Processos Estocásticos

Tamanho: px
Começar a partir da página:

Download "Processos Estocásticos"

Transcrição

1 Processos Estocásticos Segunda Lista de Exercícios 01 de julho de Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em categorias I e II, pagando R$ 1,20 e R$ 0,80, respectivamente, da seguinte forma: Comprador A: retira uma amostra de 5 peças e se encontrar mais que uma peça defeituosa, classifica o lote como categoria II. Caso contrário, classifica como categoria I. Comprador B: retira uma amostra de 10 peças e se encontrar mais que duas peças defeituosas, classifica o lote como categoria II. Caso contrário, classifica como categoria I. a. Em média, qual comprador oferece maior lucro? b. Se o comprador B pagasse R$ 1,30 e R$ 0,70, respectivamente, você mudaria a conclusão do item a)? Probabilidade de defeito: ˆp = 1 /5. X: VA discreta indicando o número de peças defeituosas na amostra. Distribuição binomial peça é defeituosa ou não. Comprador A: distribuição binomial com n = 5 e ˆp = 1 /5. P X A > 1) = 1 P X A = 0) P X A = 1) ) 5 = ) ) 5) ) = 1 5 5) = = Comprador B: distribuição binomial com n = 10 e ˆp = 1 /5. P X B > 2) = 1 P X B = 0) P X B = 1) P X B = 2) ) 10 = ) ) ) = , 146, 489 = 9, 765, ) 1 5) ) ) 5) a. A probabilidade do comprador A classificar o lote na categoria II é menor, logo ele oferece o maior lucro. b. Mudando os valores para k peças no lote, temos: Lucro A = ) k k 0.8 = k k = k 1

2 Lucro B = ) k k 0.7 = k k = k Logo, nesse caso o comprador B oferece maior lucro. 2 Suponha que a VA discreta X possa tomar os valores 2, 4, 6,..., 30 e que esses valores são igualmente prováveis. Qual a média e a variância de X? X = {2, 4, 6,..., 30} 15 valores possíveis. A probabilidade de cada valor é a mesma px) = P X = x) = 1 /15. Os valores de X formam uma PA progressão aritmética) com x 1 = 2, x n = 30 e n = 15. Relembrando, o valor da soma de uma PA é dado por x i = n x 1 + x n ). 2 Logo, o valor esperado de X é E[X] = x i px i ) = 1 15 Para calcular a variância precisamos saber o valor de E[X 2 ]: x i = ) = E[X 2 ] = x i ) 2 px i ) = 1 15 x i ) 2 = ) = Temos então que V X) = E[X 2 ] E[X]) 2 = O número de carros vendidos numa loja pode ser descrito como uma VA de Poisson, onde a média é 2 nos dias de sol e 1 nos dias chuvosos. Assumindo que há sol em 70% dos dias do ano, qual a probabilidade da loja vender pelo menos 3 carros em um dia qualquer? N: número de carros vendidos por dia VA de Poisson). Dia de sol E[N s ] = λ s = 2 Dia de chuva E[N c ] = λ c = 1 Buscamos o valor de P N 3), que pode ser calculado como P N 3) = 0.7 P N s 3) P N c 3), 1) onde os coeficientes das probabilidades na soma acima foram obtidos a partir dos percentuais de dias de sol e chuva. Os valores de P N s 3) e P N c 3) são calculados a seguir. Dia de sol: λ s = 2 2

3 P N s 3) = 1 P N s = 0) P N s = 1) P N s = 2) = 1 e e e ! 1! 2! = = Dia de chuva: λ c = 1 P N c 3) = 1 P N c = 0) P N c = 1) P N c = 2) = 1 e e e ! 1! 2! = = Substituindo os valores na equação 1) temos que P N 3) = Lança-se um dado honesto até sair a face 6. Seja X o número de lances até a primeira ocorrência da face 6. Calcule o valor esperado e a variância de X. Como o dado é honesto a probabilidade de se obter qualquer uma das faces é 1 6. Verificamos então que X segue uma distribuição geométrica com parâmetro ˆp = 1 /6. Usando-se as fórmulas apresentadas em aula temos E[X] = 1ˆp = 1 1/6 = 6 V X) = 1 ˆp ˆp 2 = 1 1 /6 1 /6) 2 = Uma fábrica de automóveis verificou que ao testar os seus carros numa pista de prova há, em média, um estouro de pneu a cada 300 km. Assumindo que o número de pneus estourados segue uma distribuição de Poisson, qual a probabilidade de que: a. Num teste de 900 km haja no máximo um pneu estourado? b. Um carro ande 450 km na pista sem estourar nenhum pneu? Se em média há um estouro de pneu a cada 300 km, a frequência f de estouro por kilômetro é f = 1 /300. Seja N o número de pneus estourados em n km. Então N é uma VA de Poisson com parâmetro λ = n f. a. N a : número de estouros em 900 km λ a = 900 1/300 = 3. P N a 1) = P N a = 0) + P N a = 1) = e e ! 1! = =

4 b. N b : número de estouros em 450 km λ b = 450 1/300 = 1.5. P N b = 0) = e ) 0 0! = Em um canal de comunicação digital, a probabilidade de se receber um bit com erro é de Se 10,000 bits forem transmitidos por esse canal, qual a probabilidade de que mais de quatro bits sejam recebidos com erro? Seja X uma VA aleatória indicando o números de bits com erro transmitidos. Temos então que X é uma VA binomial com n = 10, 000 e ˆp = Como n é grande e ˆp pequeno, podemos aproximar a distribuição binomial pela de Poisson, com λ = n ˆp = 10, = 2. Logo P X > 4) = 1 P X 4) = 1 F 4) = = onde o valor de F 4) é obtido da Tabela 2 Barbetta, pág 376). 7 Suponha que 10% dos clientes que compram a crédito em uma loja deixam de pagar regularmente as prestações. Se em um certo dia, a loja vende a crédito para 10 pessoas, qual a probabilidade de que mais de 20% delas deixem de pagar regularmente as contas? Seja X: o número de clientes que atrasam as contas. Temos que X é uma VA binomial com ˆp = 0.1 e n = 10. Temos também que 20% de 10 corresponde a 2 ou mais pessoas. Logo: P X > 2) = 1 p0) p1) p2) = = Em uma rede de comunicação, existe uma probabilidade de 0.05 de um pacote de dados ser transmitido com erro. Foram transmitidos 20 pacotes para se testar a confiabilidade da rede. a. Qual é o modelo de distribuição de probabilidade mais adequado para esse caso? Por quê? b. Calcule a probabilidade de ocorrer um erro na transmissão. c. Calcule a probabilidade de ocorrer um erro em exatamente 2 dos 20 pacotes de dados. d. Qual é o número esperado de erros no teste realizado? a. O modelo de distribuição mais adequado é o binomial pois é possível tomar cada transmissão de um pacote como um ensaio de Bernoulli, onde define-se sucesso como ocorreu erro na transmissão. Nesse caso, temos X como uma VA binomial com parâmetros ˆp = 0.05 e n = 20. b. P X > 0) = 1 P X = 0) ) 20 = 1 ˆp 0 1 ˆp) = =

5 c. d. P X = 2) = ) 20 ˆp 2 1 ˆp) 20 2 = = E[X] = n ˆp = = 1 erro. 9 Uma central telefônica recebe, em média, 300 chamadas por hora no período de maior demanda, e pode processar, no máximo, 10 ligações por minuto. Utilizando a distribuição de Poisson, calcule a probabilidade de que a capacidade da central seja excedida em um minuto qualquer do período de pico. Seja X uma VA de Poisson indicando o número de chamadas ativas em um minuto qualquer. Se a média de chamadas por hora é 300, como estamos usando uma distribuição de Poisson podemos considerar as chamadas igualmente distribuídas ao longo do tempo. Assim, sabemos que λ = 300 /60 = 5 chamadas por minuto. Logo: P X > 10) = 1 P X 10) = 1 F 10) = = Placas de circuito integrado são avaliadas após a solda dos chips. Considere que foi produzido um lote de 20 placas, das quais 5 foram selecionadas para avaliação. Calcule a probabilidade de se encontrar pelo menos uma placa defeituosa, supondo que o lote tenha um total de 4 peças com problema e que tenha sido realizada: a. uma amostragem aleatória com reposição; b. uma amostragem aleatória sem reposição. Seja X uma VA indicando o número de placas com defeito encontradas. a. Como a amostragem é feita com reposição, temos que X é uma VA binomial com parâmetros n = 5 e ˆp = 4 /20 = 1 /5. Logo: P X 1) = 1 p0) ) 5 = 1 ˆp 0 1 ˆp) = 1 1 ˆp) 5 = /5) 5 = b. Quando não há reposição temos que a distribuição é hipergeométrica com parâmetros N = 20, n = 5 e r = 4. Substituindo na fórmula, temos: P X 1) = 1 p0) 4 = 1 0) 16 ) 5 ) = , , 504 = Suponha que uma moeda é lançada três vezes e que a probabilidade de se obter cara em cada lançamento é 0.7. Seja X a VA indicando o número de caras obtidas nos lançamentos. Determine a função de probabilidade de X. 5

6 Temos que X é uma VA binomial com n = 3 e ˆp = 0.7. A função p é dada por: p0) = 0.3) 3 = p1) = 3 0.3) 2 0.7) = p2) = 3 0.3) 0.7) 2 = p3) = 0.7) 3 = Suponha que nós queremos gerar uma VA X de Bernoulli, onde os valores 0 e 1 são equiprováveis. Para tal, temos à nossa disposição somente uma moeda viciada que, quando lançada, resulta em cara com uma certa probabilidade desconhecida) ˆp. Considere o seguinte procedimento: 1. Lança-se a moeda e toma-se R 1 como o resultado tanto cara quanto coroa). 2. Lança-se a moeda novamente e toma-se R 2 como o resultado. 3. Se R 1 e R 2 são iguais, retorna-se para o passo Se R 2 é cara, toma-se X = 0, caso contrário, toma-se X = 1. Mostre que a VA X gerada por esse procedimento tem a mesma chance de obter os valores 0 e 1. Enquanto os resultados dos lançamentos forem iguais, fica-se em loop no procedimento. Basta então considerar a primeira vez em que se obtém lados diferentes. Então: P X = 0) = P [T, H) T, H) ou H, T )] = ˆp1 ˆp) 2ˆp1 ˆp) =

Distribuição Binomial

Distribuição Binomial Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS Lista de Exercícios - Modelos Probabilísticos 1 INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS 35) Em um sistema de transmissão de dados existe uma probabilidade igual a 0,05 de um dado ser transmitido

Leia mais

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Probabilidade Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Distribuição Uniforme Usada comumente nas situações em que não há razão para atribuir probabilidades diferentes a um conjunto

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

2 T Probabilidade: Definições básicas. 3 T Probabilidade: Definições básicas

2 T Probabilidade: Definições básicas. 3 T Probabilidade: Definições básicas Programa do Curso Métodos Estatísticos sticos de Apoio à Decisão Aula 4 Mônica Barros, D.Sc. Julho de 2008 Disciplina Métodos Estatísticos de Apoio à Decisão - BI MASTER 2008 Responsável Mônica Barros

Leia mais

Exercícios - Distribuição Normal (Gauss)

Exercícios - Distribuição Normal (Gauss) Exercícios - Distribuição Normal (Gauss) Monitora: Juliana e Prof. Jomar 01. Uma empresa produz televisores de dois tipos, tipo A (comum) e tipo B (luxo), e garante a restituição da quantia paga se qualquer

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

Exercícios Resolvidos da Distribuição Binomial

Exercícios Resolvidos da Distribuição Binomial . a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos

Leia mais

Avaliação e Desempenho Aula 4

Avaliação e Desempenho Aula 4 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES Monitora Juliana Dubinski LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES EXERCÍCIO 1 (INTERVALO DE CONFIANÇA PARA MÉDIA) Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se

Leia mais

EXERCÍCIOS BINOMIAL. X 0 1 2 3 4 P(X=x) 0.00390625 0.046875 0.2109375 0.421875 0.3164063

EXERCÍCIOS BINOMIAL. X 0 1 2 3 4 P(X=x) 0.00390625 0.046875 0.2109375 0.421875 0.3164063 EXERCÍCIOS BINOMIAL Prof. Jomar 1. Num determinado processo de fabricação, 10% das peças são consideradas defeituosas. As peças são acondicionadas em caixas com 5 unidades cada uma. Então: a) Qual a probabilidade

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística MAE6 Noções de Estatística Grupo A - º semestre de 007 Exercício ( pontos) Uma máquina de empacotar um determinado produto o faz segundo uma distribuição normal, com média µ e desvio padrão 0g. (a) Em

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

CAP5: Amostragem e Distribuição Amostral

CAP5: Amostragem e Distribuição Amostral CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

Aula 5 Distribuição amostral da média

Aula 5 Distribuição amostral da média Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Inferência Estatística Aula 3

Inferência Estatística Aula 3 Inferência Estatís Aula 3 Agosto de 008 Mônica Barros Conteúdo Revisão de Probabilidade Algumas das principais distribuições discretas Distribuição de Poisson Distribuição Poisson como aproximação da Binomial

Leia mais

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli CAPÍTULO 5 - Algumas distribuições de variáveis aleatórias discretas e contínuas (parte considerada incompleta visto o volume de informações importantes não incluídas, além de eercícios. Tais informações

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 quadrimestre 011 Além

Leia mais

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176

Leia mais

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

Aula 11 Esperança e variância de variáveis aleatórias discretas

Aula 11 Esperança e variância de variáveis aleatórias discretas Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição

Leia mais

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

M501 Probabilidade, Estatística e Processos Estocásticos

M501 Probabilidade, Estatística e Processos Estocásticos Notas de aula M501 Probabilidade, Estatística e Processos Estocásticos Dayan Adionel Guimarães Novembro de 007 Agradecimento Aos professores: Dr. José Marcos Câmara Brito Dr. Carlos Alberto Ynoguti M.Sc.

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

Probabilidade - aula III

Probabilidade - aula III 27 de Março de 2014 Regra da Probabilidade Total Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a Regra da Probabilidade

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

Probabilidade. O segundo aspecto é a incerteza inerente às decisões que podem ser tomadas sobre determinado problema.

Probabilidade. O segundo aspecto é a incerteza inerente às decisões que podem ser tomadas sobre determinado problema. Probabilidade No capítulo anterior, procuramos conhecer a variabilidade de algum processo com base em observações das variáveis pertinentes. Nestes três próximos capítulos, continuaremos a estudar os processos

Leia mais

Lista 5 - Introdução à Probabilidade e Estatística

Lista 5 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 5 - Introdução à Probabilidade e Estatística Variáveis Aleatórias 1 Duas bolas são escolhidas aleatoriamente de uma urna que contém 8 bolas brancas, 4 pretas e 2 laranjas.

Leia mais

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado

Leia mais

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora 7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo,

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

COS767 - Modelagem e Análise Aula 2 - Simulação. Algoritmo para simular uma fila Medidas de interesse

COS767 - Modelagem e Análise Aula 2 - Simulação. Algoritmo para simular uma fila Medidas de interesse COS767 - Modelagem e Análise Aula 2 - Simulação Algoritmo para simular uma fila Medidas de interesse Simulação O que é uma simulação? realização da evolução de um sistema estocástico no tempo Como caracterizar

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

ANÁLISE ESTATÍSTICA Uanderson Rebula de Oliveira

ANÁLISE ESTATÍSTICA Uanderson Rebula de Oliveira ANÁLISE ESTATÍSTICA de Oliveira uanderson@csn.com.br www.uandersonrebula.blogspot.com CADERNO DE EXERCÍCIOS Tabelas e Gráficos Estatísticos 1) Classifique as Séries abaixo: ) Construção de tabelas: a)

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Variáveis Aleatórias Exercício Num lançamento de 3 moedas equilibradas seja X avariável aleatória que representa o número de caras saídas Escreva a função de probabilidade de X Exercício Quantasvezessedevelançarumdadoaoarparaqueaprobabilidade

Leia mais

Gestão de Operações II Teoria das Filas

Gestão de Operações II Teoria das Filas Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,

Leia mais

Distribuições: Binomial, Poisson e Normal. Distribuição Binomial

Distribuições: Binomial, Poisson e Normal. Distribuição Binomial Distribuições: Binomial, Poisson e Normal Distribuição Binomial Monitor Adan Marcel e Prof. Jomar 1. Uma remessa de 800 estabilizadores de tensão é recebida pelo controle de qualidade de uma empresa. São

Leia mais

Gráfico de Controle por Atributos

Gráfico de Controle por Atributos Roteiro Gráfico de Controle por Atributos 1. Gráfico de np 2. Gráfico de p 3. Gráfico de C 4. Gráfico de u 5. Referências Gráficos de Controle por Atributos São usados em processos que: Produz itens defeituosos

Leia mais

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo: Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO SUMÁRIO. INTRODUÇÃO... 3.. GENERALIDADES... 3.. METODOLOGIA DO TESTE DE HIPÓTESES... 3.3. AS HIPÓTESES... 3.4. A ESCOLHA DO TESTE ESTATÍSTICO... 4.5. CONCEITOS ADICIONAIS DO TESTE DE HIPÓTESES... 4.6.

Leia mais

Teste de Hipótese para uma Amostra Única

Teste de Hipótese para uma Amostra Única Teste de Hipótese para uma Amostra Única OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Estruturar problemas de engenharia de tomada de decisão, como

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

1 Problemas de transmissão

1 Problemas de transmissão 1 Problemas de transmissão O sinal recebido pelo receptor pode diferir do sinal transmitido. No caso analógico há degradação da qualidade do sinal. No caso digital ocorrem erros de bit. Essas diferenças

Leia mais

Regressão Logística. Daniel Araújo Melo - dam2@cin.ufpe.br. Graduação

Regressão Logística. Daniel Araújo Melo - dam2@cin.ufpe.br. Graduação Regressão Logística Daniel Araújo Melo - dam2@cin.ufpe.br Graduação 1 Introdução Objetivo Encontrar o melhor modelo para descrever a relação entre variável de saída (variável dependente) e variáveis independentes

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão 1 1 marzagao.1@osu.edu PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 1/2016 1 / 51 o que é probabilidade? Thiago Marzagão

Leia mais

Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas

Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas 1. (Paulino e Branco, 2005) Num depósito estão armazenadas 500 embalagens de um produto, das quais 50 estão deterioradas. Inspeciona-se uma

Leia mais

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42 Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista

Leia mais

Variabilidade do processo

Variabilidade do processo Variabilidade do processo Em todo processo é natural encontrar certa quantidade de variabilidade. Processo sob controle estatístico: variabilidade natural por causas aleatórias Processo fora de controle:

Leia mais

Descreve de uma forma adequada o

Descreve de uma forma adequada o EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada

Leia mais

Distribuições de Probabilidade Distribuição Poisson

Distribuições de Probabilidade Distribuição Poisson PROBABILIDADES Distribuições de Probabilidade Distribuição Poisson BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Conjunto de todos os resultados possíveis de um experimento aleatório.

Conjunto de todos os resultados possíveis de um experimento aleatório. VII Probabilidades Em todos os fenômenos estudados pela Estatística, os resultados, mesmo nas mesmas condições de experimentação, variam de uma observação para outra, dificultando a previsão de um resultado

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012 ESTATÍSTICA Prof. Ari Antonio, Me Ciências Econômicas Unemat Sinop 2012 1. Introdução Concepções de Estatística: 1. Estatísticas qualquer coleção consistente de dados numéricos reunidos a fim de fornecer

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2 Distribuição exponencial Solução. (a) f := (lambda, x) -> lambda*exp(-lambda*x); f := l, x /l e Kl x Probabilidade e Estatística 009/ Prof. Fernando Deeke Sasse CCT-UDESC Exercícios A distância entre os

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo: Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8. Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de

Leia mais

AULA: Introdução à informática Computador Digital

AULA: Introdução à informática Computador Digital Campus Muriaé Professor: Luciano Gonçalves Moreira Disciplina: Informática Aplicada AULA: Introdução à informática Computador Digital Componentes de um computador digital : Hardware Refere-se às peças

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA PROBABILIDADES E ESTATÍSTICA Ao conjunto de todos os resultados possíveis, de uma eperiência aleatória, chamamos espaço amostral e representamos por S. Define-se acontecimento como sendo um subconjunto

Leia mais

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE MAT30 200/ O objetivo destas notas é ilustrar como a ideia de fazer aproximações permite uma compreensão melhor de diversos problemas de combinatória e probabilidade..

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA 1 o Semestre Ficha de Exercícios - Teoria das Probabilidades 2009/2010

Leia mais

Instruções. N. de Inscrição:

Instruções. N. de Inscrição: Escola de Administração Fazendária Missão: Desenvolver pessoas para o aperfeiçoamento da gestão das fi nanças públicas e a promoção da cidadania. Prova Conhecimentos Específicos Edital ESAF n. 79, de 06/1/013

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Janete Pereira Amador Introdução Os métodos utilizados para realização de inferências a respeito dos parâmetros pertencem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

BC-0504 Natureza da Informação

BC-0504 Natureza da Informação BC-0504 Natureza da Informação Aulas 2 Entropia na termodinâmica e na teoria da informação Equipe de professores de Natureza da Informação Parte 4 Os pilares da teoria da informação Os estudos de criptografia

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

Objetivos. Teoria de Filas. Teoria de Filas

Objetivos. Teoria de Filas. Teoria de Filas Objetivos Teoria de Filas Michel J. Anzanello, PhD anzanello@producao.ufrgs.br 2 Teoria de Filas Filas estão presentes em toda a parte; Exemplos evidentes de fila podem ser verificados em bancos, lanchonetes,

Leia mais

CE-003: Estatística II, turma L

CE-003: Estatística II, turma L CE-003: Estatística II, turma L 1 a Prova - 2 o semestre 2006 (29 Setembro de 2006) 1. (10 pontos) O volume de vendas, no ramo de vestuário, tem se mantido estável de ano para ano, mas acedita-se que sofra

Leia mais

I.MATEMÁTICA FINANCEIRA

I.MATEMÁTICA FINANCEIRA I.MATEMÁTICA FINANCEIRA 1. CONCEITOS BÁSICOS Aplicações: no atual sistema econômico, como financiamentos de casa e carros, realizações de empréstimos, compras a crediário ou com cartão de crédito, aplicações

Leia mais

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Avaliação de Desempenho de Sistemas

Avaliação de Desempenho de Sistemas Avaliação de Desempenho de Sistemas Modelo de Filas M/M/1 e M/M/m Prof. Othon Batista othonb@yahoo.com Modelo de Filas Nas aulas anteriores vimos a necessidade de se utilizar uma distribuição para representar

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais