RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE"

Transcrição

1 TABELA-VERDADE 01) A negação da afirmação se o cachorro late então o gato mia é: A) se o gato não mia então o cachorro não late. B) o cachorro não late e o gato não mia. C) o cachorro late e o gato não mia. D) se o cachorro não late então o gato não mia. E) o cachorro não late ou gato não mia. 02) A afirmação se a onça é pintada e o urso é pardo, então o macaco é preto é logicamente equivalente a: A) Se o macaco é preto, então a onça não é pintada e ou o urso não é pardo. B) Se o macaco não é preto, então a onça não é pintada e o urso não é pardo. C) Se o macaco não é preto, então a onça não é pintada ou o urso não é pardo. D) Se o macaco não é preto, então a onça é pintada ou o urso não é pardo. E) Se o macaco não é preto, então a onça não é pintada ou o urso é pardo. 03) A negação da afirmação a onça é pintada ou a zebra não é listrada é: A) a onça não é pintada ou a zebra é listrada. B) a onça não é pintada ou a zebra não é listrada. C) a onça não é pintada e a zebra é listrada. D) a onça não é pintada e a zebra não é listrada. E) a onça não é pintada ou a zebra pode ser listrada. 04) A afirmação Se os atletas se dedicarem nos treinamentos e houver investimento no esporte, então o Brasil será bem sucedido na próxima Olimpíada é logicamente equivalente a: A) Se o Brasil for bem sucedido na próxima Olimpíada, então os atletas se dedicaram nos treinamentos e houve investimento no esporte. B) Se o Brasil não for bem sucedido na próxima Olimpíada, então os atletas não se dedicaram nos treinamentos ou não houve investimento no esporte. C) Se os atletas não se dedicarem ao esporte e não houver investimento no esporte, então o Brasil não será bem sucedido na próxima Olimpíada. D) Se os atletas não se dedicarem ao esporte ou não houver investimento no esporte, então o Brasil não será bem sucedido na próxima Olimpíada. E) Se o Brasil não for bem sucedido na próxima Olimpíada, então os atletas não se dedicaram nos treinamentos e não houve investimento no esporte. 05) João tem 3 filhos, cujos nomes são Cláudio, Daniel e Leonardo, de idades 5, 10 e 15 anos, não necessariamente nesta ordem. Sabe-se ainda que: 1. ou Cláudio tem 5 anos, ou Leonardo tem 5 anos; 2. ou Cláudio tem 10 anos, ou Daniel tem 15 anos; 3. ou Leonardo tem 15 anos, ou Daniel tem 15 anos; 4. ou Daniel tem 10 anos, ou Leonardo tem 10 anos; Conclui-se, portanto que as idades de Cláudio, Daniel e Leonardo são, respectivamente: A) 5, 10 e 15 B) 10, 15 e 5 C) 5, 15 e 10 D) 10, 5 e 15 E) 15, 5 e 10 06) Antônio, José e Paulo são professores de uma universidade da cidade de São Paulo. Paulo é Paraibano, e os outros dois são mineiro e paulista, não necessariamente nessa ordem. Os três professores são formados em engenharia, física e matemática, mas não se sabe quem é graduado em qual curso. Sabendo que o físico nunca mudou de cidade, e que o mineiro não é José e nem é engenheiro, é correto afirmar que 2009 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 1

2 A) José é paulista e graduado em engenharia. B) Antônio é mineiro e graduado em matemática. C) Paulo não é engenheiro. D) Antônio é paulista e graduado em física. E) José é mineiro e graduado em matemática. 07) O baterista, o guitarrista e o vocalista de uma banda musical são engenheiros civil, eletrônico e mecânico, não necessariamente nessa ordem. Sabendo que Antônio, João e Pedro são os nomes dos integrantes da banda, que Antônio é engenheiro civil e não toca instrumentos musicais, que o engenheiro eletrônico é o guitarrista da banda e que João não é baterista, analise as seguintes proposições e assinale a alternativa correta. I. João é engenheiro eletrônico e guitarrista da banda. II. Pedro é baterista da banda. III. Antônio é vocalista da banda. IV. Pedro é engenheiro eletrônico. A) Apenas a proposição I é verdadeira. B) Apenas a proposição II é verdadeira. C) Apenas a proposição III é verdadeira. D) As proposições II e IV são falsas. E) As proposições I, II e III são verdadeiras. contém um e apenas um aluno do sexo masculino, a quantidade de grupos de dois alunos é igual A) ao dobro da quantidade de grupos de três alunos. B) à quantidade de grupos de três alunos. C) à metade da quantidade de grupos de três alunos. D) ao triplo da quantidade de grupos de três alunos. E) à terça parte da quantidade de grupos de três alunos. 02) Um sistema de sinalização visual é composto por dez bandeiras, sendo quatro vermelhas, três pretas e três brancas, as quais são hasteadas numa determinada ordem para gerar as mensagens desejadas. Sabe-se que apenas um centésimo das mensagens que podem ser geradas por este sistema é utilizado na prática. Deseja-se desenvolver um novo sistema de sinalização visual, composto apenas de bandeiras de cores distintas e que seja capaz de gerar, pelo menos, a quantidade de mensagens empregadas na prática. O número mínimo de bandeiras que se deve adotar no novo sistema é A) 4. B) 6. C) 3. D) 7. E) 5. GABARITO TABELA-VERDADE 03) Dois casais vão ao cinema e desejam sentar todos juntos, de forma que cada marido sente ao 01) C 02) C 03) C 04) B 05) C 06) B 07) E lado de sua respectiva esposa. Sabendo que a fila da platéia escolhida para que todos se sentem possui 19 lugares, todos vagos, o número de ANÁLISE COMBINATÓRIA formas distintas que os dois casais podem sentar na fila escolhida é: 01) Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre os cuidados que devem ser tomados para evitar a dengue. Sabendo que dois quintos dos alunos escolhidos para realizar essa campanha A) 160 B) 128 C) 480 D) 384 E) 256 são do sexo masculino, e que cada grupo formado Neste curso os melhores alunos estão sendo preparados pelos melhores Professores

3 04) Considere um número divisível por 6, composto por 3 algarismos distintos e pertencentes ao conjunto A = {3,4,5,6,7}. A quantidade de números que podem ser formados sob tais condições é: A) 8 B) 6 C) 7 D) 9 E) 10 05) O número de anagramas da palavra CHUMBO que começam pela letra C é A) 120 B) 140 C) 160 D) 180 E) ) A partir de um grupo de oito pessoas, quer-se formar uma comissão constituída de quatro integrantes. Nesse grupo, incluem-se Arthur e Felipe, que, sabe-se, não se relacionam um com o outro. Portanto, para evitar problemas, decidiu-se que esses dois, juntos, não deveriam participar da comissão a ser formada. Nessas condições, de quantas maneiras distintas se pode formar essa omissão? A) 70 B) 35 C) 55 D) 45 E) 40 09) Num avião, uma fila tem sete poltronas dispostas como na figura abaixo: 06) Com os algarismos 1, 2, 3, 4, 5 e 6 quantos números pares de três algarismos podem ser formados? A) 36 B) 72 C) 90 D) 108 E) ) Um número a de três dígitos é formado pelos algarismos 1, 2 e 3, colocados em qualquer posição da unidade, dezena e centena de a, sem repetição de algarismos. O número de valores possíveis para a é: A) 3 B) 4 C) 5 D) 6 E) 7 Os modos de Pedro e Ana ocuparem duas poltronas dessa fila, de modo que não haja um corredor entre eles, são em número de A) 10 B) 8 C) 6 D) 9 E) 7 10) Uma máquina de doces fornece doces ao preço unitário de 25 centavos. A máquina aceita qualquer combinação de moedas de 1 centavo; 5 centavos e 10 centavos. Uma pessoa se dirige à máquina para comprar um doce. O número de maneiras que uma pessoa pode adquirir um doce na máquina utilizando, obrigatoriamente, pelo menos uma moeda de 5 centavos, se não levarmos em consideração a ordem em que as moedas são inseridas, é de: 2009 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 3

4 A) 9 B) 8 C) 7 D) 6 E) 5 02) Um professor entregou uma lista de exercícios contendo dez questões para ser resolvida por cada um dos vinte alunos de sua turma. Seis alunos conseguiram resolver todas as questões da lista, dez alunos resolveram oito questões e os demais resolveram apenas duas questões. 11) Numa festa comparecem N pessoas e cada pessoa cumprimenta todas as outras uma única vez, totalizando 820 apertos de mão. Então N é um número compreendido entre: A) 30 e 39 B) 40 e 49 C) 50 e 59 D) 60 e 69 Escolhendo-se aleatoriamente um aluno e uma questão da lista, a probabilidade da questão escolhida não ter sido resolvida é igual a A) 13/50 B) 17/50 C) 23/50 D) 27/50 E) 37/50 E) 70 e 79 03) João encontrou uma urna com bolas brancas, pretas e vermelhas. Ele verificou que a quantidade GABARITO ANÁLISE COMBINATÓRIA de bolas pretas é igual à metade da quantidade de 01) B 02) E 03) B 04) A 05) A 06) D 07) D bolas vermelhas e ao dobro da quantidade de bolas brancas. João, então, colocou outras bolas 08) A 09) A 10) A 11) B pretas na urna, e a probabilidade de se escolher, ao acaso, uma bola preta do referido recipiente tornou-se igual a 0,5. Diante disso, a quantidade PROBABILIDADE de bolas colocadas por João na urna é igual a(o) A) quantidade de bolas brancas. 01) Em uma das faces de uma moeda viciada é forjado o número zero, e na outra o número um. Ao se lançar a moeda, a probabilidade de se obter como resultado o número zero é igual a 2/3. B) dobro da quantidade de bolas brancas. C) quantidade de bolas vermelhas. D) triplo da quantidade de bolas brancas. E) dobro da quantidade de bolas vermelhas. Realizando-se cinco lançamentos independentes, e somando-se os resultados obtidos em cada um 04) As faces de um dado cúbico tradicional são desses lançamentos, a probabilidade da soma ser numeradas de 1 até 6. Efetuam-se dois igual a um número par é lançamentos desse dado, e anotam-se os A) 121/243 B) 124/243 C) 119/243 D) 125/243 E) 122/243 resultados obtidos. A probabilidade de que o valor da soma dos resultados anotados seja um número primo é: A) 3/16 B) 5/12 4 C) 6/11 D) 5/14 E) 7/ Neste curso os melhores alunos estão sendo preparados pelos melhores Professores

5 05) Numa escola de línguas que possui 200 alunos, sabe-se que 120 estudam inglês, 90 estudam espanhol e 50 estudam francês. Sabendose que nenhum aluno estuda simultaneamente as três línguas, a probabilidade de que um aluno da escola, escolhido ao acaso, estude duas línguas é: A) 7/20 mesma nacionalidade encenarem juntos essa peça é A) 20% B) 25% C) 40% D) 30% E) 35% B) 9/20 C) 1/10 D) 3/10 E) 3/20 09) As probabilidades de André, Bruno e Cláudio resolverem um determinado problema de Física são, respectivamente, 50%, 60% e 75%. Se os três, separadamente, tentarem resolver o problema, 06) Três cestas idênticas, contém cada uma delas 30 bolas iguais, exceto pela cor. Na primeira cesta existem 9 bolas vermelhas e 21 pretas; na segunda existem 24 bolas vermelhas e 6 pretas; por fim, a terceira cesta contém 12 bolas vermelhas e 18 pretas. Escolhendo-se uma cesta de forma aleatória e sorteando, também aleatoriamente, então a probabilidade de o problema ser por apenas duas dessas pessoas é igual a: A) 25% B) 35% C) 40% D) 45% E) 50% uma bola dessa cesta, a probabilidade de sua cor ser vermelha é: A) 30% B) 40% C) 60% D) 50% E) 70% 10) Um número natural é primo quando ele é divisível exatamente por dois números naturais distintos. Escolhendo, ao acaso, um número natural maior que zero e menor que 17, é correto afirmar que a probabilidade desse número ser primo e deixar resto 1 na divisão por 4 é A) 1/8 07) Nei e Rui lançam, cada um, um dado não tendencioso. A probabilidade do resultado obtido por Nei ser menor do que o resultado obtido por Rui é: B) 3/16 C) 3/8 D) 7/16 E) 1/4 A) 1/4 B) 1/3 C) 4/9 D) 5/9 E) 5/12 11) O coeficiente c da função f (x) = x 2 + 4x + c deve ser escolhido aleatoriamente entre os elementos do conjunto { 10, 9, 8, K, 8, 9, 10} formado pelos números inteiros de 10 a 10. A probabilidade da função f apresentar duas raízes 08) Em um grupo de cinco artistas, dois deles têm reais e distintas é: a mesma nacionalidade. Um produtor quer A) 1/4 escolher três artistas deste grupo para encenar uma peça. A probabilidade dos dois artistas com a B) 1/3 C) 1/ Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 5

6 D) 3/5 E) 2/3 probabilidade de o jogador B vencer a competição é aproximadamente igual a: A) 35%. B) 48%. C) 26%. D) 65%. E) 74%. GABARITO PROBABILIDADE 01) E 02) A 03) E 04) B 05) D 06) C 07) B 08) D 09) D 10) A 11) E 12) A 13) A 12) Girando-se o ponteiro da roleta da figura acima, a probabilidade de que ele pare num setor circular que tenha um número que seja simultaneamente múltiplo de 3 e múltiplo de 5 é: A) 25% B) 50% C) 75% D) 80% E) 90% 13) Dois atletas disputam uma partida de tiro ao alvo, em que o vencedor é aquele que marca a maior quantidade de pontos. O alvo é composto de três circunferências concêntricas de raios iguais a 2, 4 e 8 cm, respectivamente. Ao acertar a região de raio menor, o jogador marca 50 pontos; na região delimitada pelas circunferências de raio menor e intermediário, ele marca 30 pontos; ao acertar a região delimitada pelas circunferências de raio intermediário e maior, o jogador marca 10 pontos. Considerando que a área de uma circunferência de raio r é πr 2, que o jogador A marcou 50 pontos em 3 tiros, e que o jogador B efetuou 3 disparos, todos eles no alvo, a Neste curso os melhores alunos estão sendo preparados pelos melhores Professores

MATEMÁTICA / RACIOCÍNIO LÓGICO

MATEMÁTICA / RACIOCÍNIO LÓGICO QUESTÕES DE CONCURSOS 01) Na seleção de operários da construção civil, foram entrevistados 80 candidatos e constatou-se que: 45 desses candidatos sabiam lidar com pintura; 50 deles sabiam lidar com instalações

Leia mais

Prof. Paulo Henrique Raciocínio Lógico

Prof. Paulo Henrique Raciocínio Lógico Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre

Leia mais

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6 PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião,

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO ANÁLISE COMBINATÓRIA ARRANJO SIMPLES PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PFC) Importa a ordem dos elementos (PFC) n 1.n 2.n 3... total de possibilidades A p n ( n p)! Supondo que 5 colegas vão sair de carro,

Leia mais

000 IT_005582 000 IT_007009

000 IT_005582 000 IT_007009 000 IT_00558 Um copo cilíndrico, com 4 cm de raio e cm de altura, está com água até a altura de 8 cm. Foram então colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do copo, sem

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1 RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 3º Bimestre/2013 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos

Leia mais

PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática

PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Abril/214 1 JOGOS E PROPOSTAS DE TRABALHO PARA OS ALUNOS JOGO DOS 6 PALITOS

Leia mais

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

, podemos afirmar que:

, podemos afirmar que: PROOFMATH WWW.PROOFMATH.WORDPRESS.COM MAIS UM BLOG DE MATEMÁTICA FOLHA DE TRABALHO º ANO DE ESCOLARIDADE PREPARAR EXAME NACIONAL. Considere as seguintes sucessões a n, b n Sendo a lim an, b limbn e c lim

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios

Leia mais

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla

Leia mais

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de

Leia mais

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42 Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista

Leia mais

Matemática. Resolução das atividades complementares. M16 Probabilidade

Matemática. Resolução das atividades complementares. M16 Probabilidade Resolução das atividades complementares Matemática M Probabilidade p. 7 (FGV-SP) Uma urna contém quinze bolinhas numeradas de a. a) Se uma bolinha for sorteada, qual a probabilidade de que o número observado

Leia mais

RQ Edição Fevereiro 2014

RQ Edição Fevereiro 2014 RQ Edição Fevereiro 2014 18. Um noivo foi postar os convites de casamento nos Correios. Durante a pesagem das cartas, percebeu que todas tinham 0,045 kg, exceto uma, de 0,105 kg. Em um primeiro instante,

Leia mais

(Testes intermédios e exames 2007/2008)

(Testes intermédios e exames 2007/2008) (Testes intermédios e exames 2007/2008) 14. Uma caixa 1 tem uma bola verde e três bolas amarelas. Uma caixa 2 tem apenas uma bola verde. Considere a experiência que consiste em tirar, simultaneamente e

Leia mais

2º ano do Ensino Médio

2º ano do Ensino Médio 2º ano do Ensino Médio Instruções: 1. Você deve estar recebendo um caderno com dez questões na 1ª parte da prova, duas questões na 2ª parte e duas questões na 3ª parte. Verifique, portanto, se está completo

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Como o zero é o elemento neutro da multiplicação, o produto dos números saídos

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME Exercícios estilo IME PROGRAMA IME ESPECIAL ANÁLISE COMBINATÓRIA PROF. PAULO ROBERTO 01. Em um baile há seis rapazes e dez moças. Quantos pares podem ser formados para a dança: a) sem restrição; b) se

Leia mais

Teste Anpad Raciocínio Lógico Edição: JUNHO de 2005

Teste Anpad Raciocínio Lógico Edição: JUNHO de 2005 Teste Anpad Raciocínio Lógico Edição: JUNHO de 2005 01. Cinco pessoas, Flávio, Méricles, Armênio, Clodoaldo e Igor, utilizam um mesmo programa de computador, o qual facilita a comunicação online pela Internet,

Leia mais

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. 1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,

Leia mais

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad.

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad. PROVA DE AFERIÇÃO DO 1.º CICLO DO ENSINO BÁSICO Matemática/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome completo A PREENCHER PELO AGRUPAMENTO

Leia mais

PRINCÍPIO DA CASA DOS POMBOS

PRINCÍPIO DA CASA DOS POMBOS PRINCÍPIO DA CASA DOS POMBOS 1) Certa noite, Carlos Eduardo resolveu ir ao cinema, mas descobriu que não tinha meias limpas pra calçar. Foi então ao quarto do pai, que estava na escuridão. Ele sabia que

Leia mais

Recife 14 de setembro de 2015 segunda-feira

Recife 14 de setembro de 2015 segunda-feira Recife 14 de setembro de 01 segunda-feira I Matemática e suas Tecnologias Com este fascículo, encerramos o estudo da área de Matemática e suas Tecnologias por meio de questões das competências 6 e 7.

Leia mais

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo.

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo. Aluno(a): Código: Série: 3ª Turma: Data: / / 01. A empresa Dk transporta 400 passageiros por mês da cidade de Vicentinópolis(Paletó) a Joviânia. A passagem custa 0 reais, e a empresa deseja aumentar o

Leia mais

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO CADERNO DE REVISÃO-2011 Matemática Aluno (a) 5º ANO Caderno de revisão FICHA 1 COORDENADORIA DE EDUCAÇÃO examesqueiros Os Números gloriabrindes.com.br noticias.terra.com.br cidadesaopaulo.olx... displaypaineis.com.br

Leia mais

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.

Leia mais

Revisão ENEM. Conjuntos

Revisão ENEM. Conjuntos Revisão ENEM Conjuntos CONJUNTO DOS NÚMEROS NATURAIS N Números naturais são aqueles utilizados na contagem dos elementos de um conjunto. N = {0,1,2,3,...} N* = {1,2,3,4,...} CONJUNTO DOS NÚMEROS INTEIROS

Leia mais

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA (UNIDADE ACADÊMICA DE MATEMÁTICA E ESTATÍSTICA) PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: PROF.

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries)

COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries) COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries) PROBLEMA 1 Numa loteria, todos os prêmios em reais são potências de 13 (isto é, R$ 1,00, R$ 13,00, R$ 169,00 etc.)

Leia mais

( ) =. GABARITO: LETRA A + ( ) =

( ) =. GABARITO: LETRA A + ( ) = ) Há 0 anos, em º de julho de 994, entrava em vigor o real, moeda que pôs fim à hiperinflação que assolava a população brasileira. Nesse novo sistema monetário, cada real valia uma URV (Unidade Real de

Leia mais

REGULAMENTO GERAL QUANDO PENSO QUE CHEGUEI AO MEU LIMITE, DESCUBRO QUE TENHO FORÇAS PARA IR ALEM

REGULAMENTO GERAL QUANDO PENSO QUE CHEGUEI AO MEU LIMITE, DESCUBRO QUE TENHO FORÇAS PARA IR ALEM REGULAMENTO GERAL QUANDO PENSO QUE CHEGUEI AO MEU LIMITE, DESCUBRO QUE TENHO FORÇAS PARA IR ALEM AYRTON SENNA DISCIPLINA 1. Os jogos e atividades começarão rigorosamente no horário previsto; não haverá

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR - INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA Utilize as informações a seguir para as questões e. Uma estação de trens é constituída

Leia mais

Análise Combinatória. Parte I. www.soexatas.com Página 1

Análise Combinatória. Parte I. www.soexatas.com Página 1 Parte I Análise Combinatória 1. (Ufmg 2013) Permutando-se os algarismos do número 123456, formam-se números de seis algarismos. Supondo-se que todos os números formados com esses seis algarismos tenham

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_3ªSÉRIE (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_3ªSÉRIE (OK) 000 IT_00558 Um copo cilíndrico, com 4 cm de raio e cm de altura, está com água até a altura de 8 cm. Foram, então, colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do copo,

Leia mais

www.ndu.net.br Sede Social Rua Luís Góis, 2.187 Mirandópolis São Paulo SP Cep: 04043-400 Fone: (11) 7708-7429

www.ndu.net.br Sede Social Rua Luís Góis, 2.187 Mirandópolis São Paulo SP Cep: 04043-400 Fone: (11) 7708-7429 Organização, compromisso e qualidade em prol do esporte universitário paulista www.ndu.net.br Sede Social Rua Luís Góis, 2.187 Mirandópolis São Paulo SP Cep: 04043-400 Fone: (11) 7708-7429 REGULAMENTO

Leia mais

ATIVIDADES DE RECUPERAÇÃO - 4º ano -

ATIVIDADES DE RECUPERAÇÃO - 4º ano - COLÉGIO ARNALDO 2014 ATIVIDADES DE RECUPERAÇÃO - 4º ano - MATEMÁTICA Aluno(a): Série: 4º ano Turma: Professor(a): Valor: 20 pontos Obteve: Conteúdo de Recuperação Função do número - contagem, código, ordenação

Leia mais

DISCIPLINA. Regulamento Geral

DISCIPLINA. Regulamento Geral REGULAMENTO GERAL ENSINA-ME A SER OBEDIENTE ÀS REGRAS DO JOGO ENSINA-ME A NÃO PROFERIR NEM RECEBER ELOGIO IMERECIDO ENSINA-ME A GANHAR, SE ME FOR POSSÍVEL MAS, SE EU PERDER, ACIMA DE TUDO ENSINA-ME A PERDER

Leia mais

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 04 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (OBEMEP- ADAPTADO) Laura e sua avó Ana acabaram de descobrir que,

Leia mais

REGULAMENTO ESPECÍFICO DO BASQUETE

REGULAMENTO ESPECÍFICO DO BASQUETE REGULAMENTO ESPECÍFICO DO BASQUETE 1. As competições de basquete serão realizadas de acordo com as regras internacionais da FIBA e os regulamentos e normas do Novo Desporto Universitário 2012 NDU. 2. Cada

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Exercícios Análise Combinatória

Exercícios Análise Combinatória Exercícios Análise Combinatória 1. (Uemg 2014) Na Copa das Confederações de 2013, no Brasil, onde a seleção brasileira foi campeã, o técnico Luiz Felipe Scolari tinha à sua disposição 23 jogadores de várias

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 20 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO Uma forma de medir o percentual de gordura corporal

Leia mais

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira - Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito

Leia mais

RETA FINAL TÉCNICO JUDICIÁRIO TRF 2ª Região Disciplina: Matemática e Raciocínio lógico Prof.: Joselias da Silva Data: 17/06/07

RETA FINAL TÉCNICO JUDICIÁRIO TRF 2ª Região Disciplina: Matemática e Raciocínio lógico Prof.: Joselias da Silva Data: 17/06/07 01) Três dados idênticos, nos quais a soma das faces opostas é 7, são colocados em uma mesa, conforme a figura abaixo, de modo que cada par de faces coladas tenha o mesmo número. Sabendo-se que a soma

Leia mais

Prova da segunda fase - Nível 1

Prova da segunda fase - Nível 1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL Tenho certeza que você se dedicou ao máximo esse ano, galerinha! Sangue no olho, muita garra nessa reta final! Essa vaga é de vocês! Forte abraço prof

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 25 DE OUTUBRO DE 2003 DURAÇÃO: 120 MINUTOS CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE

Leia mais

OBI2012 Caderno de Tarefas

OBI2012 Caderno de Tarefas OBI2012 Caderno de Tarefas Modalidade Iniciação Nível 1, Fase 2 2 de maio de 2012 A PROVA TEM DURAÇÃO DE 2 HORAS Promoção: Patrocínio: Olimpíada Brasileira de Informática OBI2012 1 Instruções LEIA ATENTAMENTE

Leia mais

REGULAMENTO APRESENTAÇÃO

REGULAMENTO APRESENTAÇÃO REGULAMENTO APRESENTAÇÃO O Serviço Nacional de Aprendizagem do Cooperativismo no Estado do Espírito Santo SESCOOP/ES está promovendo o 1º FUTCOOP INFANTIL MASCULINO, que será realizado no mês de julho

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

ingressos, sobrará troco? ( ) sim ( ) não Se sobrar troco, de quanto será?

ingressos, sobrará troco? ( ) sim ( ) não Se sobrar troco, de quanto será? SOCIEDADE MINEIRA DE CULTURA Mantenedora da PUC Minas e do COLÉGIO SANTA MARIA DATA: 26 / 09 / 2014 UNIDADE: II ETAPA AVALIAÇÃO DE RECUPERAÇÃO DE MATEMÁTICA 3.º ANO/EF ALUNO(A): Nº: TURMA: PROFESSOR(A):

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2 ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012 ANO 2014 PROFESSOR (a) Elaine Cristina Francisco

Leia mais

Regulamento para Seletiva de Arco Composto Campeonato das Américas 2014 de Tiro com Arco, Rosário - Argentina

Regulamento para Seletiva de Arco Composto Campeonato das Américas 2014 de Tiro com Arco, Rosário - Argentina Regulamento para Seletiva de Arco Composto Campeonato das Américas 2014 de Tiro com Arco, Rosário - Argentina Local: Centro de Treinamento CBTARCO Maricá, RJ Data: 30 e 31 de agosto de 2014. A seletiva

Leia mais

Identifica claramente, na folha de respostas, os números dos itens a que respondes.

Identifica claramente, na folha de respostas, os números dos itens a que respondes. Teste Intermédio de Matemática Teste Intermédio Matemática Duração do Teste: 90 minutos 31.01.2008 3.º Ciclo do Ensino Básico Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente, na folha de

Leia mais

Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas

Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas 1. (Paulino e Branco, 2005) Num depósito estão armazenadas 500 embalagens de um produto, das quais 50 estão deterioradas. Inspeciona-se uma

Leia mais

Exercícios de Análise Combinatória ano: 2013

Exercícios de Análise Combinatória ano: 2013 Página1 Exercícios de Análise Combinatória ano: 2013 1. (Pucrj) Em uma sorveteria há sorvetes nos sabores morango, chocolate, creme e flocos. De quantas maneiras podemos montar uma casquinha com duas bolas

Leia mais

VII JOGOS DOS APOSENTADOS FENACEF 2016

VII JOGOS DOS APOSENTADOS FENACEF 2016 REGULAMENTO TÉCNICO CANASTRA Art. 1º. O torneio de Canastra do VII JOGOS FENACEF, será realizado de acordo com as regras estabelecidas pela FENACEF no Regulamento Geral do VII JOGOS FENACEF, combinado

Leia mais

PROJETO E REGULAMENTO GERAL

PROJETO E REGULAMENTO GERAL OLIMPÍADAS DO INSTITUTO EDUCACIONAL NOVOS TEMPOS PROJETO E REGULAMENTO GERAL Ensino Fundamental II e Médio OUTUBRO DE 2015 APRESENTAÇÃO: As Olimpíadas do Instituto Educacional Novos Tempos (OLIENT), visam

Leia mais

3.ª e 4.ª SÉRIES/4.º e 5.º ANOS

3.ª e 4.ª SÉRIES/4.º e 5.º ANOS 3.ª e 4.ª SÉRIES/4.º e 5.º ANOS 1) Qual das planificações abaixo não é a planificação de um cubo? Resposta: I Existem 11 planificações diferentes para o cubo, indicadas pelas letras A, B, C, D, E, F, G,

Leia mais

CAPÍTULO I DOS OBJETIVOS DOS JOGOS UNIVERSITÁRIOS EINSTEIN

CAPÍTULO I DOS OBJETIVOS DOS JOGOS UNIVERSITÁRIOS EINSTEIN CAPÍTULO I DOS OBJETIVOS DOS JOGOS UNIVERSITÁRIOS EINSTEIN Artigo 1º - Os Jogos Universitários tem como objetivo: * Incentivar a participação dos jovens em atividades saudáveis do ponto de vista social,

Leia mais

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir.

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir. Combinação 1. (Uerj 2013) Um sistema luminoso, constituído de oito módulos idênticos, foi montado para emitir mensagens em código. Cada módulo possui três lâmpadas de cores diferentes vermelha, amarela

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. Questão 84 A taxa de analfabetismo representa a porcentagem da população com idade de anos ou mais que é

Leia mais

OFICINA DE JOGOS APOSTILA DO PROFESSOR

OFICINA DE JOGOS APOSTILA DO PROFESSOR OFICINA DE JOGOS APOSTILA DO PROFESSOR APRESENTAÇÃO Olá professor, Essa apostila apresenta jogos matemáticos que foram doados a uma escola de Blumenau como parte de uma ação do Movimento Nós Podemos Blumenau.

Leia mais

NOTA OFICIAL N 50/2013 ATOS DA PRESIDÊNCIA

NOTA OFICIAL N 50/2013 ATOS DA PRESIDÊNCIA NOTA OFICIAL N 50/2013 Rio de Janeiro, 19 de março de 2013. ATOS DA PRESIDÊNCIA COPA BRASIL NORTE - 2013 Tornar sem efeito a Nota Oficial nº 29/2013 por força de alteração na programação, motivada pela

Leia mais

Canguru Matemático sem Fronteiras 2011

Canguru Matemático sem Fronteiras 2011 http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 5. e 6. anos de escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões

Leia mais

INSTRUÇÕES AOS CANDIDATOS

INSTRUÇÕES AOS CANDIDATOS MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA (Casa de Thomaz Coelho / 1889) CONCURSO DE ADMISSÃO AO 6º ANO DO ENSINO FUNDAMENTAL 2009/2010 18 de outubro de 2009 APROVO DIRETOR DE ENSINO COMISSÃO

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio 36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,

Leia mais

V MARATONA DE PROGRAMAÇÃO INTERNA UERJ 03/12/2011. Este caderno contém 11 páginas com a descrição de 10 problemas 1 definidos a seguir:

V MARATONA DE PROGRAMAÇÃO INTERNA UERJ 03/12/2011. Este caderno contém 11 páginas com a descrição de 10 problemas 1 definidos a seguir: V MARATONA DE PROGRAMAÇÃO INTERNA UERJ 0/1/011 Este caderno contém 11 páginas com a descrição de 10 problemas 1 definidos a seguir: A - Campanhas Publicitárias B Prefixando os Sufixos C Jogo na TV D Senhas

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a Comentadas pelo professor: Vinicius Werneck Raciocínio Lógico 1- Prova: ESAF - 2012 - Receita Federal - Auditor Fiscal da Receita Federal Sabendo-se que o conjunto X é dado por X = {x R x² 9 = 0 ou 2x

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 01) O jogo da Mega-Sena consiste no sorteio de 6 números distintos entre 1 e 60. Um apostador escolhe 20 números distintos e faz todos os C 20,6 jogos possíveis de serem realizados com os 20 números.

Leia mais