BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011"

Transcrição

1 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 quadrimestre 011 Além destes exercícios, reveja os que foram feitos nas aulas. Para estudar mais, faça todos os exercícios relacionados aos assuntos vistos em aula do livro do Hines (referência [3] da página da disciplina) ou dos Capítulos 3, 4 e 5 do livro do Larson (referência [4] da página da disciplina). Ambos estão disponíveis em muitos volumes na biblioteca. Bons estudos! 1. (DEVORE, 006, p. 79) Uma empresa de exploração de petróleo possui dois projetos ativos, um na Ásia e outro na Europa. Sejam A o evento em que o projeto da Ásia tem sucesso e B o evento em que o projeto da Europa tem sucesso. Suponha que A e B sejam independentes com P( A ) = 0, 4 e P( B ) = 0,7. (a) Se o projeto da Ásia não obtiver sucesso, qual é a probabilidade de o projeto da Europa também não obtê-lo? Explique seu raciocínio. (b) Qual é a probabilidade de pelo menos um dos dois projetos ter sucesso? (c) Dado que pelo menos um dos dois projetos obteve sucesso, qual é a probabilidade de apenas o projeto da Ásia ter sucesso? Respostas: (a) 0,3; (b) 0,8; (c) 0,146.. (DEVORE, 006, p. 79) Se A e B forem eventos independentes, mostre que A ' e B também são independentes. [Sugestão: Primeiro defina a relação entre P( A' B) P( B ) e P( A B) ]., 3. (DEVORE, 006, p. 88) Uma viga de concreto pode apresentar falha por cisalhamento (C) ou flexão (F). Suponha que três vigas com defeito sejam selecionadas aleatoriamente e o tipo de falha seja determinado para cada uma delas. Seja = número de vigas entre as três selecionadas que falharam por cisalhamento. Relacione cada resultado no espaço amostral juntamente com o valor de associado. Resposta: x= 0 para FFF; x= 1 para CFF, FCF e FFC; x= para CCF, CFC e FCC e x= 3 para CCC. 1

2 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro (DEVORE, 006, p. 96) Uma instalação de recondicionamento de automóveis especializada em regulagem de motores sabe que 45% de todas as regulagens são feitas em automóveis de quatro cilindros, 40% em automóveis de seis cilindros e 15% em automóveis de 8 cilindros. Seja = número de cilindros do próximo carro a ser preparado. (a) Qual é a FMP de? (b) Desenhe um gráfico de linhas e um histograma de probabilidade da FMP da parte (a) (c) Qual é a probabilidade de o próximo carro a ser regulado ter no mínimo seis cilindros? Mais de seis cilindros? x ; (c) 0,55; Respostas: (a) p (4) = 0, 45, p (6) = 0,40, p (8) = 0,15, p (0) = 0 para 4,6 ou 8 0, (DEVORE, 006, p. 96) Uma empresa que fornece computadores pelo correio tem seis linhas telefônicas. Seja o número de linhas em uso em determinado horário. Suponha que a FMP de seja conforme a tabela a seguir. x p x 0,10 0,15 0,0 0,5 0,0 0,06 0,04 Calcule a probabilidade de cada um dos seguintes eventos: (a) {no máximo três linhas estão em uso} (b) {menos de três linhas estão em uso} (c) {pelo menos três linhas estão em uso} (d) {entre duas e cinco linhas, inclusive, estão em uso} (e) {entre duas e quatro linhas, inclusive, estão em uso} (f) {pelo menos quatro linhas não estão em uso} Respostas: (a) 0,70; (b) 0,45; (c) 0,55; (d) 0,71; (e) 0,65; (f) 0, (DEVORE, 006, p. 104) Um indivíduo que possui um seguro de automóvel de uma determinada empresa é selecionado aleatoriamente. Seja Y o número de infrações ao código de trânsito para as quais o indivíduo foi reincidente nos últimos 3 anos. A FMP de Y é y p y 0,60 0,5 0,10 0,05 Y (a) Calcule E Y ; (b) Suponha que um indivíduo com y infrações reincidentes incorra em uma multa de 100y reais. Calcule o valor esperado da multa.

3 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 Respostas: (a) 0,60; (b) R$110, (DEVORE, 006, p. 104) Uma loja de eletrodomésticos vende três modelos diferentes de freezers verticais com 13,5, 15,9 e 19,1 pés cúbicos de espaço respectivamente. Seja = volume de armazenagem comprado pelo próximo cliente a comprar um freezer. Suponha que a FMP de seja x 13,5 15,9 19,1 p x 0, 0,5 0,3 (a) Calcule E, E e σ. (b) Se o preço de um freezer com x pés cúbicos de capacidade for 5x 8,5, qual será o valor esperado do preço pago pelo próximo cliente a comprar um freezer? (c) Qual é a variância deste preço? (d) Suponha que, apesar de a capacidade nominal de um freezer ser, a capacidade real seja 0,001 H =. Qual é o valor esperado da capacidade real do freezer comprado pelo próximo cliente? Respostas: (a) 16,38; 7,98; 3,9936; (b) 401; (c),496; (d) 13, (DEVORE, 006, p. 111) Use a tabela de binomiais para obter as probabilidades a seguir: (a) B ( 4;10, 0.3) (b) b ( 4;10, 0.3) (c) b ( 6;10, 0.7) (d) P( 4) quando Bin( 10,0.3) (e) P( ) quando Bin( 10,0.3) (f) P( 1) quando Bin( 10,0.7) (g) P( < < 6) quando Bin( 10,0.3) Respostas: (a) 0,850; (b) 0,00; (c) 0,00; (d) 0,701; (e) 0,851; (f) 0,000; (g) 0, (DEVORE, 006, p. 117) Doze refrigeradores de um determinado tipo foram devolvidos ao distribuidor por causa de um ruído audível, oscilante e agudo que faziam quando em funcionamento. Suponha que sete desses refrigeradores possuam um compressor defeituoso e os outros cinco tenham problemas graves. Se os refrigeradores forem examinados em 3

4 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 ordem aleatória, seja o número de refrigeradores examinados entre os seis primeiros com compressores defeituosos. Calcule os seguintes valores: (a) P( = 5) (b) P( 4) (c) A probabilidade de exceder o valor da média em mais de um desvio padrão. (d) Considere uma entrega de 400 refrigeradores, dos quais 40 possuem compressores com defeito. Se for o número de compressores defeituosos entre 15 refrigeradores selecionados aleatoriamente, descreva uma forma menos cansativa de calcular (ao menos aproximadamente) P( 5) em vez de usar a FMP hipergeométrica. Respostas: (a) 0,114; (b) 0,879; (c) 0,11; (d) Use a distribuição com n= 15, p= 0, (DEVORE, 006, p. 11) Seja o número de falhas na superfície de uma caldeira de um determinado tipo selecionada aleatoriamente, com distribuição de Poisson de parâmetro λ= 5. Use tabelas para calcular as probabilidades a seguir: (a) P( 8) (b) P( = 8) (c) P( 9 ) (d) P( 5 8) (e) P( 5< 8) Respostas: (a) 0,93; (b) 0,065; (c) 0,068; (d) 0,49; (e) 0, (DEVORE, 006, p. 131) Seja o tempo que um livro de uma reserva de duas horas, na biblioteca de uma faculdade, é examinado por um estudante selecionado aleatoriamente e suponha que tenha função densidade f x Calcule as probabilidades a seguir: (a) P( 1) (b) P( ) (c) P( 1.5< ) Respostas: (a) 0,5; (b) 0,50; (c) 0, ,0 x x =. 0,caso contrário 4

5 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro (DEVORE, 006, p. 49) A FDA da duração da retirada descrita no exercício anterior é: 0, x< 0 x F( x) =,0 x< 4 1, x Use tais condições para calcular os itens a seguir: (a) P( 1) (b) P( 0.5 1) (c) P( > 0.5) (d) a mediana da duração da retirada µɶ [resolva 0.5= F ( µ ɶ ) ] (e) F' ( x ) para obter a função densidade f( x ) (f) E x (g) σ e σ. (h) se o aluno que retira o livro tem uma taxa a pagar h =, quando a duração da retirada é, calcule o valor esperado da taxa E h Respostas: (a) 0,5; (b) 0,1875; (c) 0,9375; (d) 1,414; (e) f( x) x = para 0< x< ; (f) 1,33; (g) 0,; 0,471; (h). 13. (DEVORE, 006, p. 139) Tempo de avanço no fluxo de tráfego é o tempo entre o instante em que um carro termina de passar por um ponto fixo e o instante em que o próximo carro começa a passar por esse ponto. Seja = o tempo de avanço entre dois carros consecutivos selecionados aleatoriamente (em segundos). Suponha que, em certo ambiente de tráfego, a distribuição do tempo de avanço tenha a forma k, 1 4 x > f x = x. 0, x 1 (a) Determine o valor de k para o qual f( x ) é uma FDP legítima. (b) Obtenha a função de distribuição acumulada. (c) Use a FDA de (b) para determinar a probabilidade de o tempo de avanço exceder segundos e também a probabilidade de ele estar entre e 3 segundos. (d) Obtenha o valor médio do tempo de avanço e seu desvio padrão. 5

6 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 (e) Qual é a probabilidade de o tempo de avanço estar dentro de um desvio padrão em relação à média? Respostas: (a) 3; (b) 0 para x 1, 1 x 3 para x> 1, (c) 0,15; 0,088; (d) 1,5; 0,866; (e) 0, (DEVORE, 006, p. 149) Seja Z uma VA normal. Em cada caso, determine o valor da constante c que torna correta a declaração de probabilidade. (a) Φ ( c) = 0,9838. (b) ( c) P 0 Z = 0, 91 (c) P( c Z ) = 0,11 (d) P( c Z c) = 0,668 (e) P( c Z ) = 0,016 Respostas: (a),14; (b) 0,81; (c) 1,17; (d) 0,97; (e), (DEVORE, 006, p. 149) Determine z α para os itens a seguir: (a) α= 0, 0055 (b) α= 0, 09 (c) α= 0, 663 Respostas: (a),54; (b) 1,34; (c) -0,4. 6

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

Distribuição Binomial

Distribuição Binomial Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS Lista de Exercícios - Modelos Probabilísticos 1 INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS 35) Em um sistema de transmissão de dados existe uma probabilidade igual a 0,05 de um dado ser transmitido

Leia mais

Undécima lista de exercícios. Função exponencial e função logarítmica.

Undécima lista de exercícios. Função exponencial e função logarítmica. MA091 Matemática básica Verão de 01 Undécima lista de exercícios Função exponencial e função logarítmica 1 Você pegou um empréstimo bancário de R$ 500,00, a uma taxa de 5% ao mês a) Escreva a função que

Leia mais

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada

Leia mais

Exercícios - Distribuição Normal (Gauss)

Exercícios - Distribuição Normal (Gauss) Exercícios - Distribuição Normal (Gauss) Monitora: Juliana e Prof. Jomar 01. Uma empresa produz televisores de dois tipos, tipo A (comum) e tipo B (luxo), e garante a restituição da quantia paga se qualquer

Leia mais

CAP5: Amostragem e Distribuição Amostral

CAP5: Amostragem e Distribuição Amostral CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Matemática Profª Valéria Lanna

Matemática Profª Valéria Lanna Matemática Profª Valéria Lanna Para responder a questão 01, utilize os dados da tabela abaixo, que apresenta as freqüências acumuladas das notas de 20 alunos entre 14 e 20 pontos. Notas (em pontos) Frequência

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I PERÍODO: 2013.2 LISTA DE EXERCÍCIOS 3 1) Uma empresa fabricante de pastilhas para freio efetua um teste para controle de qualidade de seus produtos.

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Aula 5 Distribuição amostral da média

Aula 5 Distribuição amostral da média Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento

Leia mais

COLÉGIO MILITAR DO RIO DE JANEIRO. LISTA DE REVISÃO PARA PROVA DE RECUPERAÇÃO DO 1º BIM/14 (APR1) - MATEMÁTICA 6º ano

COLÉGIO MILITAR DO RIO DE JANEIRO. LISTA DE REVISÃO PARA PROVA DE RECUPERAÇÃO DO 1º BIM/14 (APR1) - MATEMÁTICA 6º ano COLÉGIO MILITAR DO RIO DE JANEIRO LISTA DE REVISÃO PARA PROVA DE RECUPERAÇÃO DO 1º BIM/14 (APR1) - MATEMÁTICA 6º ano Assunto: Conjuntos, números romanos, sistema de numeração decimal, conjunto dos números

Leia mais

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um Escola Superior de Tecnologia de Viseu Probabilidades e Estatística 2007/2008 Ficha nº 7 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto.

Leia mais

Provas resolvidas do ISS-SP Matemática Financeira Estatística Lógica Professor Joselias joselias@uol.com.br - http://professorjoselias.blogspot.

Provas resolvidas do ISS-SP Matemática Financeira Estatística Lógica Professor Joselias joselias@uol.com.br - http://professorjoselias.blogspot. PROVA RESOLVDA DO CONCURSO DE FSCAL DO SS-SP ESTATÍSTCA- RACOCÍNO LÓGCO E MATEMÁTCA FNANCERA Questão 51. Uma pessoa necessita efetuar dois pagamentos, um de R$ 2.000,00 daqui a 6 meses e outro de R$ 2.382,88

Leia mais

Distribuições de Probabilidade Distribuição Poisson

Distribuições de Probabilidade Distribuição Poisson PROBABILIDADES Distribuições de Probabilidade Distribuição Poisson BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

1ª Actividade Formativa

1ª Actividade Formativa 1ª Actividade Formativa 1. Foi feito um inquérito a um grupo de 40 compradores de carros novos, de determinada marca, para determinar quantas reparações ou substituições de peças foram feitas durante o

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec o semestre 011/01 1 o Teste B 1/04/01 11:00 Duração: 1 hora e 30 minutos Justifique

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões: Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho Questões: 01.(UNESP) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fixa de 0 C.

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Gráfico de Controle por Atributos

Gráfico de Controle por Atributos Roteiro Gráfico de Controle por Atributos 1. Gráfico de np 2. Gráfico de p 3. Gráfico de C 4. Gráfico de u 5. Referências Gráficos de Controle por Atributos São usados em processos que: Produz itens defeituosos

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:

Leia mais

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1 LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar as soluções para os exercícios propostos Exercitar

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES Monitora Juliana Dubinski LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES EXERCÍCIO 1 (INTERVALO DE CONFIANÇA PARA MÉDIA) Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se

Leia mais

CAPÍTULO 9 CONTROLE ESTATÍSTICO DO PROCESSO - CEP

CAPÍTULO 9 CONTROLE ESTATÍSTICO DO PROCESSO - CEP CAPÍTULO 9 CONTROLE ESTATÍSTICO DO PROCESSO - CEP 1. INTRODUÇÃO Produções seriadas; Produções não-seriadas; Prestação de serviços. A) Processo com Interação de Insumos Definição de Processo: seqüência

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV PV O ursinho que Mais Aprova na GV FGV ADM 1/dez/01 MATEMÁTIA APLIADA 01. Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Janete Pereira Amador Introdução Os métodos utilizados para realização de inferências a respeito dos parâmetros pertencem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através

Leia mais

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis Curso de Avaliações Prof. Carlos Aurélio Nadal cnadal@ufpr.br 1 AULA 03 Revisão: Noções básicas de estatística aplicada a avaliações de imóveis 2 OBSERVAÇÃO: é o valor obtido durante um processo de medição.

Leia mais

Metodologia para seleção de amostras de contratos de obras públicas (jurisdicionados) utilizando a programação linear aplicativo Solver

Metodologia para seleção de amostras de contratos de obras públicas (jurisdicionados) utilizando a programação linear aplicativo Solver REVISTA Metodologia para seleção de amostras de contratos de obras públicas (jurisdicionados) utilizando a programação linear aplicativo Solver André Mainardes Berezowski 1 Resumo Trata da apresentação

Leia mais

MATEMÁTICA UFRGS 2011

MATEMÁTICA UFRGS 2011 MATEMÁTICA UFRGS 2011 01. Uma torneira com vazamento pinga, de maneira constante, 25 gotas de água por minuto. Se cada gota contém 0,2 ml de água, então, em 24 horas o vazamento será de a) 0,072 L. b)

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUDESTE DE MINAS GERAIS CONCURSO PÚBLICO PARA PROVIMENTO DE CARGO EFETIVO DE DOCENTES ÁREA: Matemática - PROVA OBJETIVA - Câmpus

Leia mais

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos. Soluções dos Exercícios de Vestibular referentes ao Capítulo 1: 1) (UERJ, 2011) Uma máquina contém pequenas bolas de borracha de 10 cores diferentes, sendo 10 bolas de cada cor. Ao inserir uma moeda na

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/2.ª Fase 15 Páginas Duração

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão 1 1 marzagao.1@osu.edu PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 1/2016 1 / 51 o que é probabilidade? Thiago Marzagão

Leia mais

Memória cache. Prof. Francisco Adelton

Memória cache. Prof. Francisco Adelton Memória cache Prof. Francisco Adelton Memória Cache Seu uso visa obter uma velocidade de acesso à memória próxima da velocidade das memórias mais rápidas e, ao mesmo tempo, disponibilizar no sistema uma

Leia mais

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2 Distribuição exponencial Solução. (a) f := (lambda, x) -> lambda*exp(-lambda*x); f := l, x /l e Kl x Probabilidade e Estatística 009/ Prof. Fernando Deeke Sasse CCT-UDESC Exercícios A distância entre os

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14 FGV Administração - 01.06.1 VETIBULAR FGV 01 01/06/01 REOLUÇÃO DA QUETÕE DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DICURIVO QUETÃO 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI Modelos Estocásticos Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 LEGI Capítulo 7 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA Nota: neste capítulo ilustram-se alguns dos conceitos de

Leia mais

COMENTÁRIO DA PROVA DE MATEMÁTICA

COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROA DE MATEMÁTICA Quanto ao nível: A prova apresentou questões simples, médias e de melhor nível, o que traduz uma virtude num processo de seleção. Quanto à abrangência: Uma prova com 9

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

CAP4: Controle Estatístico do Processo (CEP)

CAP4: Controle Estatístico do Processo (CEP) CAP4: Controle Estatístico do Processo (CEP) O principal objetivo do CEP é detectar rapidamente a ocorrência de causas evitáveis que produzam defeitos nas unidades produzidas pelo processo, de modo que

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Terminologia Básica Utilizada em de Sistemas Terminologia Básica Uma série de termos

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

01. Caro(a) candidato(a):

01. Caro(a) candidato(a): Caro(a) candidato(a): A seguir, você encontra questões da área de Matemática e de Redação. Essas questões foram elaboradas com referência ao cotidiano. Por isso, versam sobre temas diversificados. Boa

Leia mais

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. Questão 84 A taxa de analfabetismo representa a porcentagem da população com idade de anos ou mais que é

Leia mais

Estatística Descritiva

Estatística Descritiva Estatística Descritiva Como construir uma distribuição de freqüências. Como construir gráficos de freqüências. Como encontrar medidas de tendência central. Como encontrar medidas de variabilidade. Como

Leia mais

Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Uma introdução à Teoria das Filas

Uma introdução à Teoria das Filas Uma introdução à Teoria das Filas Introdução aos Processos Estocásticos 13/06/2012 Quem nunca pegou fila na vida? Figura: Experiência no bandejão Motivação As filas estão presentes em nosso cotidiano,

Leia mais

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9.

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. MATEMÁTICA 6. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. 10 9 é 7. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a (A) (B) (C) (D)

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA PROBABILIDADES E ESTATÍSTICA Ao conjunto de todos os resultados possíveis, de uma eperiência aleatória, chamamos espaço amostral e representamos por S. Define-se acontecimento como sendo um subconjunto

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autor João Moura Pires (jmp@di.fct.unl.pt) Este material pode

Leia mais

5 Um simulador estocástico para o fluxo de caixa

5 Um simulador estocástico para o fluxo de caixa 5 Um simulador estocástico para o fluxo de caixa O objetivo desse capítulo é o de apresentar um simulador estocástico para o fluxo de caixa de um plano de previdência do tipo PGBL de um único indivíduo.

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Trabalho 7 Fila de prioridade usando heap para simulação de atendimento

Trabalho 7 Fila de prioridade usando heap para simulação de atendimento Trabalho 7 Fila de prioridade usando heap para simulação de atendimento Data: 21/10/2013 até meia-noite Dúvidas até: 09/10/2013 Faq disponível em: http://www2.icmc.usp.br/~mello/trabalho07.html A estrutura

Leia mais

1 CIRCUITOS COMBINACIONAIS

1 CIRCUITOS COMBINACIONAIS Curso Técnico em Eletrotécnica Disciplina: Automação Predial e Industrial Professor: Ronimack Trajano 1 CIRCUITOS COMBINACIONAIS Um circuito digital é dito combinacional quando em um dado instante de tempo

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

Aplicação da Teoria das Filas à Operação de Transportes

Aplicação da Teoria das Filas à Operação de Transportes Aplicação da Teoria das Filas à Operação de Transportes Lâminas preparadas por: S. H. Demarchi Bibliografia: Setti, J.R (2002). Tecnologia de Transportes USP, São Carlos Fogliatti, M.C. e N.M.C. Mattos

Leia mais

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Probabilidade Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Distribuição Uniforme Usada comumente nas situações em que não há razão para atribuir probabilidades diferentes a um conjunto

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado. Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica

Leia mais

Prof. Diogo Miranda. Matemática Financeira

Prof. Diogo Miranda. Matemática Financeira 1. Uma alternativa de investimento possui um fluxo de caixa com um desembolso de R$ 10.000,00, no início do primeiro mês, Outro desembolso, de R$ 5.000,00, ao final do primeiro mês, e duas entradas líquidas

Leia mais

Regulamento Interno da Biblioteca Liliana Gonzaga Rede Gonzaga de Ensino Superior

Regulamento Interno da Biblioteca Liliana Gonzaga Rede Gonzaga de Ensino Superior Capítulo 1 - INTRODUÇÃO Art. 1. Este regulamento visa definir normas para a prestação de serviços da Biblioteca e a utilização dos serviços oferecidos pela Biblioteca Liliana Gonzaga e Faculdade REGES

Leia mais

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160 1 MQI 2003 Estatística para Metrologia semestre 2008.01 LISTA DE EXERCÍCIOS # 1 PROBLEMA 1 Uma empresa de TV a cabo toma uma amostra de 1000 clientes, com o objetivo de verificar a relação entre a renda

Leia mais

PORTARIA Nº 74, DE 04 DE FEVEREIRO DE 2015

PORTARIA Nº 74, DE 04 DE FEVEREIRO DE 2015 PORTARIA Nº 74, DE 04 DE FEVEREIRO DE 2015 Estabelece os procedimentos para a seleção das instituições credenciadas a operar com a Coordenação-Geral de Operações da Dívida Pública e disciplina a participação

Leia mais

MOG-45 - GESTÃO DE OPERAÇÕES LISTA DE EXERCÍCIOS 2

MOG-45 - GESTÃO DE OPERAÇÕES LISTA DE EXERCÍCIOS 2 MOG-45 - GESTÃO DE OPERAÇÕES LISTA DE EXERCÍCIOS 2 1. Questões teóricas de sistemas de planejamento da produção: a. Defina e descreva planejamento agregado. b. Relacione as vantagens e desvantagens dos

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Avaliação e Desempenho Aula 4

Avaliação e Desempenho Aula 4 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios

Leia mais

Especificação do Trabalho

Especificação do Trabalho Especificação do Trabalho I. Introdução O objetivo deste trabalho é abordar a prática da programação orientada a objetos usando a linguagem Java envolvendo os conceitos de classe, objeto, associação, ligação,

Leia mais

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB. MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),

Leia mais

Variabilidade do processo

Variabilidade do processo Variabilidade do processo Em todo processo é natural encontrar certa quantidade de variabilidade. Processo sob controle estatístico: variabilidade natural por causas aleatórias Processo fora de controle:

Leia mais

Gestão de Operações II Teoria das Filas

Gestão de Operações II Teoria das Filas Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,

Leia mais

Processo Seletivo 2009-2

Processo Seletivo 2009-2 Processo Seletivo 2009-2 GRUPO 2 UNIVERSIDADE FEDERAL DE GOIÁS PRÓ-REITORIA DE GRADUAÇÃO CENTRO DE SELEÇÃO UFG CADERNO DE QUESTÕES 14/06/2009 Matemática SÓ ABRA QUANDO AUTORIZADO LEIA ATENTAMENTE AS INSTRUÇÕES

Leia mais

REGULAMENTO. Capítulo I - Da Atribuição e Organização Geral

REGULAMENTO. Capítulo I - Da Atribuição e Organização Geral FACULDADE DE FILOSOFIA E CIÊNCIAS HUMANAS PROGRAMA DE PÓS-GRADUAÇÃO EM FILOSOFIA REGULAMENTO Capítulo I - Da Atribuição e Organização Geral Art. 1 - O Programa de Pós-Graduação em Filosofia (PGFilo), vinculado

Leia mais

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa

Leia mais

Objetivos. Teoria de Filas. Teoria de Filas

Objetivos. Teoria de Filas. Teoria de Filas Objetivos Teoria de Filas Michel J. Anzanello, PhD anzanello@producao.ufrgs.br 2 Teoria de Filas Filas estão presentes em toda a parte; Exemplos evidentes de fila podem ser verificados em bancos, lanchonetes,

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais