Matemática SSA 2 REVISÃO GERAL 1

Tamanho: px
Começar a partir da página:

Download "Matemática SSA 2 REVISÃO GERAL 1"

Transcrição

1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base mede cm. Conforme ilustra a imagem, a altura h do nível da água no recipiente varia em função do tempo t em que a torneira fica aberta. A medida de h corresponde à distância entre o vértice do cone e a superfície livre do líquido. Na situação apresentada nos quadrinhos, as distâncias, em quilômetros, d AB, d BC e d CD formam, nesta ordem, uma progressão aritmética. O vigésimo termo dessa progressão corresponde a: 50 0 c) 0 d) 0 e) 10. Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um único picolé por dia, formando uma sequência de consumo dos sabores. Observe estas sequências, que correspondem a diferentes modos de consumo: (B, B, M, C, M, C) ou (B, M, M, C, B, C) ou (C, M, M, B, B, C) O número total de modos distintos de consumir os picolés equivale a: 6 90 c) 180 d) 70 e) 900 Admitindo π, a equação que relaciona a altura h, em centímetros, e o tempo t, em segundos, é representada por: h = t h = t c) h= t d) h= t e) h = 5 t TEXTO PARA A PRÓXIMA QUESTÃO: Uma loja identifica seus produtos com um código que utiliza 16 barras, finas ou grossas. Nesse sistema de codificação, a barra fina representa o zero e a grossa o 1. A conversão do código em algarismos do número correspondente a cada produto deve ser feita de acordo com esta tabela: Código Algarismo Código Algarismo Observe um exemplo de código e de seu número correspondente: 1

2 . Existe um conjunto de todas as sequências de 16 barras finas ou grossas que podem ser representadas. Escolhendo-se ao acaso uma dessas sequências, a probabilidade de ela configurar um código do sistema descrito é: c) 1 65 d) 1 e) 0,5 5. Nas malhas de pontos da figura abaixo, dois pontos adjacentes, na horizontal ou vertical, encontram-se a distância de 1 centímetro. Considerando a sucessão de quadriláteros desenhados em cada etapa da figura, a área do quadrilátero da vigésima etapa, em cm é c) 00. d) 800. e) Observe a sequência representada no triângulo abaixo: 7. Os números naturais ímpares são dispostos como mostra o quadro 1ª linha 1 ª linha 5 ª linha ª linha ª linha O primeiro elemento da ª linha, na horizontal, é: c) 107 d) 1507 e) Dois irmãos começaram juntos a guardar dinheiro para uma viagem. Um deles guardou R$ 50,00 por mês e o outro começou com R$ 5,00 no primeiro mês, depois R$ 10,00 no segundo mês, R$ 15,00 no terceiro e assim por diante, sempre aumentando R$ 5,00 em relação ao mês anterior. Ao final de um certo número de meses, os dois tinham guardado exatamente a mesma quantia. Esse número de meses corresponde a: pouco mais de um ano e meio. pouco menos de um ano e meio. c) pouco mais de dois anos. d) pouco menos de um ano. e) exatamente um ano e dois meses. 9. Uma farmácia recebeu 15 frascos de um remédio. De acordo com os rótulos, cada frasco contém 00 comprimidos, e cada comprimido tem massa igual a 0mg. Admita que um dos frascos contenha a quantidade indicada de comprimidos, mas que cada um destes comprimidos tenha 0mg. Para identificar esse frasco, cujo rótulo está errado, são utilizados os seguintes procedimentos: - numeram-se os frascos de 1 a 15; - retira-se de cada frasco a quantidade de comprimidos correspondente à sua numeração; - verifica-se, usando uma balança, que a massa total dos comprimidos retirados é igual a 50mg. A numeração do frasco que contém os comprimidos mais pesados é: Na sequência, o primeiro elemento da décima linha será 19 8 c) 1 d) e) c) 1 d) 15 e) Um triângulo UPE é retângulo, as medidas de seus lados são expressas, em centímetros, por números naturais e formam uma progressão aritmética de razão 5. Quanto mede a área do triângulo UPE? 15 cm 5 cm c) 15 cm d) 150 cm e) 00 cm

3 11. Para os jogos da primeira fase da Copa do Mundo de 01 na sede de Porto Alegre, foram sorteados ingressos entre aqueles que se inscreveram previamente. Esses ingressos foram divididos em categorias, identificadas pelas letras A, B, C e D. Cada pessoa podia solicitar, no máximo, quatro ingressos por jogo. Os ingressos da categoria D foram vendidos somente para residentes no país sede e custaram, cada um, 1 do valor unitário do ingresso da categoria C. No quadro abaixo, estão representadas as quantidades de ingressos, por categoria, solicitados por uma pessoa, para cada um dos jogos da primeira fase, e o valor total a ser pago. Jogo A B C D TOTAL (em R$) , , ,00 Se essa pessoa comprasse um ingresso de cada categoria para um dos jogos da primeira fase, ela gastaria, em reais, c) 800. d) 770. e) Em um determinado parque, existe um circuito de caminhada, como mostra a figura a seguir. 1. De acordo com o texto, se Cebolinha lançar a sua moeda dez vezes, a probabilidade de a face voltada para cima sair cara, em pelo menos oito dos lançamentos, é igual a c) d) 56 5 e) Sejam r e s duas retas distintas e paralelas. Se fixarmos 10 pontos em r e 6 pontos em s, todos distintos, ao unirmos, com segmentos de reta, três quaisquer destes pontos não colineares, formam-se triângulos. Assinale a opção correspondente ao número de triângulos que podem ser formados c) 00 d) 0 e) 50 Um atleta, utilizando um podômetro, percorre em um dia a pista 1 duas vezes, atravessa a ponte e percorre a pista uma única vez, totalizando 1157 passos. No dia seguinte, percorre a pista 1 uma única vez, atravessa a ponte e percorre a pista, também uma única vez, totalizando 757 passos. Além disso, percebe que o número de passos necessários para percorrer sete voltas na pista 1 equivale ao número de passos para percorrer oito voltas na pista. Diante do exposto, conclui-se que o comprimento da ponte, em passos, é: 5 6 c) 7 d) 8 e) Um jovem descobriu que o aplicativo de seu celular edita fotos, possibilitando diversas formas de composição, dentre elas, aplicar texturas, aplicar molduras e mudar a cor da foto. Considerando que esse aplicativo dispõe de 5 modelos de texturas, 6 tipos de molduras e possibilidades de mudar a cor da foto, o número de maneiras que esse jovem pode fazer uma composição com fotos distintas, utilizando apenas os recursos citados, para publicá-las nas redes sociais, conforme ilustração abaixo, é: c) 10. d) 10. e) O número de anagramas da palavra BRASIL em que as vogais ficam lado a lado, e as consoantes também, é 8 c) 96 d) 0 e) 70

4 17. A figura a seguir apresenta uma planificação do cubo que deverá ser pintada de acordo com as regras abaixo: 19. Em um escritório, há dois porta-lápis: o porta-lápis A, com 10 lápis, dentre os quais estão apontados, e o portalápis B, com 9 lápis, dentre os quais estão apontados. Os quadrados que possuem um lado em comum, nessa planificação, deverão ser pintados com cores diferentes. Além disso, ao se montar o cubo, as faces opostas deverão ter cores diferentes. De acordo com essas regras, qual o MENOR número de cores necessárias para se pintar o cubo, a partir da planificação apresentada?.. c). d) 5. e) Alice não se recorda da senha que definiu no computador. Sabe apenas que é constituída por quatro letras seguidas, com pelo menos uma consoante. Um funcionário retira um lápis qualquer ao acaso do portalápis A e o coloca no porta-lápis B. Novamente ao acaso, ele retira um lápis qualquer do porta-lápis B. A probabilidade de que este último lápis retirado não tenha ponta é igual a: 0,6 0,57 c) 0,5 d) 0, e) 0,6 0. Dois atiradores, André e Bruno, disparam simultaneamente sobre um alvo. - A probabilidade de André acertar no alvo é de 80%. - A probabilidade de Bruno acertar no alvo é de 60%. Se os eventos André acerta no alvo e Bruno acerta no alvo, são independentes, qual é a probabilidade de o alvo não ser atingido? Se considerarmos o alfabeto como constituído por letras, bem como que não há diferença para o uso de maiúsculas e minúsculas, quantos códigos dessa forma é possível compor? 18 c) 7 d) 5 e) % 16% c) 18% d) 0% e) 9%

5 Gabarito: Resposta da questão 1: Resposta da questão 5: x+ 10+ x+ x 10 = 90 x = 90 x = 10 A P.A. então será determinada por: (10,10,10, K ) E seu vigésimo termo será dado por: a = ( 10) = Resposta da questão : Sabendo que a criança ganhou dois picolés de cada sabor, tem-se que o resultado pedido é dado por (,, ) 6! P6 = 90.!!! = Resposta da questão : Sejam h e r, respectivamente, a altura e o raio da base do cone semelhante ao cone de altura cm e altura cm. Logo, temos r h = r =. h 8 O volume desse cone é dado por 1 h h V = π h cm. 8 6 Por outro lado, como a vazão da torneira é igual a segue-se que V = 1 t = tcm, com t em segundos. Em consequência, encontramos h t h tcm. 6 = = Resposta da questão : 1cm s, Número de sequências formadas com as 16 barras: 16 Número de códigos possíveis: 10. Portanto, a probabilidade será dada por: P = = = O lado do quadrado da figura 1: x Portanto: x = x = cm Os lados dos quadrados forma uma P.A de razão r =. Logo, o lado do vigésimo quadrado é 0 cm. Sua área então será dada por: A = (0 ) = 800 cm. Resposta da questão 6: As quantidades dos elementos, em cada linha, também formam uma P.A. (1,, 5, 7,...) Total e elementos da linha 9: x = 1+ 8 = 17 ( ) Total de elementos até a linha 9: S = = 81 A sequência (q,, 7, 10, 1, 16, 19,, 5,...) é uma P.A de razão. Portanto, o primeiro elemento da linha 10 será o octagésimo segundo elemento da P.A. acima. a8 = = Resposta da questão 7: [E] Até a a linha, temos: (1+ ) K = = 90termos. Portanto, o primeiro elemento da ª linha será o 90º número natural ímpar. Então: a90 = = Resposta da questão 8: Seja n o número de meses decorridos até que os dois irmãos venham a ter o mesmo capital. Tem-se que, n 1 n 1 50 n = n 10 1 = 0 n= 19, ou seja, um ano e sete meses, o que equivale a pouco mais de um ano e meio. 5

6 Resposta da questão 9: [C] Supondo que todos os comprimidos tivessem massa igual a 0mg, a massa total retirada dos frascos seria igual a (1+ 15) 0 ( K + 15) = 0 15 = 00mg. Daí, como a diferença entre a massa dos comprimidos é de 0 0 = 10mg, segue que o número do frasco que contém os comprimidos mais pesados é = Resposta da questão 10: Sejam l, l + 5 e l + 10 as medidas dos lados do triângulo UPE. Logo, pelo Teorema de Pitágoras, vem ( l + 10) = l + ( l + 5) l + 0l = l + l + 10l + 5 l 10l 75 = 0 l = 15cm Em consequência, o resultado pedido é 150cm =. Resposta da questão 11: De acordo com o problema, temos o seguinte sistema linear: A + C = 1060 A + C = 50 A+ B = 1160 A + B = 1160 B C = B+ C = 810 Multiplicando a primeira equação por -1 e somando com a segunda, temos: B C = 60 B + C = 810 Resolvendo o sistema, temos: A = 50, B = 70, C = 180 e D = 60. Portanto, A + B + C + D = 860. Resposta da questão 1: [C] Comprimento da pista 1: x Comprimento da ponte: y Comprimento da pista : z De acordo com as informações do problema temos o seguinte sistema linear: x + y + z = 1157 ( I ) x + y + z = 757 ( II ) 7x = 8z (III) Fazendo ( I ) ( II ), temos x = 00m Utilizando a equação (III) temos: 7(00) = 8z z = 50 Utilizando agora a equação (II): 00 + y + 50 = 757 y = 7m Portanto, o comprimento da ponte é 7m. Resposta da questão 1: Espaço amostral dos 10 lançamentos: 10 = 10. Sair cara em pelo menos 8 moedas: C10,8 + C10,9 + C10,10 = = Logo, a probabilidade pedida será: P = = Resposta da questão 1: Número de combinações do total de pontos três a três: 16! C16, = = 560!(16 )! Número de combinações dos 10 pontos de uma reta três a 10! três: C10, = = 10!(10 )! Número de combinações dos 6 pontos da outra reta três a 6! três: C6, = = 0!(6 )! Portanto, o total de triângulos será dado por: = 0. Resposta da questão 15: Supondo que ao modificar a ordem das fotos obtemos composições distintas, tem-se que o número de maneiras possíveis de fazer uma composição é dado por P (5 6 ) = 10. 6

7 Resposta da questão 16: [C] Considerando dois grupos, o das vogais com dois elementos e o das consoantes com elementos, temos três permutações, a permutação dos grupos e as permutações dos elementos em cada grupo. Portanto, o número de anagramas da palavra BRASIL em que as vogais ficam lado a lado e as consoantes também será dado por: Resposta da questão 0: Como os eventos são independentes, a probabilidade pedida é dada por (1 0,8) (1 0,6) = 0,08 = 8%.!!! = 96. Resposta da questão 17: De acordo com as condições do problema temos no máximo três faces para utilizar a primeira cor, duas faces no máximo para a segunda cor e finalmente 1 face para a terceira cor. Portanto, o menor número de cores necessárias para pinta o cubo é. Resposta da questão 18: Pelo Princípio Multiplicativo, podemos formar = códigos, sem qualquer restrição, utilizando as letras do alfabeto. Por outro lado, o número de códigos em que figuram apenas vogais, também pelo Princípio Multiplicativo, é dado por = 5. Em consequência, o resultado pedido é igual a 5. Resposta da questão 19: Probabilidade do lápis retirado de A ser apontado e o lápis retirado de B não ter ponta: 5 15 = Probabilidade do lápis retirado de A não ter ponta e o lápis retirado de B não ter ponta: 7 6 = Portanto, a probabilidade do último lápis retirado não ter ponta será dada por: P = + = = 0,

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9.

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. MATEMÁTICA 6. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. 10 9 é 7. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a (A) (B) (C) (D)

Leia mais

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem TEXTO PARA A PRÓXIMA QUESTÃO: Uma loja identifica seus produtos com um código que utiliza 16 barras, finas ou grossas. Nesse sistema de codificação, a barra fina representa

Leia mais

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42 Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista

Leia mais

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013.

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013. P.A. 1. (Pucpr 015) Um consumidor, ao adquirir um automóvel, assumiu um empréstimo no valor total de R$ 4.000,00 (já somados juros e encargos). Esse valor foi pago em 0 parcelas, formando uma progressão

Leia mais

Troncos de Cone e de Pirâmide

Troncos de Cone e de Pirâmide Troncos de Cone e de Pirâmide 1. (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. Questão 84 A taxa de analfabetismo representa a porcentagem da população com idade de anos ou mais que é

Leia mais

Matemática, Raciocínio Lógico e suas Tecnologias

Matemática, Raciocínio Lógico e suas Tecnologias Matemática, Raciocínio Lógico e suas Tecnologias 21. (UFAL 2008) Uma copiadora pratica os preços expressos na tabela a seguir: Número de cópias Preço unitário (em reais) 1 a 10 0,20 11 a 50 0,15 51 a 200

Leia mais

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO Resposta da questão 1: Como 900 360 180, segue que o atleta girou duas voltas e meia. Resposta da questão : O ângulo percorrido pelo ponteiro das horas

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

Exercícios Análise Combinatória

Exercícios Análise Combinatória Exercícios Análise Combinatória 1. (Uemg 2014) Na Copa das Confederações de 2013, no Brasil, onde a seleção brasileira foi campeã, o técnico Luiz Felipe Scolari tinha à sua disposição 23 jogadores de várias

Leia mais

Revisão de Matemática para o ENEM

Revisão de Matemática para o ENEM Revisão de para o ENEM 1. (Enem 2013) As projeções para a produção de arroz no período de 2012 2021, em uma determinada região produtora, apontam para uma perspectiva de crescimento constante da produção

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Sumário Questão 1 (Assunto: Operações com números na forma de fração)... Questão (Assunto: Formas geométricas planas)... Questão (Assunto: Potências e raízes)...4 Questão 4 (Assunto: Expressões numéricas)...4

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE

RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE TABELA-VERDADE 01) A negação da afirmação se o cachorro late então o gato mia é: A) se o gato não mia então o cachorro não late. B) o cachorro não late e o gato não mia. C) o cachorro late e o gato não

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

PA Progressão Aritmética

PA Progressão Aritmética PA Progressão Aritmética 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a) 3,0 m. b),0

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso UFRN 203 Matemática Álgebra 3º ano Prof. Afonso 3 2. (Ufrn 203) Considere a função polinomial f ( x) = x 3x x + 3. a) Calcule os valores de f ( ), f ( ) e f ( 3 ). b) Fatore a função dada. c) Determine

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

Nome: Turma: Unidade: 2º SIMULADO - 7º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 27 de Agosto - quinta-feira EDUCANDO PARA SEMPRE

Nome: Turma: Unidade: 2º SIMULADO - 7º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 27 de Agosto - quinta-feira EDUCANDO PARA SEMPRE Nome: 2015 Turma: Unidade: 2º SIMULADO - 7º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 27 de Agosto - quinta-feira EDUCANDO PARA SEMPRE ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - 2º TRI 1. O aluno só poderá

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

GABARITO. Matemática e suas Tecnologias QUESTÃO 136. Alternativa: D. Justificativa. 16,8 C = 1,4 3,4 16,8 x 3,4 C = C = 40,8 cm 1, 4

GABARITO. Matemática e suas Tecnologias QUESTÃO 136. Alternativa: D. Justificativa. 16,8 C = 1,4 3,4 16,8 x 3,4 C = C = 40,8 cm 1, 4 QUESTÃO 136 Alternativa: D Justificativa 16,8 C = 1,4 3,4 16,8 x 3,4 C = C = 40,8 cm 1, 4 16,8 L 16,8 x 2,2 = L = 1, 4 2, 2 1, 4 L = 26,4 cm QUESTÃO 137 Alternativa: A Justificativa d-1 1 Área do espaço

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

000 IT_005582 000 IT_007009

000 IT_005582 000 IT_007009 000 IT_00558 Um copo cilíndrico, com 4 cm de raio e cm de altura, está com água até a altura de 8 cm. Foram então colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do copo, sem

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

Colégio de Aplicação. Universidade Federal do Rio de Janeiro. são. 1 a série ensino médio. Matemática

Colégio de Aplicação. Universidade Federal do Rio de Janeiro. são. 1 a série ensino médio. Matemática Colégio de Aplicação Universidade Federal do Rio de Janeiro Admissão são 2004 1 a série ensino médio Matemática ADMISSÃO2004 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS

Leia mais

Avaliação 1 - MA12-2015.1 - Gabarito

Avaliação 1 - MA12-2015.1 - Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA1-015.1 - Gabarito Questão 01 [,00 pts ] Uma escola pretende formar uma comissão de 6 pessoas para organizar uma festa junina. Sabe-se

Leia mais

Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos.

Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos. PROVA FINAL DO 3.º CICLO DO ENSINO BÁSICO Matemática/Prova 92/1.ª Chamada/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI

Leia mais

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,

Leia mais

Assinale a alternativa que contém o gráfico que representa a aceleração em função do tempo correspondente ao movimento do ponto material.

Assinale a alternativa que contém o gráfico que representa a aceleração em função do tempo correspondente ao movimento do ponto material. Física 53. O gráfico da velocidade em função do tempo (em unidades aritrárias), associado ao movimento de um ponto material ao longo do eixo x, é mostrado na figura aaixo. Assinale a alternativa que contém

Leia mais

Caderno de Exercícios

Caderno de Exercícios Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto Departamento de Engenharia Electrotécnica Curso de Engenharia Electrotécnica Electrónica e Computadores Disciplina de FEELE Caderno

Leia mais

Cotagem de dimensões básicas

Cotagem de dimensões básicas Cotagem de dimensões básicas Introdução Observe as vistas ortográficas a seguir. Com toda certeza, você já sabe interpretar as formas da peça representada neste desenho. E, você já deve ser capaz de imaginar

Leia mais

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas

Leia mais

MATEMÁTICA UFRGS 2011

MATEMÁTICA UFRGS 2011 MATEMÁTICA UFRGS 2011 01. Uma torneira com vazamento pinga, de maneira constante, 25 gotas de água por minuto. Se cada gota contém 0,2 ml de água, então, em 24 horas o vazamento será de a) 0,072 L. b)

Leia mais

Problemas de função do 1º grau

Problemas de função do 1º grau Problemas de função do º grau. (Ucs 204) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total, em reais, das vendas que ele efetuar durante o mês. Em um mês em que suas vendas

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data EXAME NACIONAL DO ENSINO BÁSICO Prova 23 / 1.ª Chamada / 2009 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Bilhete de Identidade n.º Emitido em (Localidade) Assinatura

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK) 000 IT_023672 As balanças podem ser utilizadas para medir a massa dos alimentos nos supermercados. A reta numérica na figura seguinte representa os valores, em quilograma, de uma balança. 0 1 2 3 A partir

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo.

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo. Aluno(a): Código: Série: 3ª Turma: Data: / / 01. A empresa Dk transporta 400 passageiros por mês da cidade de Vicentinópolis(Paletó) a Joviânia. A passagem custa 0 reais, e a empresa deseja aumentar o

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA Pré-Curso www.laercio.com.br APOSTILA 09 Colégio Militar 6º ano PROVA CMBH SIMULADA PRÉ-CURSO COLÉGIO MILITAR DE BELO HORIZONTE,

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

FÍSICA. Professor Felippe Maciel Grupo ALUB

FÍSICA. Professor Felippe Maciel Grupo ALUB Revisão para o PSC (UFAM) 2ª Etapa Nas questões em que for necessário, adote a conversão: 1 cal = 4,2 J Questão 1 Noções de Ondulatória. (PSC 2011) Ondas ultra-sônicas são usadas para vários propósitos

Leia mais

Programa Institucional de Bolsas de Iniciação à Docência. Projeto Matemática 1. Coordenadora Professora Drª Elisangela Campos. Estatística.

Programa Institucional de Bolsas de Iniciação à Docência. Projeto Matemática 1. Coordenadora Professora Drª Elisangela Campos. Estatística. Programa Institucional de Bolsas de Iniciação à Docência Projeto Matemática 1 Coordenadora Professora Drª Elisangela Campos Estatística Curitiba 2014 Para as turmas do 9 ano do Ensino Fundamental (9 A,

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 3º Bimestre/2013 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

Revisão Extra UECE. 1. (Espcex- 2013) A figura a seguir apresenta o gráfico de um polinômio P(x) do 4º grau no intervalo 0,5. 1 0 no intervalo 0,5 é

Revisão Extra UECE. 1. (Espcex- 2013) A figura a seguir apresenta o gráfico de um polinômio P(x) do 4º grau no intervalo 0,5. 1 0 no intervalo 0,5 é 1. (Espce- 01) A figura a seguir apresenta o gráfico de um polinômio P() do º grau no intervalo 0,5. O número de raízes reais da equação a) 0 b) 1 c) d) e) P 1 0 no intervalo 0,5 é. (Ufrn 01) Considere,

Leia mais

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 GRUPO DISCIPLINAR DE MATEMÁTICA MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 (Em conformidade com o Programa de Matemática homologado em 17 de junho de 2013 e com as de Matemática homologadas em 3

Leia mais

GEOMETRIA ESPACIAL - PIRÂMIDES

GEOMETRIA ESPACIAL - PIRÂMIDES GEOMETRIA ESPACIAL - PIRÂMIDES Questão 0 - (FAMERP SP) O gráfico indica uma reta r, que intersecta o eixo y no ponto de coordenadas (0, n). De acordo com os dados disponíveis nesse gráfico, n é igual a

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUDESTE DE MINAS GERAIS CONCURSO PÚBLICO PARA PROVIMENTO DE CARGO EFETIVO DE DOCENTES ÁREA: Matemática - PROVA OBJETIVA - Câmpus

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

COMENTÁRIO DA PROVA DE MATEMÁTICA

COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROA DE MATEMÁTICA Quanto ao nível: A prova apresentou questões simples, médias e de melhor nível, o que traduz uma virtude num processo de seleção. Quanto à abrangência: Uma prova com 9

Leia mais

CONCURSO DE ADMISSÃO 6º ANO/ENS. FUND. MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA

CONCURSO DE ADMISSÃO 6º ANO/ENS. FUND. MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 6º ANO/ENS. FUND. MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão. 1. O professor Aurélio escreveu

Leia mais

1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades.

1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades. 1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades. Braga Porto 2. Onde está a casa do Joaquim se esta dista exatamente 3 km da casa da

Leia mais

(S.I.) = 10 + 6 3) (FP) O

(S.I.) = 10 + 6 3) (FP) O Lista Cinemática 1) (FP) Um motorista pretende realizar uma viagem com velocidade média de 90 km/h. A primeira terça parte do percurso é realizada à 50km/h e os próximos 3/5 do restante é realizado à 80

Leia mais

A B C F G H I. Apresente todas as soluções possíveis. Solução

A B C F G H I. Apresente todas as soluções possíveis. Solução 19a Olimpíada de Matemática do Estado do Rio Grande do Norte - 008 Segunda Etapa Em 7/09/008 Prova do Nível I (6 o ou 7 o Séries) (antigas 5ª ou 6ª séries) 1 a Questão: Substitua as nove letras da figura

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE

COLÉGIO MILITAR DE BELO HORIZONTE COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2007 / 200 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONCURSO DE ADMISSÃO À 6ª SÉRIE DO ENSINO FUNDAMENTAL CMBH 2007 PÁGINA: 2 RESPONDA AS

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

2º ano do Ensino Médio

2º ano do Ensino Médio 2º ano do Ensino Médio Instruções: 1. Você deve estar recebendo um caderno com dez questões na 1ª parte da prova, duas questões na 2ª parte e duas questões na 3ª parte. Verifique, portanto, se está completo

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Física 3º Trimestre 1- A casa de Dona Maria fica no alto de uma ladeira. O desnível entre sua

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 1. A tecla da divisão da calculadora de Arnaldo parou de funcionar, mas nem por isso ele deixou de efetuar as divisões, pois a tecla de multiplicação funciona normalmente.

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

Raciocínio Matemático RESOLUÇÃO

Raciocínio Matemático RESOLUÇÃO ESCOLA DE ECONOMIA DE SÃO PAULO FUNDAÇÃO GETÚLIO VARGAS PROCESSO SELETIVO 2007/1.º SEMESTRE CADERNO 1 Respostas da 2. a Fase Raciocínio Matemático RESOLUÇÃO 17.12.2006 RACIOCÍNIO MATEMÁTICO 01. Em uma

Leia mais

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios

Leia mais

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB. MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova ATRFB 2009 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova ATRFB 2009 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 31- A afirmação: João não chegou ou Maria está atrasada equivale logicamente a: a) Se João não chegou, Maria está atrasada. b) João chegou e Maria não está atrasada. c) Se

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas. COMPETÊNCIAS E HABILIDADES CADERNO 8 PROF.: Célio Normando CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

Leia mais

Simulado ENEM: Matemática

Simulado ENEM: Matemática Simulado ENEM: Matemática Questão 1 Cinco diretores de uma grande companhia, doutores Arnaldo, Bernardo, Cristiano, Denis e Eduardo, estão sentados em uma mesa redonda, em sentido horário, para uma reunião

Leia mais

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2 MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV Economia 1 a Fase /nov/014 MATEMÁTICA 01. Observe o diagrama com 5 organizações intergovernamentais de integração sul-americana: Dos 1 países que compõem esse diagrama,

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011 PROVAS DE MATEMÁTICA DO VESTIBULAR-0 DA MACKENZIE Profa. Maria Antônia Gouveia. //0 QUESTÃO N o 9 Turma N o de alunos Média das notas obtidas A 0,0 B 0,0 C 0,0 D 0,0 A tabela acima refere-se a uma prova

Leia mais

Questão 01 O dono do circo anuncia o início do espetáculo usando uma sirene.

Questão 01 O dono do circo anuncia o início do espetáculo usando uma sirene. As questões apresentadas nesta prova relacionam-se ao ambiente e às situações encontradas em um circo. Sempre que necessário, utilize, em seus cálculos, g = 10 m/s 2. Questão 01 O dono do circo anuncia

Leia mais

# Cone Elementos #Cone Reto (ou de Revolução) #Panificação do Cone Reto. Altura. Raio. Base

# Cone Elementos #Cone Reto (ou de Revolução) #Panificação do Cone Reto. Altura. Raio. Base # Cone Elementos #Cone Reto (ou de Revolução) #Panificação do Cone Reto Eixo eratriz Superfície Lateral eratriz eratriz Altura eratriz Altura Raio Base Raio Base Raio Base Raio # Secção Meridiana do Cone

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6 PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião,

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais