BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011

Tamanho: px
Começar a partir da página:

Download "BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011"

Transcrição

1 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 quadrimestre 011 Além destes exercícios, reveja os que foram feitos nas aulas. Para estudar mais, faça todos os exercícios relacionados aos assuntos vistos em aula do livro do Hines (referência [3] da página da disciplina) ou dos Capítulos 3, 4 e 5 do livro do Larson (referência [4] da página da disciplina). Ambos estão disponíveis em muitos volumes na biblioteca. Bons estudos! 1. (DEVORE, 006, p. 79) Uma empresa de exploração de petróleo possui dois projetos ativos, um na Ásia e outro na Europa. Sejam A o evento em que o projeto da Ásia tem sucesso e B o evento em que o projeto da Europa tem sucesso. Suponha que A e B sejam independentes com P( A ) = 0, 4 e P( B ) = 0,7. (a) Se o projeto da Ásia não obtiver sucesso, qual é a probabilidade de o projeto da Europa também não obtê-lo? Explique seu raciocínio. (b) Qual é a probabilidade de pelo menos um dos dois projetos ter sucesso? (c) Dado que pelo menos um dos dois projetos obteve sucesso, qual é a probabilidade de apenas o projeto da Ásia ter sucesso? Respostas: (a) 0,3; (b) 0,8; (c) 0,146.. (DEVORE, 006, p. 79) Se A e B forem eventos independentes, mostre que A ' e B também são independentes. [Sugestão: Primeiro defina a relação entre P( A' B) P( B ) e P( A B) ]., 3. (DEVORE, 006, p. 88) Uma viga de concreto pode apresentar falha por cisalhamento (C) ou flexão (F). Suponha que três vigas com defeito sejam selecionadas aleatoriamente e o tipo de falha seja determinado para cada uma delas. Seja = número de vigas entre as três selecionadas que falharam por cisalhamento. Relacione cada resultado no espaço amostral juntamente com o valor de associado. Resposta: x= 0 para FFF; x= 1 para CFF, FCF e FFC; x= para CCF, CFC e FCC e x= 3 para CCC. 1

2 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro (DEVORE, 006, p. 96) Uma instalação de recondicionamento de automóveis especializada em regulagem de motores sabe que 45% de todas as regulagens são feitas em automóveis de quatro cilindros, 40% em automóveis de seis cilindros e 15% em automóveis de 8 cilindros. Seja = número de cilindros do próximo carro a ser preparado. (a) Qual é a FMP de? (b) Desenhe um gráfico de linhas e um histograma de probabilidade da FMP da parte (a) (c) Qual é a probabilidade de o próximo carro a ser regulado ter no mínimo seis cilindros? Mais de seis cilindros? x ; (c) 0,55; Respostas: (a) p (4) = 0, 45, p (6) = 0,40, p (8) = 0,15, p (0) = 0 para 4,6 ou 8 0, (DEVORE, 006, p. 96) Uma empresa que fornece computadores pelo correio tem seis linhas telefônicas. Seja o número de linhas em uso em determinado horário. Suponha que a FMP de seja conforme a tabela a seguir. x p x 0,10 0,15 0,0 0,5 0,0 0,06 0,04 Calcule a probabilidade de cada um dos seguintes eventos: (a) {no máximo três linhas estão em uso} (b) {menos de três linhas estão em uso} (c) {pelo menos três linhas estão em uso} (d) {entre duas e cinco linhas, inclusive, estão em uso} (e) {entre duas e quatro linhas, inclusive, estão em uso} (f) {pelo menos quatro linhas não estão em uso} Respostas: (a) 0,70; (b) 0,45; (c) 0,55; (d) 0,71; (e) 0,65; (f) 0, (DEVORE, 006, p. 104) Um indivíduo que possui um seguro de automóvel de uma determinada empresa é selecionado aleatoriamente. Seja Y o número de infrações ao código de trânsito para as quais o indivíduo foi reincidente nos últimos 3 anos. A FMP de Y é y p y 0,60 0,5 0,10 0,05 Y (a) Calcule E Y ; (b) Suponha que um indivíduo com y infrações reincidentes incorra em uma multa de 100y reais. Calcule o valor esperado da multa.

3 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 Respostas: (a) 0,60; (b) R$110, (DEVORE, 006, p. 104) Uma loja de eletrodomésticos vende três modelos diferentes de freezers verticais com 13,5, 15,9 e 19,1 pés cúbicos de espaço respectivamente. Seja = volume de armazenagem comprado pelo próximo cliente a comprar um freezer. Suponha que a FMP de seja x 13,5 15,9 19,1 p x 0, 0,5 0,3 (a) Calcule E, E e σ. (b) Se o preço de um freezer com x pés cúbicos de capacidade for 5x 8,5, qual será o valor esperado do preço pago pelo próximo cliente a comprar um freezer? (c) Qual é a variância deste preço? (d) Suponha que, apesar de a capacidade nominal de um freezer ser, a capacidade real seja 0,001 H =. Qual é o valor esperado da capacidade real do freezer comprado pelo próximo cliente? Respostas: (a) 16,38; 7,98; 3,9936; (b) 401; (c),496; (d) 13, (DEVORE, 006, p. 111) Use a tabela de binomiais para obter as probabilidades a seguir: (a) B ( 4;10, 0.3) (b) b ( 4;10, 0.3) (c) b ( 6;10, 0.7) (d) P( 4) quando Bin( 10,0.3) (e) P( ) quando Bin( 10,0.3) (f) P( 1) quando Bin( 10,0.7) (g) P( < < 6) quando Bin( 10,0.3) Respostas: (a) 0,850; (b) 0,00; (c) 0,00; (d) 0,701; (e) 0,851; (f) 0,000; (g) 0, (DEVORE, 006, p. 117) Doze refrigeradores de um determinado tipo foram devolvidos ao distribuidor por causa de um ruído audível, oscilante e agudo que faziam quando em funcionamento. Suponha que sete desses refrigeradores possuam um compressor defeituoso e os outros cinco tenham problemas graves. Se os refrigeradores forem examinados em 3

4 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 ordem aleatória, seja o número de refrigeradores examinados entre os seis primeiros com compressores defeituosos. Calcule os seguintes valores: (a) P( = 5) (b) P( 4) (c) A probabilidade de exceder o valor da média em mais de um desvio padrão. (d) Considere uma entrega de 400 refrigeradores, dos quais 40 possuem compressores com defeito. Se for o número de compressores defeituosos entre 15 refrigeradores selecionados aleatoriamente, descreva uma forma menos cansativa de calcular (ao menos aproximadamente) P( 5) em vez de usar a FMP hipergeométrica. Respostas: (a) 0,114; (b) 0,879; (c) 0,11; (d) Use a distribuição com n= 15, p= 0, (DEVORE, 006, p. 11) Seja o número de falhas na superfície de uma caldeira de um determinado tipo selecionada aleatoriamente, com distribuição de Poisson de parâmetro λ= 5. Use tabelas para calcular as probabilidades a seguir: (a) P( 8) (b) P( = 8) (c) P( 9 ) (d) P( 5 8) (e) P( 5< 8) Respostas: (a) 0,93; (b) 0,065; (c) 0,068; (d) 0,49; (e) 0, (DEVORE, 006, p. 131) Seja o tempo que um livro de uma reserva de duas horas, na biblioteca de uma faculdade, é examinado por um estudante selecionado aleatoriamente e suponha que tenha função densidade f x Calcule as probabilidades a seguir: (a) P( 1) (b) P( ) (c) P( 1.5< ) Respostas: (a) 0,5; (b) 0,50; (c) 0, ,0 x x =. 0,caso contrário 4

5 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro (DEVORE, 006, p. 49) A FDA da duração da retirada descrita no exercício anterior é: 0, x< 0 x F( x) =,0 x< 4 1, x Use tais condições para calcular os itens a seguir: (a) P( 1) (b) P( 0.5 1) (c) P( > 0.5) (d) a mediana da duração da retirada µɶ [resolva 0.5= F ( µ ɶ ) ] (e) F' ( x ) para obter a função densidade f( x ) (f) E x (g) σ e σ. (h) se o aluno que retira o livro tem uma taxa a pagar h =, quando a duração da retirada é, calcule o valor esperado da taxa E h Respostas: (a) 0,5; (b) 0,1875; (c) 0,9375; (d) 1,414; (e) f( x) x = para 0< x< ; (f) 1,33; (g) 0,; 0,471; (h). 13. (DEVORE, 006, p. 139) Tempo de avanço no fluxo de tráfego é o tempo entre o instante em que um carro termina de passar por um ponto fixo e o instante em que o próximo carro começa a passar por esse ponto. Seja = o tempo de avanço entre dois carros consecutivos selecionados aleatoriamente (em segundos). Suponha que, em certo ambiente de tráfego, a distribuição do tempo de avanço tenha a forma k, 1 4 x > f x = x. 0, x 1 (a) Determine o valor de k para o qual f( x ) é uma FDP legítima. (b) Obtenha a função de distribuição acumulada. (c) Use a FDA de (b) para determinar a probabilidade de o tempo de avanço exceder segundos e também a probabilidade de ele estar entre e 3 segundos. (d) Obtenha o valor médio do tempo de avanço e seu desvio padrão. 5

6 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 (e) Qual é a probabilidade de o tempo de avanço estar dentro de um desvio padrão em relação à média? Respostas: (a) 3; (b) 0 para x 1, 1 x 3 para x> 1, (c) 0,15; 0,088; (d) 1,5; 0,866; (e) 0, (DEVORE, 006, p. 149) Seja Z uma VA normal. Em cada caso, determine o valor da constante c que torna correta a declaração de probabilidade. (a) Φ ( c) = 0,9838. (b) ( c) P 0 Z = 0, 91 (c) P( c Z ) = 0,11 (d) P( c Z c) = 0,668 (e) P( c Z ) = 0,016 Respostas: (a),14; (b) 0,81; (c) 1,17; (d) 0,97; (e), (DEVORE, 006, p. 149) Determine z α para os itens a seguir: (a) α= 0, 0055 (b) α= 0, 09 (c) α= 0, 663 Respostas: (a),54; (b) 1,34; (c) -0,4. 6

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS Lista de Exercícios - Modelos Probabilísticos 1 INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS 35) Em um sistema de transmissão de dados existe uma probabilidade igual a 0,05 de um dado ser transmitido

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

Distribuição Binomial

Distribuição Binomial Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?

Leia mais

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em

Leia mais

Gráfico de Controle por Atributos

Gráfico de Controle por Atributos Roteiro Gráfico de Controle por Atributos 1. Gráfico de np 2. Gráfico de p 3. Gráfico de C 4. Gráfico de u 5. Referências Gráficos de Controle por Atributos São usados em processos que: Produz itens defeituosos

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

CAP5: Amostragem e Distribuição Amostral

CAP5: Amostragem e Distribuição Amostral CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?

Leia mais

Exercícios - Distribuição Normal (Gauss)

Exercícios - Distribuição Normal (Gauss) Exercícios - Distribuição Normal (Gauss) Monitora: Juliana e Prof. Jomar 01. Uma empresa produz televisores de dois tipos, tipo A (comum) e tipo B (luxo), e garante a restituição da quantia paga se qualquer

Leia mais

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI Modelos Estocásticos Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 LEGI Capítulo 7 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA Nota: neste capítulo ilustram-se alguns dos conceitos de

Leia mais

CAPÍTULO 9 CONTROLE ESTATÍSTICO DO PROCESSO - CEP

CAPÍTULO 9 CONTROLE ESTATÍSTICO DO PROCESSO - CEP CAPÍTULO 9 CONTROLE ESTATÍSTICO DO PROCESSO - CEP 1. INTRODUÇÃO Produções seriadas; Produções não-seriadas; Prestação de serviços. A) Processo com Interação de Insumos Definição de Processo: seqüência

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I PERÍODO: 2013.2 LISTA DE EXERCÍCIOS 3 1) Uma empresa fabricante de pastilhas para freio efetua um teste para controle de qualidade de seus produtos.

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2 Distribuição exponencial Solução. (a) f := (lambda, x) -> lambda*exp(-lambda*x); f := l, x /l e Kl x Probabilidade e Estatística 009/ Prof. Fernando Deeke Sasse CCT-UDESC Exercícios A distância entre os

Leia mais

Inferência Estatística Aula 3

Inferência Estatística Aula 3 Inferência Estatís Aula 3 Agosto de 008 Mônica Barros Conteúdo Revisão de Probabilidade Algumas das principais distribuições discretas Distribuição de Poisson Distribuição Poisson como aproximação da Binomial

Leia mais

Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

Aula 5 Distribuição amostral da média

Aula 5 Distribuição amostral da média Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento

Leia mais

Provas resolvidas do ISS-SP Matemática Financeira Estatística Lógica Professor Joselias joselias@uol.com.br - http://professorjoselias.blogspot.

Provas resolvidas do ISS-SP Matemática Financeira Estatística Lógica Professor Joselias joselias@uol.com.br - http://professorjoselias.blogspot. PROVA RESOLVDA DO CONCURSO DE FSCAL DO SS-SP ESTATÍSTCA- RACOCÍNO LÓGCO E MATEMÁTCA FNANCERA Questão 51. Uma pessoa necessita efetuar dois pagamentos, um de R$ 2.000,00 daqui a 6 meses e outro de R$ 2.382,88

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autor João Moura Pires (jmp@di.fct.unl.pt) Este material pode

Leia mais

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli CAPÍTULO 5 - Algumas distribuições de variáveis aleatórias discretas e contínuas (parte considerada incompleta visto o volume de informações importantes não incluídas, além de eercícios. Tais informações

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

2 T Probabilidade: Definições básicas. 3 T Probabilidade: Definições básicas

2 T Probabilidade: Definições básicas. 3 T Probabilidade: Definições básicas Programa do Curso Métodos Estatísticos sticos de Apoio à Decisão Aula 4 Mônica Barros, D.Sc. Julho de 2008 Disciplina Métodos Estatísticos de Apoio à Decisão - BI MASTER 2008 Responsável Mônica Barros

Leia mais

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis Curso de Avaliações Prof. Carlos Aurélio Nadal cnadal@ufpr.br 1 AULA 03 Revisão: Noções básicas de estatística aplicada a avaliações de imóveis 2 OBSERVAÇÃO: é o valor obtido durante um processo de medição.

Leia mais

Tribunal de Justiça do Estado do Amapá Secretaria de Gestão Processual Eletrônica. Custas Judiciais Contato: tucujuris@tjap.jus.br

Tribunal de Justiça do Estado do Amapá Secretaria de Gestão Processual Eletrônica. Custas Judiciais Contato: tucujuris@tjap.jus.br 1. Para gerar o boleto de custas processuais iniciais ou complementares, clique nas opções respectivas no quadro indicado abaixo na página do TJAP: www.tjap.jus.br. 2. Abaixo é exibida a tela das custas

Leia mais

1ª Actividade Formativa

1ª Actividade Formativa 1ª Actividade Formativa 1. Foi feito um inquérito a um grupo de 40 compradores de carros novos, de determinada marca, para determinar quantas reparações ou substituições de peças foram feitas durante o

Leia mais

Distribuições de Probabilidade Distribuição Poisson

Distribuições de Probabilidade Distribuição Poisson PROBABILIDADES Distribuições de Probabilidade Distribuição Poisson BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Undécima lista de exercícios. Função exponencial e função logarítmica.

Undécima lista de exercícios. Função exponencial e função logarítmica. MA091 Matemática básica Verão de 01 Undécima lista de exercícios Função exponencial e função logarítmica 1 Você pegou um empréstimo bancário de R$ 500,00, a uma taxa de 5% ao mês a) Escreva a função que

Leia mais

Objetivos. Teoria de Filas. Teoria de Filas

Objetivos. Teoria de Filas. Teoria de Filas Objetivos Teoria de Filas Michel J. Anzanello, PhD anzanello@producao.ufrgs.br 2 Teoria de Filas Filas estão presentes em toda a parte; Exemplos evidentes de fila podem ser verificados em bancos, lanchonetes,

Leia mais

Matemática Profª Valéria Lanna

Matemática Profª Valéria Lanna Matemática Profª Valéria Lanna Para responder a questão 01, utilize os dados da tabela abaixo, que apresenta as freqüências acumuladas das notas de 20 alunos entre 14 e 20 pontos. Notas (em pontos) Frequência

Leia mais

REGULAMENTO EMPRÉSTIMO E CONSULTA DO ACERVO BIBLIOTECA DA FANORPI. Capítulo I Das Disposições Preliminares

REGULAMENTO EMPRÉSTIMO E CONSULTA DO ACERVO BIBLIOTECA DA FANORPI. Capítulo I Das Disposições Preliminares REGULAMENTO EMPRÉSTIMO E CONSULTA DO ACERVO BIBLIOTECA DA FANORPI Capítulo I Das Disposições Preliminares Art. 1º- A Biblioteca, presta seus serviços à comunidade acadêmica da FANORPI e região, com a intenção

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA PROBABILIDADES E ESTATÍSTICA Ao conjunto de todos os resultados possíveis, de uma eperiência aleatória, chamamos espaço amostral e representamos por S. Define-se acontecimento como sendo um subconjunto

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas.

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas. UniposRio - FÍSICA Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro 9 de novembro de 00 Nome (legível): Assinatura: Leia atentamente as oito (8) questões e responda nas folhas de

Leia mais

COLÉGIO MILITAR DO RIO DE JANEIRO. LISTA DE REVISÃO PARA PROVA DE RECUPERAÇÃO DO 1º BIM/14 (APR1) - MATEMÁTICA 6º ano

COLÉGIO MILITAR DO RIO DE JANEIRO. LISTA DE REVISÃO PARA PROVA DE RECUPERAÇÃO DO 1º BIM/14 (APR1) - MATEMÁTICA 6º ano COLÉGIO MILITAR DO RIO DE JANEIRO LISTA DE REVISÃO PARA PROVA DE RECUPERAÇÃO DO 1º BIM/14 (APR1) - MATEMÁTICA 6º ano Assunto: Conjuntos, números romanos, sistema de numeração decimal, conjunto dos números

Leia mais

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA Área Interdepartamental de Matemática Escola Superior de Tecnologia de Tomar PROBABILIDADES E ESTATÍSTICA COLECTÂNEA DE EXERCÍCIOS Engenharia Informática Ano Lectivo 2006/2007 Os exercícios não resolvidos

Leia mais

CAP4: Controle Estatístico do Processo (CEP)

CAP4: Controle Estatístico do Processo (CEP) CAP4: Controle Estatístico do Processo (CEP) O principal objetivo do CEP é detectar rapidamente a ocorrência de causas evitáveis que produzam defeitos nas unidades produzidas pelo processo, de modo que

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

M501 Probabilidade, Estatística e Processos Estocásticos

M501 Probabilidade, Estatística e Processos Estocásticos Notas de aula M501 Probabilidade, Estatística e Processos Estocásticos Dayan Adionel Guimarães Novembro de 007 Agradecimento Aos professores: Dr. José Marcos Câmara Brito Dr. Carlos Alberto Ynoguti M.Sc.

Leia mais

FÍSICA. Questões de 01 a 06

FÍSICA. Questões de 01 a 06 FIS. 1 FÍSICA Questões de 01 a 06 01. Um estudante de Física executou um experimento de Mecânica, colocando um bloco de massa m = 2kg sobre um plano homogêneo de inclinação regulável, conforme a figura

Leia mais

Memória cache. Prof. Francisco Adelton

Memória cache. Prof. Francisco Adelton Memória cache Prof. Francisco Adelton Memória Cache Seu uso visa obter uma velocidade de acesso à memória próxima da velocidade das memórias mais rápidas e, ao mesmo tempo, disponibilizar no sistema uma

Leia mais

Gestão de Operações II Teoria das Filas

Gestão de Operações II Teoria das Filas Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística MAE6 Noções de Estatística Grupo A - º semestre de 007 Exercício ( pontos) Uma máquina de empacotar um determinado produto o faz segundo uma distribuição normal, com média µ e desvio padrão 0g. (a) Em

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Conjunto de todos os resultados possíveis de um experimento aleatório.

Conjunto de todos os resultados possíveis de um experimento aleatório. VII Probabilidades Em todos os fenômenos estudados pela Estatística, os resultados, mesmo nas mesmas condições de experimentação, variam de uma observação para outra, dificultando a previsão de um resultado

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

Excel Básico e Avançado. Aula 6

Excel Básico e Avançado. Aula 6 Excel Básico e Avançado Aula 6 Prof. Dr. Marco Antonio Leonel Caetano Mudanças Abruptas www.mudancasabruptas.com.br TABELA DE FREQUÊNCIAS Objetivos Quantificar repetições de experimentos e eventos Ajudar

Leia mais

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um Escola Superior de Tecnologia de Viseu Probabilidades e Estatística 2007/2008 Ficha nº 7 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto.

Leia mais

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012 ESTATÍSTICA Prof. Ari Antonio, Me Ciências Econômicas Unemat Sinop 2012 1. Introdução Concepções de Estatística: 1. Estatísticas qualquer coleção consistente de dados numéricos reunidos a fim de fornecer

Leia mais

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de

Leia mais

Lista de Exercícios - Distribuição Normal

Lista de Exercícios - Distribuição Normal Lista de Exercícios - Distribuição Normal Monitor: Giovani e Prof. Jomar 01. Em indivíduos sadios, o consumo renal de oxigênio tem distribuição Normal de média 12 cm³/min e desvio padrão 1,5 cm³/min. Determinar

Leia mais

Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas

Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas 1. (Paulino e Branco, 2005) Num depósito estão armazenadas 500 embalagens de um produto, das quais 50 estão deterioradas. Inspeciona-se uma

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A):

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A): INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A): 1) A demanda quotidiana por um determinado produto no mercadinho

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9.

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. MATEMÁTICA 6. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. 10 9 é 7. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a (A) (B) (C) (D)

Leia mais

Avaliação e Desempenho Aula 4

Avaliação e Desempenho Aula 4 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Prof. José Carlos Fogo Departamento de Estatística - UFSCar Outubro de 2014 Prof. José Carlos Fogo (DEs - UFSCar) Material Didático

Leia mais

Estatística Descritiva

Estatística Descritiva Estatística Descritiva Como construir uma distribuição de freqüências. Como construir gráficos de freqüências. Como encontrar medidas de tendência central. Como encontrar medidas de variabilidade. Como

Leia mais

1 CIRCUITOS COMBINACIONAIS

1 CIRCUITOS COMBINACIONAIS Curso Técnico em Eletrotécnica Disciplina: Automação Predial e Industrial Professor: Ronimack Trajano 1 CIRCUITOS COMBINACIONAIS Um circuito digital é dito combinacional quando em um dado instante de tempo

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

Variabilidade do processo

Variabilidade do processo Variabilidade do processo Em todo processo é natural encontrar certa quantidade de variabilidade. Processo sob controle estatístico: variabilidade natural por causas aleatórias Processo fora de controle:

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Janete Pereira Amador Introdução Os métodos utilizados para realização de inferências a respeito dos parâmetros pertencem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através

Leia mais

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUDESTE DE MINAS GERAIS CONCURSO PÚBLICO PARA PROVIMENTO DE CARGO EFETIVO DE DOCENTES ÁREA: Matemática - PROVA OBJETIVA - Câmpus

Leia mais

Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Variáveis Aleatórias Discretas e Distribuições de Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

TÉCNICAS DE ANÁLISE DE ORÇAMENTO DE CAPITAL

TÉCNICAS DE ANÁLISE DE ORÇAMENTO DE CAPITAL Adm. Financeira II Aula 05 - Técnicas Orç. Capital - Pg. 1/8 TÉCNICAS DE ANÁLISE DE ORÇAMENTO DE CAPITAL 1. Introdução 1.1. Considerar fatores importantes fora do controle da empresa 1.2. Fatores qualitativos

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

TEXTURA E GRANULOMETRIA DOS SOLOS

TEXTURA E GRANULOMETRIA DOS SOLOS TEXTURA forma e tamanho das partículas GRANULOMETRIA medida dos tamanhos das partículas COMPORTAMENTO MECÂNICO TEXTURA PROPRIEDADES HIDRÁULICAS CLASSIFICAÇÃO TEXTURAL Quanto ao tamanho dos grãos solos

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

Introdução a Teoria das Filas

Introdução a Teoria das Filas DISC. : PESQUISA OPERACIONAL II Introdução a Teoria das Filas Prof. Mestre José Eduardo Rossilho de Figueiredo Introdução a Teoria das Filas Introdução As Filas de todo dia. Como se forma uma Fila. Administrando

Leia mais

INTEGRAIS DEFINIDAS E ECONOMIA

INTEGRAIS DEFINIDAS E ECONOMIA Capítulo 13 INTEGRAIS DEFINIDAS E ECONOMIA 13.1 A Integral Definida como Variação Total Neste capítulo estudaremos o problema inverso do estudado na Análise Marginal. Suponha que desejamos determinar o

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

COMENTÁRIO DA PROVA DE MATEMÁTICA

COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROA DE MATEMÁTICA Quanto ao nível: A prova apresentou questões simples, médias e de melhor nível, o que traduz uma virtude num processo de seleção. Quanto à abrangência: Uma prova com 9

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV PV O ursinho que Mais Aprova na GV FGV ADM 1/dez/01 MATEMÁTIA APLIADA 01. Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo

Leia mais

PORQUÊ? O tempo de preparação de equipamentos e dispositivos periféricos do posto de trabalho é uma operação sem valor acrescentado para o produto.

PORQUÊ? O tempo de preparação de equipamentos e dispositivos periféricos do posto de trabalho é uma operação sem valor acrescentado para o produto. Contribuir para a redução do tempo de preparação do sistema produtivo para a execução de um dado lote Aumentar a produtividade e a agilidade da resposta ao mercado PORQUÊ? O tempo de preparação de equipamentos

Leia mais

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1 LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar as soluções para os exercícios propostos Exercitar

Leia mais

REGULAMENTO DA BIBLIOTECA

REGULAMENTO DA BIBLIOTECA REGULAMENTO DA BIBLIOTECA CAPÍTULO I Das disposições gerais Art. 1º. A Biblioteca, tem por objetivo oferecer suporte informacional à toda Instituição, podendo ser aberta à comunidade para consulta bibliográfica.

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

3. TESTE DE MOTOR INFORMAÇÕES DE SERVIÇO DIAGNÓSTICO DE DEFEITOS 3-1 INFORMAÇÕES DE SERVIÇO 3-1 DIAGNÓSTICO DE DEFEITOS 3-1 TESTE DE COMPRESSÃO 3-2

3. TESTE DE MOTOR INFORMAÇÕES DE SERVIÇO DIAGNÓSTICO DE DEFEITOS 3-1 INFORMAÇÕES DE SERVIÇO 3-1 DIAGNÓSTICO DE DEFEITOS 3-1 TESTE DE COMPRESSÃO 3-2 3. TESTE DE MOTOR INFORMAÇÕES DE SERVIÇO 3-1 DIAGNÓSTICO DE DEFEITOS 3-1 TESTE DE COMPRESSÃO 3-2 INFORMAÇÕES DE SERVIÇO 3 O teste de compressão fornece informações importantes sobre a condição mecânica

Leia mais

CONCURSO PETROBRAS DRAFT. Pesquisa Operacional, TI, Probabilidade e Estatística. Questões Resolvidas. Produzido por Exatas Concursos www.exatas.com.

CONCURSO PETROBRAS DRAFT. Pesquisa Operacional, TI, Probabilidade e Estatística. Questões Resolvidas. Produzido por Exatas Concursos www.exatas.com. CONCURSO PETROBRAS ENGENHEIRO(A) DE PRODUÇÃO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PRODUÇÃO Pesquisa Operacional, TI, Probabilidade e Estatística Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DA BANCA

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Resolução da Questão 1 Item I Texto definitivo

Resolução da Questão 1 Item I Texto definitivo Questão A seguir, é apresentada uma expressão referente à velocidade (v) de um ciclista, em km/min, em função do tempo t, computado em minutos. 0,t, se 0 t < 0,, se t < v ( t) = 0, + 0,t,

Leia mais

Instruções. N. de Inscrição:

Instruções. N. de Inscrição: Escola de Administração Fazendária Missão: Desenvolver pessoas para o aperfeiçoamento da gestão das fi nanças públicas e a promoção da cidadania. Prova Conhecimentos Específicos Edital ESAF n. 79, de 06/1/013

Leia mais

FACULDADE SALESIANA DOM BOSCO DE PIRACICABA

FACULDADE SALESIANA DOM BOSCO DE PIRACICABA FACULDADE SALESIANA DOM BOSCO DE PIRACICABA REGULAMENTO DA BIBLIOTECA A biblioteca Pe. Mário Quilici, da Faculdade Salesiana Dom Bosco de Piracicaba tem por objetivo proporcionar aos professores, alunos,

Leia mais

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas. Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos

Leia mais