem um prisma com a mesma base que uma pirâmide com 15 vértices? Assinala com X a opção correta Prova Final de Matemática ( Caderno 2) 4. Das quatro imagens seguintes, qual delas corresponde à planificação de um prisma triangular? Resposta: Pág. 6

7 5. Na figura abaixo tens três imagens, em que uma delas corresponde à planificação do cubo Qual das três imagens apresentadas é uma planificação do cubo? Resposta: 5.2. Sabendo que o volume do cubo é 125 cm 3, qual é a medida da aresta do cubo em dm? Assinala com X a opção correta. 25 0,5 0,005 0,25 Prova Final de Matemática ( Caderno 1) Pág. 7

8 Prova Final de Matemática ( Caderno 2) 6. No quadriculado apresentado a seguir, está desenhada a vista de frente e a vista de cima de um dos objetos A, B ou C. Qual dos objetos está representado? Resposta: A B C Pág. 8

9 Prova Final de Matemática ( Caderno 2) Prova Final de Matemática ( Caderno 2) Pág. 9

10 Prova Final de Matemática ( Caderno 1) Prova Final de Matemática ( Caderno 2) Pág. 10

11 7. Considera a planificação de um cilindro. Sabendo que a altura do cilindro é 50 cm e o seu volume 62,8 dm 3, determina o diâmetro da sua base em centímetros. Mostra como chegaste à tua resposta. (Utiliza 3,14 para valor aproximado de π.) Prova Final de Matemática ( Caderno 1) Resposta: 8. Um reservatório de água tem a forma de um cilindro cujo diâmetro é 20 metros. A capacidade deste reservatório em litros é 3, litros. Determina a altura do reservatório, em metros, utilizando 3,1416 como valor aproximado de π. Reservatório de água Mostra como chegaste à tua resposta. Resposta: Pág. 11

12 Prova Final de Matemática ( Caderno 1) Prova Final de Matemática (2013- Caderno 1) 9. O Jorge, para determinar o volume de dois objetos iguais, colocou-os numa proveta com 2 cl de água. Após a colocação dos dois objetos na proveta, a marcação de 2 cl de água inicial passou para 2,3 cl. Qual o volume de cada um dos objetos, em centímetros cúbicos, determinado pelo Jorge? Não efetues arredondamentos nos cálculos intermédios. Mostra como chegaste à resposta. Pág. 12

13 Prova Final de Matemática ( Caderno 1) 10. O sr. Oliveira tem uma estufa onde planta frutos silvestres. Este ano, o sr. Oliveira terá de substituir os tubos metálicos que sustentam a estufa e o plástico que a reveste. Ao lado tens um esquema da estufa do sr. Oliveira Calcula os metros de tubos metálicos que terá de comprar para substituir a estrutura representada na figura ao lado. (Utiliza 3,14 como valor aproximado de π.) Determina a quantidade de metros quadrados de plástico que o sr. Oliveira terá de comprar para forrar novamente o telhado da estufa. (Utiliza 3,14 como valor aproximado de π.) Assinala com X a expressão numérica que traduz o volume da estufa do sr. Oliveira π π π π Pág. 13

Sólidos geométricos (Revisões)

Sólidos geométricos (Revisões) Curso de Educação e Formação Assistente Administrativo DISCIPLINA: Matemática Aplicada FICHA DE TRABALHO Nº 15 MÓDULO: 8 TURMA: A1/A2 DATA: 2006/2007 Sólidos geométricos (Revisões) Já conhecemos os nomes

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Volumes Exemplo1: Exemplo2:

Volumes Exemplo1: Exemplo2: Volumes Exemplo1: Esta garrafa está cheia. Ela contém 90 mililitros (90 ml) de refrigerante: Volume 90 ml Isso significa que 90 ml é a quantidade de líquido que a garrafa pode armazenar: Capacidade 90

Leia mais

Volumes parte 02. Isabelle Araujo

Volumes parte 02. Isabelle Araujo olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.

Leia mais

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

Explorando Poliedros

Explorando Poliedros Reforço escolar M ate mática Explorando Poliedros Dinâmica 6 2ª Série 1º Bimestre Matemática Ensino Médio 2ª Geométrico Introdução à geometria espacial Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE

Leia mais

Treino Matemática Planificação de Sólidos e Trigonometria Básica

Treino Matemática Planificação de Sólidos e Trigonometria Básica 1.Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é.ao fazer um molde de um copo, em cartolina, na forma de cilindro

Leia mais

Poliedros, Prismas e Cilindros

Poliedros, Prismas e Cilindros 1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em

Leia mais

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 A figura ilustra a planificação da superfície lateral de um cilindro reto de 10 metros de altura. Considere π = 3,14. Qual o valor da área total desse cilindro, em metros quadrados?

Leia mais

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?

Leia mais

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos.

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos. GEOMETRIA ESPACIAL Geometria Espacial é o estudo da geometria no espaço tridimensional (as 3 dimensões são: largura, comprimento e profundidade). Essas figuras recebem o nome de sólidos geométricos ou

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas

Leia mais

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

Matemática Régis Cortes GEOMETRIA ESPACIAL

Matemática Régis Cortes GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL 1 GEOMETRIA ESPACIAL PIRÂMIDE g g = apótema da pirâmide ; a p = apótema da base h g 2 = h 2 + a p 2 a p Al = p. g At = Al + Ab V = Ab. h 3 triangular quadrangular pentagonal hexagonal

Leia mais

Escola Básica de Santa Catarina

Escola Básica de Santa Catarina Escola Básica de Santa Catarina Matemática Assunto Sólidos geométricos. Áreas e Volumes. 9º ano Nome: Nº. Turma: data / / GRUPO I 1. 2. 3. 4. 1 5. 6. 7. 8. 9. 10. GRUPO II 2 GRUPO II (Exame Nacional de

Leia mais

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011 GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2 Dirce Uesu Pesco Geometria Espacial 08/11/2011 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 2/5: Prof. Víctor O. Gamarra Rosado

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 2/5: Prof. Víctor O. Gamarra Rosado UNESP UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD Parte 2/5: 6. Figuras geométricas 7. Sólidos geométricos Prof.

Leia mais

Problemas de volumes

Problemas de volumes Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1 Tema de vida: Nome do Formando: Data: / / Armando Jorge Cunha Página 1 EXERCÍCIOS: 1. Calcule a área dos quadrados e rectângulos representados na figura: 2. As figuras seguintes representam terrenos agrícolas.

Leia mais

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 2.º CICLO DO ENSINO BÁSICO Matemática/Prova 62/2.ª Chamada/2013 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI n.º

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan

Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan Matemática CONVERSÃO DE UNIDADES Apresentamos a tabela de conversão de unidades do sistema Métrico Decimal Medida de Grandeza Fator Múltiplos

Leia mais

GEOMETRIA ESPACIAL - PRISMAS

GEOMETRIA ESPACIAL - PRISMAS GEOMETRIA ESPACIAL - PRISMAS Questão 01 - (FM Petrópolis RJ) A Figura a seguir ilustra um recipiente aberto com a forma de um prisma hexagonal regular reto. Em seu interior, há líquido até a altura de

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A.

Leia mais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Você já deve ter observado embalagens e objetos que têm relação com figuras chamadas sólidos geométricos.

Leia mais

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade A UA UL LA Unidades de volume Introdução Com esta aula iniciamos uma nova unidade do Telecurso 2000: a Geometria Espacial. Nesta unidade você estudará as propriedades de figuras espaciais, tais como: o

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

R.: b) E quais são números naturais ímpares? R.: c) Dentre os números dados está o sucessor do número natural 2 999. Ele expressa o quê? R.

R.: b) E quais são números naturais ímpares? R.: c) Dentre os números dados está o sucessor do número natural 2 999. Ele expressa o quê? R. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== Por que a Amazônia é tão valiosa?

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

SÓLIDOS GEOMÉTRICOS. da - 2. Sólidos de. geométricos. Rodrigo. Roberto. Tetraedro (4) Hexaedro (6) Octaedro (8) Dudecaedro (12) Icosaedro (20)

SÓLIDOS GEOMÉTRICOS. da - 2. Sólidos de. geométricos. Rodrigo. Roberto. Tetraedro (4) Hexaedro (6) Octaedro (8) Dudecaedro (12) Icosaedro (20) Sólidos Geométricos Poliedros Sólidos de Revolução SÓLIOS GEOMÉTRICOS Regulares Irregulares Cone Cilindro Tetraedro (4) Hexaedro (6) Octaedro (8) udecaedro (12) Icosaedro (20) Prisma Pirâmide Reto Oblíquo

Leia mais

Prova de Avaliação Sumativa Externa de Matemática

Prova de Avaliação Sumativa Externa de Matemática PROVA DE AVALIAÇÃO SUMATIVA EXTERNA A PREENCHER PELO ALUNO Nome Data de nascimento / / (DIA/MÊS/ANO) Escola A PREENCHER PELA UNIDADE ORGÂNICA Número convencional do Aluno Número convencional da Turma Prova

Leia mais

Regras de Conversão de Unidades

Regras de Conversão de Unidades Unidades de comprimento Regras de Conversão de Unidades A unidade de principal de comprimento é o metro, entretanto existem situações em que essa unidade deixa de ser prática. Se quisermos medir grandes

Leia mais

Geometria Área de Quadriláteros

Geometria Área de Quadriláteros ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos

Leia mais

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA 1 MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA ===================================================== 1) As dimensões de um paralelepípedo retângulo são dadas por números inteiros em P.A. de razão

Leia mais

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m. MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação.

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação. Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 62/2.ª Fase Critérios de Classificação 9 Páginas 2015 Prova 62/2.ª F. CC Página 1/ 9 CRITÉRIOS GERAIS

Leia mais

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras Colégio Universitas06 Data: 7 Mai 2013 Professor(a): Adriana Santos Aluno(a): Nota: nº: Exercícios extras 1 Escreva se cada objeto desenhado dá ideia de sólido geométrico, região plana ou contorno. Em

Leia mais

Colégio Jardim Paulista

Colégio Jardim Paulista Colégio Jardim Paulista Nome: Nº Série: Profª:_ Roberto Salgado Período: 4º Bimestre Data: / / Trabalho de Matemática 6 º ano A Nota Medidas de comprimento: 1) Ana e Antônia fizeram algumas medições e

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O : 1 ESFERAS Consideramos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r o conjunto

Leia mais

Matemática. Prova a de Aferição de. 1.º Ciclo do Ensino Básico. Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico. A preencher pelo Aluno

Matemática. Prova a de Aferição de. 1.º Ciclo do Ensino Básico. Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico. A preencher pelo Aluno Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico A preencher pelo Aluno 2007 Nome: A preencher pela U.E. N.º convencional do aluno: N.º convencional da escola: N.º convencional do aluno: N.º

Leia mais

TOPOGRAFIA. Áreas e Volumes

TOPOGRAFIA. Áreas e Volumes TOPOGRAFIA Áreas e Volumes A estimativa da área de um terreno pode ser determinada através de medições realizadas diretamente no terreno ou através de medições gráficas sobre uma planta topográfica. As

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 151865 - AGRUPAMENTO DE ESCOLAS DE CINFÃES Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 1. A figura ao lado representa o polígono da

Leia mais

CONTEÚDOS METAS / DESCRITORES RECURSOS

CONTEÚDOS METAS / DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 6º Ano Ano Letivo 2015/2016

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 anguru Matemático sem Fronteiras 205 http://www.mat.uc.pt/canguru/ ategoria: adete Destinatários: alunos do 9. o ano de escolaridade Duração: h 30min ome: Turma: anguru Matemático. Todos os direitos reservados.

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero

Leia mais

01. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura.

01. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura. TD-ENEM-ANO 0. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura. A função real que expressa a parábola, no plano cartesiano da figura,

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

Caderno de Respostas

Caderno de Respostas Caderno de Respostas DESENHO TÉCNICO BÁSICO Prof. Dr.Roberto Alcarria do Nascimento Ms. Luís Renato do Nascimento CAPÍTULO 1: ELEMENTOS BÁSICOS DO DESENHO TÉCNICO 1. A figura ilustra um cubo ao lado de

Leia mais

PLANO DE TRABALHO 1 MATEMÁTICA 4º ANO GEOMETRIA. Adriana da Silva Santi Coordenação Pedagógica de Matemática

PLANO DE TRABALHO 1 MATEMÁTICA 4º ANO GEOMETRIA. Adriana da Silva Santi Coordenação Pedagógica de Matemática PLANO DE TRABALHO 1 MATEMÁTICA 4º ANO GEOMETRIA Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Abril/2015 1 CONTEÚDOS - Poliedros: prismas e pirâmides. - Corpos Redondos: cone, cilindro

Leia mais

Matemática 6.º ano. 1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado.

Matemática 6.º ano. 1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado. 1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado. a) ( 3 4 )25 : ( 3 4 )15 5 10 b) 15 35 : 5 35 3 45 2. Calcule o valor das seguintes

Leia mais

VOLUMES DE SÓLIDOS GEOMÉTRICOS

VOLUMES DE SÓLIDOS GEOMÉTRICOS 1 Nomenclatura: VOLUMES DE SÓLIDOS GEOMÉTRICOS P Perímetro da ase a Apótema da ase A FL Área de uma face lateral At Área total l Aresta ou lado da ase 1. Prisma quadrangular regular É o sólido em que:

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 5.º ANO PLANIFICAÇÃO GLOBAL ANO LETIVO 2012/2013 Planificação Global 5º Ano 2012-2013 1/7 NÚMEROS

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Bolsistas: Karla Kamila Maia dos Santos, Edwin Castro Fernandes dos Santos e Lucas Vinicius de Lucena. Supervisor: Jonimar Pereira de Araújo

Bolsistas: Karla Kamila Maia dos Santos, Edwin Castro Fernandes dos Santos e Lucas Vinicius de Lucena. Supervisor: Jonimar Pereira de Araújo UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA (PIBID) ESCOLA ESTADUAL PROFESSOR ANTÔNIO ALADIM DE ARAÚJO EEAA Bolsistas: Karla Kamila Maia dos Santos,

Leia mais

Apontamentos de matemática 6.º ano Volumes

Apontamentos de matemática 6.º ano Volumes VOLUME DO PARALELEPÍPEDO RETÂNGULO A figura representa um paralelepípedo formado por cubos iguais. Podemos observar que é constituída por 5 3 2 = 30 cubos. Se cada cubo representar uma unidade de volume,

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

Algoritmos com Estrutura Sequencial

Algoritmos com Estrutura Sequencial Algoritmos com Estrutura Sequencial 1. A partir da diagonal de um quadrado, deseja-se elaborar um algoritmo que informe o comprimento do lado do quadrado. Construa um algoritmo que leia o valor da diagonal

Leia mais

A Turma da Tabuada 3

A Turma da Tabuada 3 A Turma da Tabuada 3 Resumo Aprender brincando e brincando para aprender melhor. É dessa forma que a turma da tabuada nos levará a mais uma grande aventura pelo mundo do espaço e das formas. Na primeira

Leia mais

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão:

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão: Unidades de Medidas e Conversões Medidas de comprimento Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br O METRO E SEUS MÚLTIPLOS

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Organização e tratamento de dados Representação e interpretação de dados Formulação de questões Natureza dos dados Tabelas de frequências absolutas e relativas Gráficos de barras, circulares, de linha

Leia mais

Prova 32/ 1.ª F. Página 2/12. Página em branco

Prova 32/ 1.ª F. Página 2/12. Página em branco Rubricas dos Professores Vigilantes Provas a Nível de Escola PROVA FINAL DO 1º CICLO DO ENSINO BÁSICO Matemática/Prova 32/1ª Fase/2014 Decreto-Lei nº 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura

Leia mais

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas

Leia mais

PROEJA Matemática V Geometria dos Sólidos

PROEJA Matemática V Geometria dos Sólidos Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande PROEJA Matemática V Geometria dos Sólidos 011/ Profª Debora Bastos Maat teemáát ticcaa V Emeennt taa Geometria dos

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

935 MATEMÁTICA Prova escrita

935 MATEMÁTICA Prova escrita 935 MATEMÁTICA Prova escrita PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Duração: 120 minutos Ano: 2014 2ª fase - julho 11º e 12º anos Identifique claramente os grupos e os itens a que responde e apresente o seu

Leia mais

Escola Básica Vasco da Gama de Sines

Escola Básica Vasco da Gama de Sines FICHA INFORMATIVA: PERÍMETRO DE UM POLÍGONO TEMA: PERÍMETROS E ÁREAS O perímetro de uma figura plana fechada é o comprimento da linha que limita a figura. É o comprimento da linha que limita o polígono

Leia mais

Rectas e Planos. Áreas e Volumes.

Rectas e Planos. Áreas e Volumes. Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior Ano Lectivo 2008/2009 Ficha de Trabalho n.º 17 Nome: N.º Data / / Rectas e Planos. Áreas e Volumes. A parte da Geometria a que proponho que

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2.

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2. MATEMÁTICA Prof. Favalessa. A figura representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura. a) Sendo que AB = BC = DE = EF e HI = KL = JL = JG = AG

Leia mais

75, 840 Lê-se "75 metros cúbicos e 840 decímetros cúbicos".

75, 840 Lê-se 75 metros cúbicos e 840 decímetros cúbicos. VOLUME Prof. Patricia Caldana Definimos volume como o espaço ocupado por um corpo ou a capacidade que ele tem de comportar alguma substância. As figuras espaciais como o cubo, paralelepípedo, cone, pirâmide,

Leia mais

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO

Leia mais

EXAME DISCURSIVO 2ª fase

EXAME DISCURSIVO 2ª fase EXAME DISCURSIVO 2ª fase 30/11/2014 MATEMÁTICA Caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.

Leia mais

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad.

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad. PROVA DE AFERIÇÃO DO 1.º CICLO DO ENSINO BÁSICO Matemática/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome completo A PREENCHER PELO AGRUPAMENTO

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais