Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Tamanho: px
Começar a partir da página:

Download "Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO"

Transcrição

1 RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se lhes perguntar algo, um responde sempre falando a verdade, um sempre mente e o outro mente em 50% das vezes e consequentemente fala a verdade nas outras 50% das vezes. O viajante perguntou a um dos três meninos escolhido ao acaso qual era o caminho para a cidade e ele respondeu que era o da direita. Se ele fizer a mesma pergunta a um outro menino escolhido ao acaso entre os dois restantes, qual a probabilidade de ele também responder que é o caminho da direita? a) 1. b) 2/3. c) 1/2. d) 1/3. e) 1/4. Vamos analisar as hipóteses: Hipótese 1: O primeiro menino escolhido pelo viajante sempre fala a verdade (respondeu que a cidade era para direita). Escolha do segundo menino (escolher um menino entre dois): Menino que sempre mente: responderá que a cidade é para a esquerda Menino que fala verdade em 50% das vezes: há 50% de chance de dizer que a cidade é para direita. Portanto, a probabilidade de que o segundo menino responda que a cidade é para direita é: P 1 = P(Escolher menino que fala a verdade 50% das vezes) x 50% (chance de dizer que a cidade é para direita) = 50% x 50% = 25% Hipótese 2: O primeiro menino escolhido pelo viajante sempre mente. (respondeu que a cidade era para direita). Escolha do segundo menino: Menino que sempre fala a verdade: responderá que a cidade é para a esquerda Menino que fala verdade em 50% das vezes: há 50% de chance de dizer que a cidade é para direita. Portanto, a probabilidade de que o segundo menino responda que a cidade é para direita é: P 2 = P(Escolher menino que fala a verdade 50% das vezes) x 50% (chance de dizer que a cidade é para direita) = 50% x 50% = 25% Prof. José Jayme Moraes Junior 1

2 Hipótese 3: O primeiro menino escolhido pelo viajante diz a verdade em 50% das vezes (respondeu que a cidade era para direita). Escolha do segundo menino: Menino que sempre fala a verdade: responderá que a cidade é para a direita (se o primeiro menino disse a verdade) ou responderá que a cidade é para a esquerda (se o primeiro menino mentiu) Menino que sempre mente: responderá que a cidade é para a direita (se o primeiro menino mentiu) ou responderá que a cidade é para a esquerda (se o primeiro menino disse a verdade) Portanto, a probabilidade de que o segundo menino responda que a cidade é para direita é: P 3 = P(primeiro menino disse a verdade) x P(menino sempre fala a verdade) = 50% x 1 = 50% Ou P 3 = P(primeiro menino mentiu) x P(menino sempre mente) = 50% x 1 = 50% Ou seja, na terceira hipótese, a probabilidade é sempre de 50%. Probabilidade Final = Probabilidade de Escolher o Primeiro Menino x (25% + 25% + 50%)/3 = 1/3 x 100% = 1/3 GABARITO: D 2 - Há três suspeitos para um crime e pelo menos um deles é culpado. Se o primeiro é culpado, então o segundo é inocente. Se o terceiro é inocente, então o segundo é culpado. Se o terceiro é inocente, então ele não é o único a sê-lo. Se o segundo é culpado, então ele não é o único a sê-lo. Assim, uma situação possível é: a) Os três são culpados. b) Apenas o primeiro e o segundo são culpados. c) Apenas o primeiro e o terceiro são culpados. d) Apenas o segundo é culpado. e) Apenas o primeiro é culpado. Informações: 1. Três suspeitos e pelo menos um é culpado. 2. Se o primeiro é culpado, então o segundo é inocente. 3. Se o terceiro é inocente, então o segundo é culpado. 4. Se o terceiro é inocente, então ele não é o único a sê-lo. 5. Se o segundo é culpado, então ele não é o único a sê-lo. Prof. José Jayme Moraes Junior 2

3 Análise das alternativas: a) Os três são culpados. Não é possível, pois, de acordo com a informação 2, se o primeiro é culpado, o segundo é inocente. A alternativa está INCORRETA. b) Apenas o primeiro e o segundo são culpados. Não é possível, pois, de acordo com a informação 2, se o primeiro é culpado, o segundo é inocente. A alternativa está INCORRETA. c) Apenas o primeiro e o terceiro são culpados. Vamos verificar: 1. Três suspeitos e pelo menos um é culpado. Tudo bem, pois pode haver dois culpados. 2. Se o primeiro é culpado, então o segundo é inocente. Tudo bem, pois, da alternativa, o primeiro é culpado. Por conseqüência, o segundo é inocente. 3. Se o terceiro é inocente, então o segundo é culpado. A proposição equivalente é: Se o segundo é inocente, então o terceiro é culpado. Está de acordo com a alternativa (lembram da aula de proposições equivalentes?). 4. Se o terceiro é inocente, então ele não é o único a sê-lo. Está de acordo com a alternativa, pois os culpados são o primeiro e o terceiro. 5. Se o segundo é culpado, então ele não é o único a sê-lo. Está de acordo, pois o segundo é inocente e está informação é falsa. A alternativa está CORRETA. d) Apenas o segundo é culpado. Não é possível, pois, de acordo com a informação 5, se o segundo é culpado, então ele não é o único a sê-lo. A alternativa está INCORRETA. e) Apenas o primeiro é culpado. Também não é possível. Veja: 2. Se o primeiro é culpado, então o segundo é inocente. Tudo bem, pois, da alternativa, o primeiro é culpado. Por conseqüência, o segundo é inocente. 3. Se o terceiro é inocente, então o segundo é culpado. A proposição equivalente é: Se o segundo é inocente, então o terceiro é culpado. Então, o terceiro é culpado. A alternativa está INCORRETA. GABARITO: C Prof. José Jayme Moraes Junior 3

4 3 - Ana é nutricionista e está determinando o peso médio em quilos (kg) de todos seus 50 clientes. Enquanto Ana está somando os pesos de seus clientes, para calcular a média aritmética entre eles, sem perceber, ela troca os dígitos de um dos pesos; ou seja, o peso XY kg foi trocado por YX kg. Essa troca involuntária de dígitos alterou a verdadeira média dos pesos dos 50 clientes; a média aritmética ficou acrescida de 0,9 kg. Sabendo-se que os pesos dos 50 clientes de Ana estão entre 28 e 48 kg, então o número que teve os dígitos trocados é, em quilos, igual a: a) 38 b) 45 c) 36 d) 40 e) 46 Média Correta dos Pesos = (P 1 + P P 50 )/50 Suponha que o peso P 1 é aquele que teve os dígitos trocados, ou seja, P 1 era igual a XY, mas Ana considerou YX. Média Correta dos Pesos (MC) = (XY + P P 50 )/50 (I) Média Incorreta dos Pesos (MI) = (YX + P P 50 )/50 (II) Fazendo (II) (I): MI MC = (YX XY)/50 (III) MI = MC + 0,9 kg (dado da questão) MI MC = 0,9 (IV) Como (III) = (IV): (YX XY)/50 = 0,9 YX XY = 45 Como o número está entre 28 e 48, vamos testar: XY = 28 YX = 82 YX XY = = 54 XY = 29 YX = 92 YX XY = = 63 XY = 30 YX = 3 Como YX é menor, a diferença será negativa. XY = 31 YX = 13 Como YX é menor, a diferença será negativa. XY = 32 YX = 23 Como YX é menor, a diferença será negativa. XY = 33 YX = 33 YX XY = 0 XY = 34 YX = 43 YX XY = = 9 XY = 35 YX = 53 YX XY = = 18 XY = 36 YX = 63 YX XY = = 27 XY = 37 YX = 73 YX XY = = 36 XY = 38 YX = 83 YX XY = = 45 Repare que é uma PA de razão 9. Prof. José Jayme Moraes Junior 4

5 Ou: YX = 10Y + X XY = 10X + Y Raciocínio Lógico-Quantitativo YX XY = 45 10Y + X 10X Y = 45 9Y 9X = 45 Y X = 5 (logo, a única alternativa possível é 38 Y X = 8 3 = 5) GABARITO: A 4 - Sejam F e G duas proposições e ~F e ~G suas respectivas negações. Marque a opção que equivale logicamente à proposição composta: F se e somente G. a) F implica G e ~G implica F. b) F implica G e ~F implica ~G. c) Se F então G e se ~F então G. d) F implica G e ~G implica ~F. e) F se e somente se ~G. F se e somente G. A proposição equivalente da bicondicional (vista no nosso curso online) é: p q é equivalente a (p q) ^ (q p). Ou seja, F se e somente G é equivalente a (F implica G) e (G implica F) (I) Além disso, sabemos que a proposição equivalente da condicional é: p q é equivalente a ~q ~p Portanto, (G implica F) é equivalente a (~F implica ~G) (II) Consolidando (I) e (II), temos: F se e somente G é equivalente a (F implica G) e (~F implica ~G) GABARITO: B Prof. José Jayme Moraes Junior 5

6 Nesta questão, os símbolos da conjunção, disjunção, contradição e tautologia estão iguais. De acordo com informações de pessoas que fizeram a prova, a questão estava perfeita na prova. Contudo, do jeito que foi divulgada, não há como resolver. Na verdade, no meu Adobe, está acusando que falta uma fonte e esta é a origem do problema. GABARITO: C 6 - Beatriz é fisioterapeuta e iniciou em sua clínica um programa de reabilitação para 10 pacientes. Para obter melhores resultados neste programa, Beatriz precisa distribuir esses 10 pacientes em três salas diferentes, de modo que na sala 1 fiquem 4 pacientes, na sala 2 fiquem 3 pacientes e na sala 3 fiquem, também, 3 pacientes. Assim, o número de diferentes maneiras que Beatriz pode distribuir seus pacientes, nas três diferentes salas, é igual a: a) b) c) d) e) Sala 1: C 10,4 = 10!/(4! X 6!) = 10 x 9 x 8 x 7/(4 x 3 x 2 x 1) = 210 Sala 2: C 6,3 = 6!/(3! X 3!) = 6 x 5 x 4/(3 x 2 x 1) = 20 Sala 3: C 3,3 = 3!/(3! X 0!) = 1 Total de Possibilidades = 210 x 20 x 1 = GABARITO: C 7 - Em uma pequena localidade, os amigos Arnor, Bruce, Carlão, Denílson e Eleonora são moradores de um bairro muito antigo que está comemorando 100 anos de existência. Dona Matilde, uma antiga moradora, ficou encarregada de formar uma comissão que será a responsável pela decoração da festa. Para tanto, Dona Matilde selecionou, ao acaso, três pessoas entre os amigos Arnor, Bruce, Carlão, Denílson e Eleonora. Sabendo-se que Denílson não pertence à comissão formada, então a probabilidade de Carlão pertencer à comissão é, em termos percentuais, igual a: a) 30 % b) 80 % c) 62 % d) 25 % e) 75 % Prof. José Jayme Moraes Junior 6

7 Raciocínio Lógico-Quantitativo Comissão de 3 pessoas entre 5. Restrição: Denilson não pertence à comissão. Total de Comissões (sem Denilson): C 4,3 = 4!/(3! X 1!) = 4 Comissões com Carlão (uma vaga é de Carlão): C 3,2 = 3!/(2! X 1!) = 3 Probabilidade de Carlão pertencer à comissão = 3/4 = 75% GABARITO: E 8 - Se f(x) = x, então g(x) = x. Se f(x) x, então ou g(x) = x, ou h(x) = x, ou ambas as funções, g(x) e h(x) são iguais a x, ou seja, g(x) = x e h(x) = x. Se h(x) x, então g(x) x. Se h(x) = x, então f(x) = x. Logo, a) f(x) = x, e g(x) = x, e h(x) = x b) f(x) x, e g(x) x, e h(x) x c) f(x) = x, e g(x) x, e h(x) x d) f(x) x, e g(x) = x, e h(x) = x e) f(x) = x, e g(x) = x, e h(x) x Informações: 1) Se f(x) = x, então g(x) = x 1 ) Se g(x) x, então f(x) x (proposição equivalente) 2) Se f(x) x, então (ou g(x) = x, ou h(x) = x), ou (g(x) = x e f(x) = x) Considerando: p: f(x) x q: (ou g(x) = x, ou h(x) = x), ou (g(x) = x e f(x) = x) ~p: f(x) = x ~q: (g(x), se e somente se h(x) x), e (g(x) x ou f(x) x) 2 ) Se (g(x), se e somente se h(x) x), e (g(x) x ou f(x) x), então f(x) = x (proposição equivalente) 3) Se h(x) x, então g(x) x 3 ) Se g(x) = x, então, h(x) = x (proposição equivalente) 4) Se h(x) = x, então f(x) = x 4 ) Se f(x) x, então h(x) x (proposição equivalente) Como não há informação adicional, vamos partir da informação 1, considerando que f(x) = x Da informação 1: Se f(x) = x, então g(x) = x. Portanto, g(x) = x. Da informação 3 : Se g(x) = x, então, h(x) = x. Portanto, h(x) = x. Da informação 4: Se h(x) = x, então f(x) = x. Está de acordo com a hipótese. Portanto, temos: f(x) = x; g(x) = x e h(x) = x GABARITO: A Prof. José Jayme Moraes Junior 7

8 9 - Em uma urna existem 200 bolas misturadas, diferindo apenas na cor e na numeração. As bolas azuis estão numeradas de 1 a 50, as bolas amarelas estão numeradas de 51 a 150 e as bolas vermelhas estão numeradas de 151 a 200. Ao se retirar da urna três bolas escolhidas ao acaso, com reposição, qual a probabilidade de as três bolas serem da mesma cor e com os respectivos números pares? a) 10/512. b) 3/512. c) 4/128. d) 3/64. e) 1/64. Total de Bolas = 200 Bolas Azuis = 50 (numeradas de 1 a 50) Bolas Amarelas = 100 (numeradas de 51 a 150) Bolas Vermelhas = 50 (numeradas de 151 a 200) Probabilidade de se retirar da urna três bolas escolhidas, com reposição, de modo que sejam da mesma cor e com os respectivos números pares. Bolas Azuis e Pares = 25 Bolas Amarelas e Pares = 50 Bolas Vermelhas e Pares = 25 I Hipótese I: três bolas azuis e pares P (Azul e Par) = 25/200 x 25/200 x 25/200 = 1/8 x 1/8 x 1/8 = 1/512 II Hipótese II: três bolas amarelas e pares P (Amarela e Par) = 50/200 x 50/200 x 50/200 = 1/4 x 1/4 x 1/4 = 1/64 III Hipótese III: três bolas vermelhas e pares P (Vermelha e Par) = 25/200 x 25/200 x 25/200 = 1/8 x 1/8 x 1/8 = 1/512 Probabilidade Total = 1/512 x 1/64 x 1/512 = 10/512 GABARITO: A 10- As apostas na Mega-Sena consistem na escolha de 6 a 15 números distintos, de 1 a 60, marcados em volante próprio. No caso da escolha de 6 números tem-se a aposta mínima e no caso da escolha de 15 números tem-se a aposta máxima. Como ganha na Mega-sena quem acerta todos os seis números sorteados, o valor mais próximo da probabilidade de um apostador ganhar na Mega-sena ao fazer a aposta máxima é o inverso de: a) b) Prof. José Jayme Moraes Junior 8

9 c) d) e) Raciocínio Lógico-Quantitativo Total de Jogos Possíveis = C 60,6 = 60!/(6! x 54!) = Total de Jogos Possíveis com 15 números: C 15,6 = 15!/(6! x 9!) = Probabilidade de Acertar = 5.005/ = ,77 GABARITO: E Moraes Junior Prof. José Jayme Moraes Junior 9

Resolução da prova de Raciocínio Lógico APO 2010 (ESAF)

Resolução da prova de Raciocínio Lógico APO 2010 (ESAF) Resolução da prova de Raciocínio Lógico APO 2010 (ESAF) Questão 01) Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita

Leia mais

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6 PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião,

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 Este é o 6º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

Lista 01: Introdução à Probabilidade

Lista 01: Introdução à Probabilidade INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA-AERONÁUTICA MB-210: Probabilidade e Estatística Lista 01: Introdução à Probabilidade Prof. Denise Beatriz Ferrari denise@ita.br 2 o Sem/2013

Leia mais

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1 RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais

01. Considere as seguintes proposições:

01. Considere as seguintes proposições: 01. Considere as seguintes proposições: p: O restaurante está fechado. q: O computador está ligado. A sentença O restaurante não está fechado e o computador não está ligado assume valor lógico verdadeiro

Leia mais

Princípio da contagem e Probabilidade: conceito

Princípio da contagem e Probabilidade: conceito Princípio da contagem e Probabilidade: conceito característica do que é provável perspectiva favorável de que algo venha a ocorrer; possibilidade, chance. Ex.: há pouca possibilidade de chuva grau de segurança

Leia mais

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas. Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009.

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009. PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Oi Amigos, Como estou recebendo muitos pedidos da resolução da prova a PRF-2009. Elaborei os comentários das questões. Observe que foram

Leia mais

Vestibular UFRGS 2015 Resolução da Prova de Matemática

Vestibular UFRGS 2015 Resolução da Prova de Matemática Vestibular UFRGS 015 Resolução da Prova de Matemática 6. Alternativa (D) (0,15) 15 1 15 8 1 15 [() ] 15 5 7. Alternativa (C) Algarismo da unidade de 9 99 é 9 Algarismo da unidade de é 6 9 6 8. Alternativa

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

RQ Edição Fevereiro 2014

RQ Edição Fevereiro 2014 RQ Edição Fevereiro 2014 18. Um noivo foi postar os convites de casamento nos Correios. Durante a pesagem das cartas, percebeu que todas tinham 0,045 kg, exceto uma, de 0,105 kg. Em um primeiro instante,

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

Probabilidade Condicional

Probabilidade Condicional PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências

Leia mais

Teste Anpad Raciocínio Lógico Edição: JUNHO de 2005

Teste Anpad Raciocínio Lógico Edição: JUNHO de 2005 Teste Anpad Raciocínio Lógico Edição: JUNHO de 2005 01. Cinco pessoas, Flávio, Méricles, Armênio, Clodoaldo e Igor, utilizam um mesmo programa de computador, o qual facilita a comunicação online pela Internet,

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Enem 2013) Na aferição de um novo semáforo, os tempos são ajustados de modo que, em cada ciclo completo (verde-amarelo-vermelho), a luz amarela permaneça acesa por 5 segundos, e o tempo em que a luz

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Francisco Ramos. 100 Problemas Resolvidos de Matemática

Francisco Ramos. 100 Problemas Resolvidos de Matemática Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR - INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA Utilize as informações a seguir para as questões e. Uma estação de trens é constituída

Leia mais

Tendo como referência as informações apresentados no texto acima, julgue o item que se segue.

Tendo como referência as informações apresentados no texto acima, julgue o item que se segue. COMENTÁRIO PROA POLICIA EDERAL 2009 COMENTÁRIO GERAL A prova foi bem fácil para o aluno que estudou. A CESPE continuou impecável, abordando todos os assuntos do edital. Existe apenas uma questão cujo gabarito

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

22.5.1. Data de Equivalência no Futuro... 22.5.2. Data de Equivalência no Passado... 2. 22.5. Equivalência de Capitais Desconto Comercial...

22.5.1. Data de Equivalência no Futuro... 22.5.2. Data de Equivalência no Passado... 2. 22.5. Equivalência de Capitais Desconto Comercial... Aula 22 Juros Simples. Montante e juros. Descontos Simples. Equivalência Simples de Capital. Taxa real e taxa efetiva. Taxas equivalentes. Capitais equivalentes. Descontos: Desconto racional simples e

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. 1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Conjunto de todos os resultados possíveis de um experimento aleatório.

Conjunto de todos os resultados possíveis de um experimento aleatório. VII Probabilidades Em todos os fenômenos estudados pela Estatística, os resultados, mesmo nas mesmas condições de experimentação, variam de uma observação para outra, dificultando a previsão de um resultado

Leia mais

Prova da segunda fase - Nível 1

Prova da segunda fase - Nível 1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

Vamos ao que interessa. A questão número 36 deve ter seu gabarito trocado da letra A para a LETRA D. Veja a resolução da questão.

Vamos ao que interessa. A questão número 36 deve ter seu gabarito trocado da letra A para a LETRA D. Veja a resolução da questão. Vamos ao que interessa. A questão número 36 deve ter seu gabarito trocado da letra A para a LETRA D. Veja a resolução da questão. A prova foi fácil, apenas uma questão exigiu um pouco mais do aluno: a

Leia mais

Profs. Alexandre Lima e Moraes Junior www.pontodosconcursos.com.br 1

Profs. Alexandre Lima e Moraes Junior www.pontodosconcursos.com.br 1 Aula 12 Compreensão e elaboração da lógica das situações por meio de: raciocínio matemático (que envolvam, entre outros, conjuntos numéricos racionais e reais - operações, propriedades, problemas envolvendo

Leia mais

PRINCÍPIO DA CASA DOS POMBOS

PRINCÍPIO DA CASA DOS POMBOS PRINCÍPIO DA CASA DOS POMBOS 1) Certa noite, Carlos Eduardo resolveu ir ao cinema, mas descobriu que não tinha meias limpas pra calçar. Foi então ao quarto do pai, que estava na escuridão. Ele sabia que

Leia mais

OFICINA DE JOGOS APOSTILA DO PROFESSOR

OFICINA DE JOGOS APOSTILA DO PROFESSOR OFICINA DE JOGOS APOSTILA DO PROFESSOR APRESENTAÇÃO Olá professor, Essa apostila apresenta jogos matemáticos que foram doados a uma escola de Blumenau como parte de uma ação do Movimento Nós Podemos Blumenau.

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

ESTRATÉGIA DE SAÚDE DA FAMÍLIA

ESTRATÉGIA DE SAÚDE DA FAMÍLIA ESTRATÉGIA DE SAÚDE DA FAMÍLIA PROVA OBJETIVA PROCESSO SELETIVO DE AGENTES COMUNITÁRIOS DE SAÚDE Prezado candidato(a), você recebeu o seguinte material: - um caderno de questões contendo 30 (trinta) questões

Leia mais

Um jogo de preencher casas

Um jogo de preencher casas Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos

Leia mais

Português. 1) Marque como quiser, o pedacinho que começa o nome de cada figura. da pa na ca ma

Português. 1) Marque como quiser, o pedacinho que começa o nome de cada figura. da pa na ca ma Português 1) Marque como quiser, o pedacinho que começa o nome de cada figura. ca pa na ma da do po co no mo mi pi ni di pe de ne me da pa na ca ma 2) Em cada quadro, pinte a palavra que corresponde ao

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Esmiuçando o Teorema de Bayes e fazendo exercícios

Esmiuçando o Teorema de Bayes e fazendo exercícios PROAILIDADES Esmiuçando o Teorema de ayes e fazendo exercícios ERTOLO Lembrando as Aulas Anteriores Probabilidade Condicional: Teorema do Produto: Se os eventos e E 1 forem INDEPENDENTES: 11/09/2012 ertolo

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

3. (AGENTE-FISCAL DE RENDAS - NÍVEL I / SP 2006 FCC

3. (AGENTE-FISCAL DE RENDAS - NÍVEL I / SP 2006 FCC 1. (AFC 2002 ESAF) Cinco aldeões foram trazidos à presença de um velho rei, acusados de haver roubado laranjas do pomar real. Abelim, o primeiro a falar, falou tão baixo que o rei que era um pouco surdo

Leia mais

APOSTILA DE LÓGICA. # Proposições Logicamente Equivalentes. # Equivalências Básicas

APOSTILA DE LÓGICA. # Proposições Logicamente Equivalentes. # Equivalências Básicas INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. Fone (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS

100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS 100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS R E S O L U Ç Ã O D E E X E R C ÍC IO S R A C IO C ÍN IO L Ó G IC O M A T E M Á T IC A F ÍS IC A /Q U ÍM IC A E m a il g a b a r ito c e rto @ h o tm a il.c

Leia mais

Aula 5 Distribuição amostral da média

Aula 5 Distribuição amostral da média Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento

Leia mais

GUIA DE ACESSO E NAVEGAÇÃO NO AMBIENTE VIRTUAL DE APRENDIZAGEM

GUIA DE ACESSO E NAVEGAÇÃO NO AMBIENTE VIRTUAL DE APRENDIZAGEM GUIA DE ACESSO E NAVEGAÇÃO NO AMBIENTE VIRTUAL DE APRENDIZAGEM BOAS VINDAS! Prezado (a) aluno (a), seja bem vindo (a) aos cursos na modalidade a distância. É com muita satisfação que o (a) recebemos neste

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

GINCANA MATEMÁTICA, UM JEITO NOVO DE APRENDER MATEMÁTICA!

GINCANA MATEMÁTICA, UM JEITO NOVO DE APRENDER MATEMÁTICA! ISSN 2177-9139 GINCANA MATEMÁTICA, UM JEITO NOVO DE APRENDER MATEMÁTICA! Thaís Eduarda Ávila da Silveira thaisuab3@gmail.com Universidade Federal de Pelotas, Pólo Sapucaia do Sul, 92990-000 Sapucaia do

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (ENEM) Para construir um contrapiso, é comum, na constituição do

Leia mais

Experimentos Aleatórios e Espaços Amostrais

Experimentos Aleatórios e Espaços Amostrais Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios

Leia mais

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos

Leia mais

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO CADERNO DE REVISÃO-2011 Matemática Aluno (a) 5º ANO Caderno de revisão FICHA 1 COORDENADORIA DE EDUCAÇÃO examesqueiros Os Números gloriabrindes.com.br noticias.terra.com.br cidadesaopaulo.olx... displaypaineis.com.br

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA MATEMÁTICA IV ANÁLISE COMBINATÓRIA DISCURSIVAS SÉRIE AULA AULA 0 1 (UP 01 A Mega Sena é a maior loteria do Brasil realizada pela Caixa Econômica Federal (CEF. Para ganhar o prêmio da Mega Sena, o apostador

Leia mais

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio.

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio. Atividade sobre Probabilidades 4 o bim. 2009 2 os anos 1) No lançamento simultâneo de 2 dados, considere as faces voltadas para cima e determine a) espaço amostral S. b) evento E 1 : números cuja soma

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Lógica Professor: André Luiz Galdino Universidade Federal de Goiás Campus Catalão Departamento de Matemática 2 a Lista de Exercícios 10/05/2011 1. O silogismo é uma forma de

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11.

O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11. EXERCÍCIOS DE RECUPERAÇÃO 7º ANO º BIMESTRE MATEMÁTICA PROFº PAULO 1. Dois números de sinais contrários são opostos? Justifique. O sinal de menos ( ) colocado antes de um número indica o oposto desse número.

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Instruções para a Prova de MATEMÁTICA APLICADA:

Instruções para a Prova de MATEMÁTICA APLICADA: Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1:

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1: O momento do gol A UU L AL A Falta 1 minuto para terminar o jogo. Final de campeonato! O jogador entra na área adversária driblando, e fica de frente para o gol. A torcida entra em delírio gritando Chuta!

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Revisão de Matemática para o ENEM

Revisão de Matemática para o ENEM Revisão de para o ENEM 1. (Enem 2013) As projeções para a produção de arroz no período de 2012 2021, em uma determinada região produtora, apontam para uma perspectiva de crescimento constante da produção

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o

Leia mais

CURSOS ON-LINE - ESTATÍSTICA BÁSICA CURSO REGULAR PROFESSOR SÉRGIO CARVALHO AULA 02

CURSOS ON-LINE - ESTATÍSTICA BÁSICA CURSO REGULAR PROFESSOR SÉRGIO CARVALHO AULA 02 Olá, amigos! AULA 02 Tudo bem com vocês? E aí, revisaram a aula passada? Espero que sim. Bem como espero que tenham resolvido as questões que ficaram pendentes! A propósito, vamos iniciar nossa aula de

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

COMO TRABALHAR COM BLOCOS LÓGICOS

COMO TRABALHAR COM BLOCOS LÓGICOS I. Descrição do Material: COMO TRABALHAR COM BLOCOS LÓGICOS Material criado por Dienes. Constitui-se de 48 peças, que combinam quatro atributos em cada uma sendo: Tamanho (grande e pequeno) Cor (amarelo,

Leia mais

BANRISUL SIMULADO PRÉ-PROVA

BANRISUL SIMULADO PRÉ-PROVA BANRISUL SIMULADO PRÉ-PROVA MATEMÁTICA Instrução: Para responder às questões desta prova, considere, se necessário, as tabelas abaixo, as quais contêm resultados de cálculos de algumas fórmulas pertinentes

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 04 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (OBEMEP- ADAPTADO) Laura e sua avó Ana acabaram de descobrir que,

Leia mais

Nesse módulo serão apresentadas questões que fizeram parte de diversos concursos no Brasil nos períodos de 2005 à 2008.

Nesse módulo serão apresentadas questões que fizeram parte de diversos concursos no Brasil nos períodos de 2005 à 2008. 1 MÓDULO VII Nesse módulo serão apresentadas questões que fizeram parte de diversos concursos no Brasil nos períodos de 005 à 008. É uma seletiva de problemas que fizeram parte de processos seletivos de

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

Aula 7 - Questões Comentadas e Resolvidas

Aula 7 - Questões Comentadas e Resolvidas Aula 7 - Questões Comentadas e Resolvidas Análise Combinatória: combinações, arranjos e permutações. Probabilidades: conjuntos, eventos, axiomas, probabilidades conjunta e condicional, independência, regras

Leia mais

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo: Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de

Leia mais