Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Tamanho: px
Começar a partir da página:

Download "Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica"

Transcrição

1 Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica

2 Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma base teórica. Tais probabilidades são denominadas probabilidades empíricas. As probabilidades empíricas são utilizadas nas situações em que pretendemos observar com que frequência certos eventos ocorrem.

3 Probabilidade Empírica Exemplo Existem 4200 estudantes em um curso pré-vestibular. O gráfico de setores a seguir mostra, por exemplo, que o curso de Medicina é o mais procurado. Se um estudante qualquer deste curso pré-vestibular é aleatoriamente escolhido, qual a probabilidade de prestar Direito?

4 Probabilidade Empírica Solução A probabilidade de escolher ao acaso um estudante que prestará vestibular num curso de Direito é o número de estudantes que prestarão o curso de Direito dividido pelo total dos alunos do curso pré-vestibular.. Logo, número de estudantes que prestarão Direito P = número total de estudantes do curso pré - vestibular P = = = 0,23 = 23%

5 Probabilidade Empírica Observe na figura a relação entre alguns eventos e suas correspondentes probabilidades.

6 Probabilidade Teórica As probabilidades teóricas são utilizadas nos experimentos equiprováveis, ou seja, nos experimentos cujos resultados têm a mesma probabilidade de ocorrência. Imagine um lançamento de um dado comum e a observação do resultado obtido na face superior. Mesmo que todos os resultados tenham chance de ocorrer, o resultado que será observado é imprevisível. Os experimentos que apresentam resultados imprevisíveis são denominados experimentos aleatórios. Assim, lançar um dado comum e observar o resultado é um experimento aleatório. O conjunto formado por todos os resultados possíveis do experimentos é denominado espaço amostral do experimento, e denotado por S. Os espaço amostral de um lançamento de um dado comum é

7 Probabilidade Teórica S = {1; 2; 3; 4; 5; 6} Vamos definir o que vem a ser evento. Evento aleatório ou simplesmente evento é um subconjunto qualquer do espaço amostral. Por exemplo, o subconjunto das faces serem par: A de S, A = {2; 4; 6}. Portanto é o evento formado pelos resultados pares no lançamento do dado Outros possíveis eventos: B = {1; 3; 5} faces ímpares; C = {2; 3; 5} faces primos; D = {1} nº f < 2; etc. Conclusão: Enquanto espaço amostral é o conjunto formado por todos os resultados possíveis de um experimento, evento é qualquer subconjunto do espaço amostral.

8 Probabilidade Teórica Generalizando Dado um experimento equiprovável qualquer, para calcular a probabilidade teórica de ocorrência de um certo evento A, basta dividir o número de resultados do evento A pelo número total de resultados do espaço amostral S: P = número de resultados do evento A número de resultados do espaço amostral S P = n( A) n( S )

9 Probabilidade Teórica Exemplos 1) Um dado comum é lançado. Qual é a probabilidade de o número obtido ser maior que 4? Solução Deteminar o espaço amostra : { 1; 2; 3; 4; 5; 6} n ( ) = 6 Portanto : A = { 5; 6} n( A) = 2 S = S ( A) ( S ) Estamos interessados nos resultados que são maiores que 4. n 2 1 Logo : P = = = n ,33% Resposta : A probabilidade de o número obtido ser maior que 4 é 33,33%

10 Probabilidade Teórica Exemplos 2) Dois dados comuns são lançados. Qual a probabilidade de a soma dos resultados ser 6 Solução: a) Se dois dados comuns são lançados, pelo princípio multiplicativo, existem 6 x 6 = 36 resultados possíveis no espaço amostral. Assim n(s) = 36 b) Os 36 resultados possíveis são apresentados, a seguir, em pares, juntamente apresentam soma 6

11 Probabilidade Teórica Exemplos O evento A formado pelos resultados cuja a soma é 6, é: A = {(1, 5); (2, 4); (3, 3); (4, 2); (5, 1)} Logo, n(a) = 5 Desta forma, a probabilidade de obter 6 é P ( A) ( ) n = n S = ,8%

12 Evento complementar Retirando ao acaso uma carta de um baralho comum, qual a probabilidade de não ser uma figura? O espaço amostral do experimento retirar ao acaso uma carta do baralho é constituído pelas 52 cartas de todo o baralho. Entre as 52 cartas, existem 12 que são figuras: E as 40 demais não são figuras.

13 Evento complementar Logo, A :a A :a carta é uma carta e a de não ser é P figura não é uma a probabilidade de a carta ser uma figura é P ( A) = figura (evento complementar de A) ( A) Este exemplo ilustrou uma situação em que temos eventos complementares. e A A = S = Dois eventos A e A são complementares em relação ao mesmo espaço amostral S, quando A A = O

14 Evento complementar A A = O A A A A A = S S

15 Evento complementar Observe Sendo n ( A ) n no diagrama abaixo os eventos A e A de um espaço amostral finito S e não vazio; ( A) + n( A) = n( S) dividindo todos os n( A) n( A) n + = n S n S n ( ) o número de resultados do evento A, podemos escrever que : ( ) substituindo as P termos por n( S) ( S) ( S) probabilidades correspontendes ( A) + P( A) = 1 (a soma das probabilidades é1ou 100%) substraindo P ( A) de ambos os membros da última equação, concluimos que :

16 Evento complementar A probabilidade de um evento qualquer não ocorre é 1 menos a probabilidade deste evento ocorrer. ( ) A 1- P( A) P =

17 Evento complementar Exemplo Com uma oposta em um único cartão de 6 números, qual a probabilidade de alguém não ganhar o prêmio máximo na Mega Sena? Solução A probabilidade P ( A) de alguém ganhar o prêmio máximo na Mega Sena é Jogando nos15 números máximos por cartela P = n n Logo, a P P ( A) ( S ) 1 = , probabilidade P( A) de alguém não ganhar o prêmio máximo é ( A) = 1 P( A) ( A) = P ( A) = 0, ,99%

18 Regra da Soma de Probabilidades Retirando uma carta de um baralho comum, qual a probabilidade de ser um figura ou uma carta de copas? Solução Um baralho possui 12 figuras e 13 cartas de copas entre suas 52 cartas. Como estamos interessados nas figuras ou nas cartas de copas, vamos começar somando as probabilidades: 12 P(figuras) + P (copas) = + 52 Entretanto existem 3 cartas que são simultaneamente figuras e de copas

19 Regra da Soma de Probabilidades Portanto, não encontraremos a respostas simplesmente somando as probabilidades. Como as 3 cartas comuns foram contabilizadas tanto entre as figuras, quanto as de copas, é preciso subtrair a probabilidade de a carta retirada ser uma figura de copas. P(carta figuras ou de copas) = P(carta figuras ou de copas) = 52 = = ,3%

20 Regra da Soma de Probabilidades Generalizando A probabilidade de ocorrer o evento A ou o evento B é dada pela soma da probabilidade de A com a de B, menos a probabilidade simultânea de A e B. ( A ou B) = P(A) P(B) - P(A e B) P + Usando as operações entre conjuntos, podemos também expressá-la de uma outra maneira, porém equivalente: P ( A B) = P(A) + P(B) - P(A B)

21 Regra da Soma de Probabilidades Exemplo No lançamento de um dado comum, qual a probabilidade de se obter um número ímpar ou maior que 4? Solução: Espaço amostra: S = {1; 2; 3; 4; 6} n(s) = 6 Evento A: A = {1; 3; 5} n(a) = 3 Evento B: B = {5; 6} n(b) = 2 Evento A B: A B = {5} n(a B) = 1 Probabilidade de A B : P(A B) P(A B) = = P(A) + P(B) = P(A B) = = = 2 3 6,6%

22 Regra da Soma de Probabilidades Observação Pode ser provar que para três eventos A, B e C a regra da soma de probabilidade é dada por: P(A B C) = P(A) + P(B) + P(C) P(A B) - P(A C) - P(B C) + P(A B C)

23 Eventos mutuamente exclusivos Dois eventos são mutuamente exclusivos quando é impossível ocorrerem simultaneamente. Assim, A e B são mutuamente exclusivos se A B = O Por exemplo, no lançamento de um dado, os eventos A: o número observado é maior que 4 e B: o número observado é menor que 3 são mutuamente exclusivos: A = {5; 6} B = {1; 2}

24 Eventos mutuamente exclusivos Dois eventos mutuamente exclusivos não apresentam resultados comuns. Portanto Se dois eventos A e B são mutuamente exclusivos, a probabilidade de ocorrer A ou B é simplesmente, a soma das probabilidade de A e B, ou seja, P(A B) = P(A) + P(B)

25 Eventos mutuamente exclusivos Exemplo Se uma carta é selecionada aleatoriamente de um baralho comum, qual a probabilidade de ser rei ou uma dama? Num baralho, não existem cartas que sejam simultaneamente rei e dama. Os eventos ser um rei e ser uma dama são, portanto mutuamente exclusivos. Como existem 4 reis e 4 damas entre as 52 cartas do baralho, a probabilidade de retirarmos um rei ou uma dama é a soma das probabilidades individuais de cada um. P( rei ou dama) = P(rei) + P(dama) P( rei ou dama) = + = = 15,38%

26 Regra do Produto de Probabilidades Sendo A e B eventos de um mesmo espaço amostral, a probabilidade de ocorrer A e B, indica-se por P(A B), é a probabilidade de A multiplicada pela probabilidade de B, dada a ocorrência de A. P(A B) = P(A).P(B/A)

27 Regra do Produto de Probabilidades Observação A regra do produto de probabilidade também pode ser expressa da seguinte maneira: P(A B) = P(A).P(A/B) Isto ocorre porque P(A B) = P(B A)

28 Regra do Produto de Probabilidades Exemplo Uma urna tem 10 bolas, sendo 3 azuis e 7 brancas. Duas retiradas ao acaso, sucessivamente e sem reposição. Qual a probabilidade de a primeira ser azul e a segunda ser branca? Solução: Na primeira retirada, há na urna 3 bolas azuis entre todas as 10 bolas. Logo a probabilidade de a primeira ser azul é de 3/10. Se as retiradas são efetuadas sem reposição, o número total de bolas na urna vai diminuindo uma unidade a cada retirada. Após a retirada da primeira bola azul, há 7 bolas brancas entre todas as 9 bolas restantes. Portanto, a probabilidade de a segunda bola ser branca, dado que a primeira foi azul é 7/9. P ( A1 B2 ) = P( A1 ).( B2 / A1 P( A B ) = = = ) 23,3%

29 Probabilidade Condicional A probabilidade do evento A, dada a ocorrência do evento B, representa por P(A/B), é a probabilidade de ocorrer A e B, dividida pela probabilidade do evento B. P( A B) P( A/ B) =, P( B) P( B) 0

30 Probabilidade Condicional É importante perceber que, em P(A/B), o cálculo refere-se à probabilidade de A na certeza da ocorrência do evento B. Assim, o evento B é certo, enquanto que o evento A é incerto.

31 Probabilidade Condicional 1º Observação Analogamente, a probabilidade de evento B, dada pela ocorrência do evento A, é dada por: P( A B) P( B / A) =, P( A) P( A) 0

32 Probabilidade Condicional 2º Observação Em geral, P(A/B) não é igual a P(B/A). Isto ocorre porque, apesar de ambas as probabilidades condicionais apresentarem o mesmo numerador, cada uma delas tem um denominador diferente, já que a informação conhecida não é a mesma.

33 Probabilidade Condicional Exemplo Um pescador sai diariamente para pescar com probabilidade de 30% em dias de chuva e de 80% nos demais dias. Se onde ele mora, a probabilidade de chuva num dia qualquer é de 40%, então a) Qual a probabilidade de que o pescador vá pescar amanhã? b) Qual a probabilidade de chover em um dia em que o pescador foi pescar?

34 Probabilidade Condicional Solução Vamos representar adequadamente cada 1) P(C) = 2) P(C) = 3) P(P/C) = 4)P(P/ C) = 40% é a 60% é a 30% é a 80% é a probabilidade de ocorrer chuva um dos eventos : num dia probabilidade de não ocorrer chuva num dia qualquer; probabilidade de pesca em um dia de chuva; probabilidade de pesca em um dia qualquer; de não chuva.

35 Probabilidade Condicional Solução a) Qual a probabilidade de que o pescador vá pescar amanhã? O fato de ser amanhã ou qualquer outro dia, não altera a probabilidade. A pergunta também não especifica se é um dia de chuva ou não. Assim, no cálculo, devemos considerar a pesca tanto em dias de chuva, quanto em dias de não chuva.

36 Probabilidade Condicional Solução a) P( pesca) = P [( Chuva e pesca) ou ( Nãochuva e Pesca) ] P( P) = P( C P) + P( C P) Desmembrando as interseções por meio da P(P) = P(C).P(P/C) + P(C).P(P/C) regra Substituindo as probabilidade correspondentes P(P) = 40%.30% + 60%.80% P(P) = Portanto, independente da ocorrência de chuva, do produto de probabilidade P( P) = + = = a 60% probabilidade de pesca 60%.

37 Probabilidade Condicional Solução b) Qual a probabilidade de chover em um dia em que o pescador foi pescar? A probabilidade de chover em um dia em que o pescador foi será representado por P (Chuva/Pesca). Observe que, neste caso, temos uma probabilidade condicional, pois P (Chuva/Pesca) é a probabilidade de ocorrer chuva, sabendo-se que o pescador foi a pesca. Usando a relação da probabilidade condicional, temos:

38 Probabilidade Condicional Solução b) P( Chuva / pesca) = P ( Chuva e pesca) P( Pesca) P( C P) P( C / P) = P( P) Substituindo as probabilidade P( C / P) = 100 =. = = 0,20 = 20% O resultado indica que, das vezes em que o pescador vai pescar, em 20% delas chove. Logo, a probabilidade de chuva em um dia em que o pescador foi pescar é 20%

39 Exemplo 1: Uma carta é sorteada de um baralho comum, que possui 13 cartas (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K) de cada naipe (ouros, copas, paus e espadas). Determine a probabilidade de sortearmos uma carta e sair um rei, sabendo que a carta sorteada foi de ouros. 1ª SOLUÇÃO: Pela fórmula Evento A = sair um rei, p = 4/52 = 1/13, já que o baralho comum possui 4 reis, dentre as 52 cartas. Evento B = sair uma carta de ouros p = 13/52, já que o baralho comum tem 52 cartas, sendo 13 de cada naipe. Evento A B = sair um rei de ouros = 1/52, pois só existe um rei de ouros entre as 52 cartas. Aplicando a fórmula dada, teremos: 1 p(a B) p (A/B) = = 52 = p(b) ª SOLUÇÃO: Poderíamos obter diretamente a resposta, considerando que, como saiu uma carta de ouros, o universo se restringe às 13 cartas de ouros, das quais, uma é o rei, logo a probabilidade procurada é p = 1/

40 O exemplo mostrado serve para ilustrar uma importante situação no cálculo das probabilidades: aquela na qual a probabilidade condicional de A na certeza de B é igual à probabilidade de A (ou seja a ocorrência de B não influi na probabilidade de ocorrência de A). Nesse caso, dizemos que os eventos A e B são INDEPENDENTES. E, nesse caso, temos: p(a/b) = P(A) = p(a p(b) B) p(a B) = p(a). P(B) EVENTOS INDEPENDENTES Exemplo 2: Uma moeda honesta e um dado são lançados. Qual a probabilidade de obtermos cara e um número primo? SOLUÇÃO: Como são eventos independentes, teremos: p = ½. 3/6 = ¼ = 25%.

41 Exemplo 2) (UNIRIO 2008) Leia a tirinha abaixo: Lúcio está certo: desde o dia 07/07/2007, existem dois grupos de 7 Maravilhas do Mundo: as 7 do Mundo Antigo e as 7 do Mundo Moderno e nenhuma pertence a ambos os conjuntos. Suponha que se escolham, aleatoriamente, duas entre essas 14 Maravilhas. Determine a probabilidade de ambas estarem em um mesmo grupo. SOLUÇÃO: Como são eventos independentes, para que as sorteadas estejam num dos grupos, teremos a probabilidade igual a 7/14 x 6/13 = 3/13. Como são dois grupos, a resposta será 6/13.

42 EXEMPLO 3: Um sistema de segurança tem dois dispositivos que funcionam de modo independente e que tem probabilidades iguais a 0,2 e 0,3 de falharem. Qual é a probabilidade de que pelo menos um dos dois componentes não falhe? SOLUÇÃO: Como são dispositivos INDEPENDENTES (A = falha o primeiro, B = falha o segundo), a probabilidade de que os dois falhem (A B) será dada por p = 0,2 x 0,3 = 0,06. Como que se deseja é que, ao menos um deles não falhe, estamos diante da probabilidade complementar do evento calculado anteriormente, logo, a probabilidade procurada será igual a: p = 1 0,06 = 0,94 = 94%.

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1 RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada

Leia mais

Probabilidade Condicional

Probabilidade Condicional PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

Os dados expostos nesse levantamento têm consequências sociais relacionadas ao trabalho, à família, à educação e a muitos outros temas importantes.

Os dados expostos nesse levantamento têm consequências sociais relacionadas ao trabalho, à família, à educação e a muitos outros temas importantes. Introdução De acordo com um estudo realizado pelo IBGE (Instituto Brasileiro de Geografia e Estatística), a quantidade de mulheres no Brasil é maior que a de homens. As informações de 2007 destacam que

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Avaliação e Desempenho Aula 4

Avaliação e Desempenho Aula 4 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira - Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito

Leia mais

Experimentos Aleatórios e Espaços Amostrais

Experimentos Aleatórios e Espaços Amostrais Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

Probabilidade. Definições, Notação, Regra da Adição

Probabilidade. Definições, Notação, Regra da Adição Probabilidade Definições, Notação, Regra da Adição Definições básicas de probabilidade Experimento Qualquer processo de observação ou medida que permita ao pesquisador fazer coleta de informações. Evento

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

Introdução à Probabilidade e Estatística

Introdução à Probabilidade e Estatística Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes

Leia mais

É o conjunto de todos os resultados possíveis de um experimento aleatório. A notação que vamos usar é S.

É o conjunto de todos os resultados possíveis de um experimento aleatório. A notação que vamos usar é S. PROBABILIDADES Historicamente, a teoria da probabilidade começou com o estudo de jogos de azar, como a roleta e as cartas. O cálculo das probabilidades nos permite encontrar um número que mostra a chance

Leia mais

Fascículo 11 Unidades 34, 35 e 36. 2ª Edição

Fascículo 11 Unidades 34, 35 e 36. 2ª Edição 2ª Edição Fascículo 11 Unidades 34, 35 e 36 GOVERNO DO ESTADO DO RIO DE JANEIRO Governador Sergio Cabral Vice-Governador Luiz Fernando de Souza Pezão SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA Secretário

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8. Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante

Leia mais

ANÁLISE ESTATÍSTICA Uanderson Rebula de Oliveira

ANÁLISE ESTATÍSTICA Uanderson Rebula de Oliveira ANÁLISE ESTATÍSTICA de Oliveira uanderson@csn.com.br www.uandersonrebula.blogspot.com CADERNO DE EXERCÍCIOS Tabelas e Gráficos Estatísticos 1) Classifique as Séries abaixo: ) Construção de tabelas: a)

Leia mais

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176

Leia mais

1 Probabilidade Condicional - continuação

1 Probabilidade Condicional - continuação 1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos

Leia mais

1 Axiomas de Probabilidade

1 Axiomas de Probabilidade 1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão 1 1 marzagao.1@osu.edu PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 1/2016 1 / 51 o que é probabilidade? Thiago Marzagão

Leia mais

Probabilidade - aula III

Probabilidade - aula III 27 de Março de 2014 Regra da Probabilidade Total Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a Regra da Probabilidade

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,

Leia mais

(Testes intermédios e exames 2007/2008)

(Testes intermédios e exames 2007/2008) (Testes intermédios e exames 2007/2008) 14. Uma caixa 1 tem uma bola verde e três bolas amarelas. Uma caixa 2 tem apenas uma bola verde. Considere a experiência que consiste em tirar, simultaneamente e

Leia mais

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

Conjunto de todos os resultados possíveis de um experimento aleatório.

Conjunto de todos os resultados possíveis de um experimento aleatório. VII Probabilidades Em todos os fenômenos estudados pela Estatística, os resultados, mesmo nas mesmas condições de experimentação, variam de uma observação para outra, dificultando a previsão de um resultado

Leia mais

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.

Leia mais

Princípio da contagem e Probabilidade: conceito

Princípio da contagem e Probabilidade: conceito Princípio da contagem e Probabilidade: conceito característica do que é provável perspectiva favorável de que algo venha a ocorrer; possibilidade, chance. Ex.: há pouca possibilidade de chuva grau de segurança

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Matemática. Resolução das atividades complementares. M16 Probabilidade

Matemática. Resolução das atividades complementares. M16 Probabilidade Resolução das atividades complementares Matemática M Probabilidade p. 7 (FGV-SP) Uma urna contém quinze bolinhas numeradas de a. a) Se uma bolinha for sorteada, qual a probabilidade de que o número observado

Leia mais

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com

Leia mais

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,

Leia mais

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas

Leia mais

4) Quais dos seguintes pares de eventos são mutuamente exclusivos:

4) Quais dos seguintes pares de eventos são mutuamente exclusivos: INE 7002 LISTA DE EXERCÍCIOS PROBABILIDADE Lista de Exercícios - Probabilidade 1 1) Lâmpadas que se apresentam em perfeitas condições são ensaiadas quanto ao tempo de vida. Um instrumento é acionado no

Leia mais

1. INTRODUÇÃO 2. EXPERIMENTO ALEATÓRIO 3. ESPAÇO AMOSTRAL

1. INTRODUÇÃO 2. EXPERIMENTO ALEATÓRIO 3. ESPAÇO AMOSTRAL PROBABILIDADE 1. INTRODUÇÃO Embora o cálculo das probabilidades pertença ao campo da Matemática, sua inclusão aqui se justifica pelo fato da maioria dos fenômenos de que trata a Estatística ser de natureza

Leia mais

Noções de Probabilidade e Estatística CAPÍTULO 2

Noções de Probabilidade e Estatística CAPÍTULO 2 Noções de Probabilidade e Estatística Resolução dos Exercícios Ímpares CAPÍTULO 2 Felipe E. Barletta Mendes 8 de outubro de 2007 Exercícios da seção 2.1 1 Para cada um dos casos abaixo, escreva o espaço

Leia mais

I.MATEMÁTICA FINANCEIRA

I.MATEMÁTICA FINANCEIRA I.MATEMÁTICA FINANCEIRA 1. CONCEITOS BÁSICOS Aplicações: no atual sistema econômico, como financiamentos de casa e carros, realizações de empréstimos, compras a crediário ou com cartão de crédito, aplicações

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos. Soluções dos Exercícios de Vestibular referentes ao Capítulo 1: 1) (UERJ, 2011) Uma máquina contém pequenas bolas de borracha de 10 cores diferentes, sendo 10 bolas de cada cor. Ao inserir uma moeda na

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se

Leia mais

Probabilidade. Multiplicação e Teorema de Bayes

Probabilidade. Multiplicação e Teorema de Bayes robabilidade Multiplicação e Teorema de ayes Regra da Multiplicação Num teste, são aplicadas 2 questões de múltipla escolha. Na primeira questão, as respostas possíveis são V ou F. Na segunda, a, b, c,

Leia mais

Estatística II. Capítulo 1:

Estatística II. Capítulo 1: 1 Estatística II Capítulo 1: Consciente ou inconsciente, a probabilidade é usada por qualquer individuo que toma decisão em situações de incerteza. Conhecendo ou não regras para seu cálculo, muitas pessoas

Leia mais

UNIVERSIDADE DO ALGARVE

UNIVERSIDADE DO ALGARVE UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA C.E.T. EM TOPOGRAFIA E CADASTRO REGIME DIURNO - 2º SEMESTRE - 1º ANO - 2007 / 2008 DISCIPLINA DE NOÇÕES DE PROBABILIDADES E ESTATÍSTICA Ficha nº2 -

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6 PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião,

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

Atividade à Distância Avaliativa - Probabilidade. 1 Probabilidade - Operações e Propriedades

Atividade à Distância Avaliativa - Probabilidade. 1 Probabilidade - Operações e Propriedades Universidade Estadual de Santa Cruz UESC Professora: Camila M. L Nagamine Bioestatística Atividade à Distância Avaliativa - Probabilidade Se ouço, esqueço; se vejo, recordo; se faço, aprendo. (Provérbio

Leia mais

MÉTODOS ESTATÍSTICOS I 3ª. AVALIAÇÃO PRESENCIAL 1º Semestre de 2010 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor

MÉTODOS ESTATÍSTICOS I 3ª. AVALIAÇÃO PRESENCIAL 1º Semestre de 2010 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor MÉTODOS ESTATÍSTICOS I ª. AVALIAÇÃO PRESENCIAL º Semestre de 00 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor. (,0 pontos) Em uma cidade onde se publicam jornais: A, B e C, constatou-se

Leia mais

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio.

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio. Atividade sobre Probabilidades 4 o bim. 2009 2 os anos 1) No lançamento simultâneo de 2 dados, considere as faces voltadas para cima e determine a) espaço amostral S. b) evento E 1 : números cuja soma

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA PROBABILIDADES E ESTATÍSTICA Ao conjunto de todos os resultados possíveis, de uma eperiência aleatória, chamamos espaço amostral e representamos por S. Define-se acontecimento como sendo um subconjunto

Leia mais

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo: Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira

Leia mais

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV Economia 1 a Fase /nov/014 MATEMÁTICA 01. Observe o diagrama com 5 organizações intergovernamentais de integração sul-americana: Dos 1 países que compõem esse diagrama,

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16 Lista de Probabilidade Básica com gabarito 1. Considere a experiência que consiste em pesquisar famílias com três crianças, em relação ao sexo das mesmas, segundo a ordem de nascimento. (a)determine o

Leia mais

Francisco Ramos. 100 Problemas Resolvidos de Matemática

Francisco Ramos. 100 Problemas Resolvidos de Matemática Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES

Leia mais

1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M.

1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M. ([HUFtFLRVÃÃ&DStWXORÃÃ Ã Tomou-se uma amostra de 000 pessoas num shopping center com o objetivo de verificar a relação entre o número de cartões de crédito e a renda familiar (em salários mínimos). Os

Leia mais

M501 Probabilidade, Estatística e Processos Estocásticos

M501 Probabilidade, Estatística e Processos Estocásticos Notas de aula M501 Probabilidade, Estatística e Processos Estocásticos Dayan Adionel Guimarães Novembro de 007 Agradecimento Aos professores: Dr. José Marcos Câmara Brito Dr. Carlos Alberto Ynoguti M.Sc.

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula 2 Definições básicas Introdução à robabilidade Mônica Barros, D.Sc. Março o de 2008 1 2 robabilidades Introdução robabilidade faz parte do nosso dia a dia, por exemplo:

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 3º Bimestre/2013 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

Capítulo 4. Contagem, Probabilidade e Estatística

Capítulo 4. Contagem, Probabilidade e Estatística Capítulo 4 Contagem, Probabilidade e Estatística 145 146 O problema dos discos Adaptado do artigo de Roberto Ribeiro Paterlini Temos aplicado o problema do jogo dos discos em classes de estudantes de Licenciatura

Leia mais

Matemática. Resolução das atividades complementares. M6 Probabilidade

Matemática. Resolução das atividades complementares. M6 Probabilidade Resolução das atividades complementares Matemática M Probabilidade p. Numa urna há seis bolas numeradas de 0 a. a) Dê o espaço amostral nesta situação: retirar uma bola da urna. b) Descreva o evento A:

Leia mais

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Probabilidade Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Distribuição Uniforme Usada comumente nas situações em que não há razão para atribuir probabilidades diferentes a um conjunto

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais