Capítulo 3 Modelos Estatísticos

Tamanho: px
Começar a partir da página:

Download "Capítulo 3 Modelos Estatísticos"

Transcrição

1 Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado

2 Resenha Slide 2 Este capítulo aborda as distribuições de probabilidade tendo em conta os conhecimentos de estatistica descritiva apresentados no Capítulo 1 e os de probabilidade apresentados no Capítulo 2. As Distribuições de Probabilidade descrevem o que provavelmente acontecerá em vez de o que realmente aconteceu.

3 Definições Slide 3 Uma variável aleatória é uma variável (usualmente representada por X) que toma um certo valor numérico, determinado pelo acaso, de cada vez que a experiência é realizada. Uma distribução de probabilidade é um gráfico, tabela, ou fórmula que indica a probabilidade correspondente a cada valor da variável aleatória.

4 Definições Slide 4 Uma variável aleatória discreta toma um nº finito ou infinito numerável de valores. Uma variável aleatória contínua toma um nº infinito não numerável de valores, os quais podem ser associados com medidas numa escala contínua.

5 Propriedades das Distribuições de Probabilidade Slide 5 Σ P(x) = 1 onde x toma todos os valores possíveis. 0 P(x) 1 para qualquer valor de x.

6 Média, Variância e Slide 6 Desvio Padrão de uma Variável Aleatória µ = Σ [x P(x)] Média σ 2 = Σ [(x µ) 2 P(x)] Variância σ 2 = [Σ x 2 P(x)] µ 2 Variância (forma reduzida) σ = Σ [x 2 P(x)] µ 2 Desvio Padrão

7 Definição Slide 7 O Valor Esperado de uma variável aleatória discreta é denotado por E, e representa a média dos resultados. Determina-se através do valor de Σ [x P(x)]. E = Σ [x P(x)]

8 Em resumo Slide 8 Até agora aprendemos sobre: Combinar os métodos da estatística descritiva com os da probabilidade. Variáveis aleatórias e distribuições de probabilidade. Propriedades da distribuição de probabilidade. Média, variância e desvio padrão de uma variável aleatória. Valor esperado.

9 A Distribuição Binomial Slide 9

10 Definições Slide 10 A distribuição binomial verifica as seguintes condições: 1. A experiência tem um nº fixo de provas, n. 2. As provas são independentes. (O resultado de uma prova não afecta a probabilidade de ocorrência das restantes.) 3. Cada prova origina um de dois resultados possíveis: sucesso ou insucesso. 4. A probabilidade de sucesso, denotada por p, é constante em cada prova.

11 Notação para a Distribuição Binomial Slide 11 n denota o nº de provas (valor fixo à partida). x denota um nº específico de sucessos em n provas, logo x pode ser qualquer nº entre 0 e n, inclusive. p denota a probabilidade de sucesso em cada uma das n provas. q denota a probabilidade de insucesso em cada uma das n provas. P(x) denota a probabilidade de obter exactamente x sucessos em n provas (P(x)=P(X=x)).

12 Métodos para Determinar as Probabilidades com a Distribuição Binomial Slide 12 Vejamos três métodos possíveis para determinar as probabilidades correspondentes à variável aleatória X com distribuição binomial.

13 Método 1: Usando a Fórmula da Probabilidade na Distribuição Binomial Slide 13 onde P(X=x) = n! p x q n-x (n x)!x! n = nº de provas para x = 0, 1, 2,..., n x = nº de sucessos nas n provas p = probabilidade de sucesso em cada prova q = probabilidade de insucesso em cada prova (q = 1 p)

14 Método 2: Usando uma Tabela de Probabilidades Slide 14 Reproduz-se em baixo parte da tabela da binomial que vamos usar. Com n = 5 e p = 0.2 na distribuição binomial, as probabilidades de obter 0, 1, 2, 3, 4 e 5 sucessos são , (= ), (= ), , e , respectivamente. n = 5 x p

15 Método 3: Usando a Tecnologia Slide 15 Software Estatístico, Excel e algumas calculadoras fornecem-nos as probabilidades da distribuição binomial.

16 Distribuição Binomial: Fórmulas Slide 16 Média µ = n p onde Variância σ 2 = n p q Desvio Padrão σ = n p q n = nº de provas p = probabilidade de sucesso em cada uma das n provas q = probabilidade de insucesso em cada uma das n provas

17 Exemplo Slide 17 Determine a média e o desvio padrão para o nº de raparigas em 14 nascimentos. Esta situação pode ser resolvida através da distribuição binomial onde: n = 14 p = 0.5 q = 0.5 Usando as fórmulas da distribuição binomial, temos : µ = (14)(0.5) = 7 raparigas σ = (14)(0.5)(0.5) = raparigas

18 Interpretação dos Resultados Slide 18 É especialmente importante interpretar os resultados. Os valores dizem-se pouco usuais se se encontrarem para além dos seguintes limites: Valores Máximos Usuais = µ + 2 σ Valores Mínimos Usuais = µ 2 σ

19 Exemplo Slide 19 Determine se é usual em 100 nascimentos, 68 serem raparigas. Para esta distribuição binomial, µ = 50 raparigas σ = 5 raparigas µ + 2 σ = (5) = 60 µ - 2 σ = 50-2(5) = 40 Em 100 nascimentos, é usual nascerem entre 40 e 60 raparigas. Assim, não é usual nascerem 68 raparigas.

20 Slide 20 A Distribuição de Poisson

21 Definição Slide 21 A distribuição de Poisson é uma distribuição discreta que se aplica quando ocorre um acontecimento num intervalo especificado. A variável aleatória X representa o nº de ocorrências num determinado intervalo. O intervalo pode se referir a tempo, distância, área, volume, ou algum tipo de medida similar. Fórmula P(X=x)= µ x e -µ onde e x!

22 Condições da Distribuição de Poisson Slide 22 A variável aleatória X designa o nº de acontecimentos nalgum intervalo. Assim, pode tomar quaisquer dos valores 0, 1, 2, ) Os acontecimentos têm que ser aleatórios. Os acontecimentos são independentes. A média é µ. Parâmetros O desvio padrão é σ = µ.

23 Diferenças em relação à Distribuição Binomial Slide 23 A distribuição de Poisson difere da distribuição binomial nos seguintes aspectos fundamentais: A distribuição binomial é caracterizada pela dimensão da amostra n e pela probabilidade de sucesso p, enquanto que a distribuição de Poisson é caracterizada apenas pela média µ. Numa distribuição binomial, os valores que a variável aleatória X pode tomar são 0, 1,... n, enquanto que na distribuição de Poisson a variável X toma os valores 0, 1,..., sem limite superior.

24 Exemplo Slide 24 Bombas da 2ª Guerra Mundial Em 1945 os alemães bombardearam Londres com as bombas V2. A região londrina está dividida em 576 distritos de superfícies semelhantes, pelo que admitimos que cada distrito tem igual probabilidade de ser bombardeado. Calcula-se que o nº de bombas recebidas por Londres foi de 535. Se um distrito for seleccionado ao acaso, determine a probabilidade de ter sido bombardeado com exactamente 2 bombas. A distribuição de Poisson é adequada porque estamos a lidar com uma situação de ocorrência de acontecimentos (nº de bombas recebidas) num certo intervalo (distrito).

25 Exemplo Slide 25 O nº médio de bombas por distrito é µ = 535 = Então, P(X=2) = e = ! Assim, a probabilidade de um qualquer distrito ser atingido por exactamente 2 bombas é P(X=2) =

26 Cálculo da probabilidade na Distribuição de Poisson usando uma Tabela Slide 26 Reproduz-se em baixo parte da tabela da distribuição de Poisson que vamos usar. Com µ = 0.20, as probabilidades de ocorrerem 0, 1, 2, 3 e 4 acontecimentos são , (= ), (= ), 0.001, e , respectivamente. x µ

27 Distribuição Normal Slide 27

28 Caracterização Slide 28 Variável aleatória contínua Distribuição Normal f(x) = -1 2 e x-µ ( 2 σ ) σ 2 π Fórmula 3-1 Figura 3-1

29 Definições Slide 29 Curva da Densidade (ou da função densidade de probabilidade é o gráfico da distribuição de probabilidade de uma variável aleatória contínua). 1. A área total sob a curva é igual a Todo o ponto sob a curva deve ter uma ordenada de valor igual ou superior a zero.

30 Uso da Área para determinar a Probabilidade Slide 30 Como a área total sob a curva é igual a 1, existe uma correspondência entre a área e a probabilidade. Figura 3-2

31 Alturas de Homens e Mulheres Slide 31 Figura 3-3

32 Definição Slide 32 Distribuição Normal Standard : a distribuição Normal que tem média 0 e desvio padrão 1. Figura 3-4

33 Notação Slide 33 P(a < z < b) denota a probabilidade de z tomar valores entre a e b P(z > a) denota a probabilidade de z tomar valores maiores do que a P(z < a) denota a probabilidade de z tomar valores menores do que a

34 Cálculo do valor de z correspondente a uma certa probabilidade Slide 34 5% ou 0.05 (o valor de z será positivo) Figura 3-5 Cálculo do Percentil 95

35 Cálculo do valor de z correspondente a uma certa probabilidade Slide 35 (Um dos valores de z será negativo e o outro positivo) Figura 3-6 Cálculo dos Percentis 2.5% e 97.5%

36 Distribuições Normais não Standard Slide 36 Se µ 0 ou σ 1 (ou ambos), teremos que converter os valores usando a Fórmula 3-2; então, os procedimentos passam a ser os mesmos do que os usados com a distribuição Normal Standard. Fórmula 3-2 z = x µ σ

37 Conversão para a Distribuição Normal Standard Slide 37 z = x µ σ Figura 3-7

38 Precauções a ter em conta Slide Não confunda valores de z com as correspondentes áreas. Os valores de z são distâncias ao longo do eixo horizontal enquanto que as áreas são regiões sob a curva da distribuição Normal. A tabela usada apresenta os valores de z na coluna à esquerda e na linha superior, enquanto que as áreas se encontram no meio da tabela. 2. Escolha o lado certo (direito/esquerdo) do gráfico. 3. Um valor de z deve ser negativo sempre que se encontre na metade esquerda da distribuição Normal. 4. As áreas (ou probabilidades) têm valores positivos ou nulos, mas nunca têm valores negativos.

39 Cálculos usando a Tabela da distribuição Normal Standard Slide 39 Seja Z a variável aleatória com distribuição Normal standard, ou seja, com valor médio zero e desvio padrão 1. Para calcular P(Z<0.32), é necessário consultar a tabela, na página referente aos valores positivos de z, como a seguir se indica: z Assim, P(Z<0.32)=

40 Cálculos usando a Tabela da distribuição Normal Standard Slide 40 De modo análogo, P(Z<-1.51)=0.0655, mas onde agora se consultou a mesma tabela, embora na parte referente aos valores negativos de z. Por outro lado, para encontrar o valor de z correspondente a uma certa probabilidade, por exemplo, 0.975, o valor da probabilidade tem que ser procurado no interior da tabela para, só depois, determinar o valor de z que lhe corresponde. z Assim, o valor de z correspondente à probabilidade é 1.96, ou seja, se P(Z<t)=0.975, então t=1.96.

41 Aproximação da Distribuição Binomial pela Distribuição Normal se: Slide 41 np 5 e nq 5 então µ = np e σ = npq e a variável aleatória tem uma distribuição Normal

42 Procedimento para usar a Distribuição Normal para Aproximar a Distribuição Binomial Slide Verifique que a distribuição Normal é uma aproximação adequada à distribuição Binomial confirmando que np 5 e nq Determine os valores dos parâmetros µ e σ calculando µ = np e σ = npq. 3. Identifique o valor discreto de x (o nº de sucessos). Altere o valor discreto x substituindo-o pelo intervalo x 0.5 a x Represente a curva da Normal e assinale os correspondentes valores de µ, σ, e de x 0.5 ou x + 0.5, conforme a situação. 4. Determine a área correspondente à probabilidade desejada.

43 Definição Slide 43 Quando usamos a distribuição Normal (que é uma distribuição contínua) para aproximar a distribuição Binomial (que é uma distribuição discreta), fazemos uma correção de continuidade ao valor discreto x na distribuição binomial representando o valor x pelo intervalo de x 0.5 a x

44 x = pelo menos 120 = 120, 121, 122,... Slide 44 x = mais do que 120 = 121, 122, 123,... x = no máximo 120 = 0, 1, , 119, 120 x = menos do que 120 = 0, 1, , 119 Figura 3-8

45 x = exactamente 120 Slide 45 Intervalo que representa o valor discreto 120

46 Distribuição t de Student Slide 46 A distribuição t de Student é a designação de uma família de distribuições indexada pelo parâmetro ν, que representa o número de graus de liberdade (g.l.). Reproduz-se em seguida parte da tabela desta distribuição.

47 Distribuição t de Student Slide 47 α ν Os valores indicados escrevem-se na forma t (0.01; 10) = e lê-se: o percentil 0.01 da distribuição t de Student com 10 graus de liberdade é

48 Distribuições t de Student com n = 3 e n = 12 Slide 48

49 Características importantes da distribuição t de Student Slide A distribuição t de Student varia de acordo com a dimensão da amostra (de acordo com a figura anterior, para os casos n = 3 e n = 12). 2. A curva da distribuição t de Student tem a mesma forma em sino da distribuição Normal, mas reflecte a maior variabilidade (com curvas mais alargadas) que é de esperar em amostras pequenas. 3. A distribuição t de Student tem valor médio zero (tal como a distribuição Normal standard). 4. O desvio padrão da distribuição t de Student varia de acordo com o tamanho da amostra e é maior do que 1 (o que não acontece com a distribuição Normal standard, onde σ = 1). 5. Quanto maior a dimensão da amostra, mais a distribuição t de Student se aproxima da distribuição Normal.

50 Distribuição Qui-quadrado Slide 50 A distribuição Qui-quadrado é a designação de uma família de distribuições indexada pelo parâmetro ν, que representa o número de graus de liberdade (g.l.). Reproduz-se em seguida parte da tabela desta distribuição.

51 Distribuição Qui-quadrado Slide 51 α (dade) ( gl (df) Os valores indicados escrevem-se na forma ℵ 2 (0.05; 10) = e lê-se: o percentil 0.05 da distribuição Quiquadrado com 10 graus de liberdade é

52 Características da distribuição Qui-Quadrado Slide A distribuição Qui-quadrado não é simétrica, ao contrário do que sucede com as distribuições Normal e t de Student. À medida que o nº de graus de liberdade aumenta,, a distribuição torna-se mais simétrica. Distribuição Qui-quadrado Distribuição Qui-quadrado para g.l.= 10 e g.l.= 20

53 Características da distribuição Qui-Quadrado Slide Os valores da distribuição Qui-quadrado podem ser positivos ou nulos, mas não podem ser negativos. 3. A distribuição Qui-quadrado é diferente consoante o nº de graus de liberdade, os quais se escrevem g.l.= n 1. À medida que o nº de g.l. aumenta, a distribuição aproxima-se da distribuição Normal.

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Distribuições de Probabilidade Distribuição Poisson

Distribuições de Probabilidade Distribuição Poisson PROBABILIDADES Distribuições de Probabilidade Distribuição Poisson BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Datas Importantes 2013/01

Datas Importantes 2013/01 INSTRUMENTAÇÃO CARACTERÍSTICAS DE UM SISTEMA DE MEDIÇÃO PROBABILIDADE PROPAGAÇÃO DE INCERTEZA MÍNIMOS QUADRADOS Instrumentação - Profs. Isaac Silva - Filipi Vianna - Felipe Dalla Vecchia 2013 Datas Importantes

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL

Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL Faculdade de Medicina Universidade Federal do Ceará Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL - Uma curva de distribuição pode descrever a forma da distribuição

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa

Leia mais

Álgebra. SeM MiSTéRio

Álgebra. SeM MiSTéRio Álgebra SeM MiSTéRio Série SeM MiSTéRio Alemão Sem Mistério Álgebra Sem Mistério Cálculo Sem Mistério Conversação em Alemão Sem Mistério Conversação em Espanhol Sem Mistério Conversação em Francês Sem

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

1. Os métodos Não-Paramétricos podem ser aplicados a uma ampla diversidade de situações, porque não exigem populações distribuídas normalmente.

1. Os métodos Não-Paramétricos podem ser aplicados a uma ampla diversidade de situações, porque não exigem populações distribuídas normalmente. TESTES NÃO - PARAMÉTRICOS As técnicas da Estatística Não-Paramétrica são, particularmente, adaptáveis aos dados das ciências do comportamento. A aplicação dessas técnicas não exige suposições quanto à

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

O teste de McNemar. A tabela 2x2. Depois

O teste de McNemar. A tabela 2x2. Depois Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br O teste de McNemar O teste de McNemar para a significância de mudanças é particularmente aplicável aos experimentos do tipo "antes

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

Afinal o que são e como se calculam os quartis? Universidade do Algarve Departamento de Matemática

Afinal o que são e como se calculam os quartis? Universidade do Algarve Departamento de Matemática Afinal o que são e como se calculam os quartis? Susana Fernandes Mónica Pinto Universidade do Algarve Departamento de Matemática Introdução Imaginemos que queremos calcular os quartis de um conjunto de

Leia mais

Descreve de uma forma adequada o

Descreve de uma forma adequada o EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada

Leia mais

Conceitos Básicos de Estatística Aula 2

Conceitos Básicos de Estatística Aula 2 Conceitos Básicos de Estatística Aula 2 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes diana.mendes@iscte.pt 13 de Setembro de 2011 DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Estatística 13 de Setembro

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Revisão de Estatística Aplicada a Finanças

Revisão de Estatística Aplicada a Finanças Revisão de Estatística Aplicada a Finanças INTRODUÇÃO A revisão que apresentaremos destina-se a examinar conceitos importantes de Estatística, que tornem possível a compreensão do conteúdo do livro de

Leia mais

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli CAPÍTULO 5 - Algumas distribuições de variáveis aleatórias discretas e contínuas (parte considerada incompleta visto o volume de informações importantes não incluídas, além de eercícios. Tais informações

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis Curso de Avaliações Prof. Carlos Aurélio Nadal cnadal@ufpr.br 1 AULA 03 Revisão: Noções básicas de estatística aplicada a avaliações de imóveis 2 OBSERVAÇÃO: é o valor obtido durante um processo de medição.

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autor João Moura Pires (jmp@di.fct.unl.pt) Este material pode

Leia mais

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados Estatística descritiva Também designada Análise exploratória de dados ou Análise preliminar de dados 1 Estatística descritiva vs inferencial Estatística Descritiva: conjunto de métodos estatísticos que

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

4. Metodologia. Capítulo 4 - Metodologia

4. Metodologia. Capítulo 4 - Metodologia Capítulo 4 - Metodologia 4. Metodologia Neste capítulo é apresentada a metodologia utilizada na modelagem, estando dividida em duas seções: uma referente às tábuas de múltiplos decrementos, e outra referente

Leia mais

Análise de Regressão Linear Simples e Múltipla

Análise de Regressão Linear Simples e Múltipla Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

Atividade à Distância Avaliativa - Probabilidade. 1 Probabilidade - Operações e Propriedades

Atividade à Distância Avaliativa - Probabilidade. 1 Probabilidade - Operações e Propriedades Universidade Estadual de Santa Cruz UESC Professora: Camila M. L Nagamine Bioestatística Atividade à Distância Avaliativa - Probabilidade Se ouço, esqueço; se vejo, recordo; se faço, aprendo. (Provérbio

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Exercício de Revisao 1

Exercício de Revisao 1 Exercício de Revisao 1 Considere que seu trabalho é comparar o desempenho de dois algoritmos (A e B) de computação gráfica, que usam métodos diferentes para geração de faces humanas realistas. São sistema

Leia mais

4Distribuição de. freqüência

4Distribuição de. freqüência 4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

UMA ABORDAGEM DOS TESTES NÃO-PARAMÉTRICOS COM UTILIZAÇÃO DO EXCEL

UMA ABORDAGEM DOS TESTES NÃO-PARAMÉTRICOS COM UTILIZAÇÃO DO EXCEL UMA ABORDAGEM DOS TESTES NÃO-PARAMÉTRICOS COM UTILIZAÇÃO DO EXCEL Arthur Alexandre Hackbarth Neto, Esp. FURB Universidade Regional de Blumenau Carlos Efrain Stein, Ms. FURB Universidade Regional de Blumenau

Leia mais

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012 ESTATÍSTICA Prof. Ari Antonio, Me Ciências Econômicas Unemat Sinop 2012 1. Introdução Concepções de Estatística: 1. Estatísticas qualquer coleção consistente de dados numéricos reunidos a fim de fornecer

Leia mais

Um jogo de preencher casas

Um jogo de preencher casas Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos

Leia mais

Regressão Logística. Daniel Araújo Melo - dam2@cin.ufpe.br. Graduação

Regressão Logística. Daniel Araújo Melo - dam2@cin.ufpe.br. Graduação Regressão Logística Daniel Araújo Melo - dam2@cin.ufpe.br Graduação 1 Introdução Objetivo Encontrar o melhor modelo para descrever a relação entre variável de saída (variável dependente) e variáveis independentes

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Instruções. N. de Inscrição:

Instruções. N. de Inscrição: Escola de Administração Fazendária Missão: Desenvolver pessoas para o aperfeiçoamento da gestão das fi nanças públicas e a promoção da cidadania. Prova Conhecimentos Específicos Edital ESAF n. 79, de 06/1/013

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

Introdução a Inferência Bayesiana. Ricardo S. Ehlers

Introdução a Inferência Bayesiana. Ricardo S. Ehlers Introdução a Inferência Bayesiana Ricardo S. Ehlers Versão Revisada em junho de 2003 Sumário 1 Introdução 2 1.1 Teorema de Bayes.......................... 2 1.2 Princípio da Verossimilhança....................

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Testes (Não) Paramétricos

Testes (Não) Paramétricos Armando B. Mendes, DM, UAç 09--006 ANOVA: Objectivos Verificar as condições de aplicabilidade de testes de comparação de médias; Utilizar ANOVA a um factor, a dois factores e mais de dois factores e interpretar

Leia mais

3 Matemática financeira e atuarial

3 Matemática financeira e atuarial 3 Matemática financeira e atuarial A teoria dos juros compostos em conjunto com a teoria da probabilidade associada à questão da sobrevivência e morte de um indivíduo são os fundamentos do presente trabalho.

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Apresentação de Dados em Tabelas e Gráficos

Apresentação de Dados em Tabelas e Gráficos Apresentação de Dados em Tabelas e Gráficos Os dados devem ser apresentados em tabelas construídas de acordo com as normas técnicas ditadas pela Fundação Instituto Brasileiro de Geografia e Estatística

Leia mais

Teste de Hipóteses e Intervalos de Confiança

Teste de Hipóteses e Intervalos de Confiança Teste de Hipóteses e Intervalos de Confiança Teste de Hipótese e Intervalo de Confiança para a média Monitor Adan Marcel 1) Deseja-se estudar se uma moléstia que ataca o rim altera o consumo de oxigênio

Leia mais

EXCEL NA ANÁLISE DE REGRESSÃO

EXCEL NA ANÁLISE DE REGRESSÃO EXCEL NA ANÁLISE DE REGRESSÃO _2010_03_Exercicio _Regressão_exemplo O gerente de uma loja de artigos escolares, cada semana, deve decidir quanto gastar com propaganda e que atrativo (por exemplo preços

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL

DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL Introdução Variável aleatória Discreta: assume um número finito ou infinito numerável de valores Contínua: assume todos os valores

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético PROESSOR Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: orça Magnética (orça de Lorentz) sobre Carga Lançada em Campo Magnético magnética, a força magnética tem o sentido de um tapa dado com

Leia mais

Programação. Folha Prática 4. Lab. 4. Departamento de Informática Universidade da Beira Interior Portugal. Copyright 2010 All rights reserved.

Programação. Folha Prática 4. Lab. 4. Departamento de Informática Universidade da Beira Interior Portugal. Copyright 2010 All rights reserved. Programação Folha Prática 4 Lab. 4 Departamento de Informática Universidade da Beira Interior Portugal Copyright 2010 All rights reserved. LAB. 4 4ª semana DESENHO E CONSTRUÇÃO DE ALGORITMOS 1. Revisão

Leia mais

Operações com números racionais decimais

Operações com números racionais decimais Divisão 1º: Divisão exata Operações com números racionais decimais Considere a seguinte divisão: 1,4 : 0,05 Transformando em frações decimais, temos: Método prático 1º) Igualamos o números de casas decimais,

Leia mais

Exercícios Resolvidos da Distribuição de Poisson

Exercícios Resolvidos da Distribuição de Poisson . a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra Aparecida de Amo Lista de Exercícios n o 2 Exercícios sobre Modelos de Máquinas de Turing

Leia mais

MÓDULO 1. I - Estatística Básica

MÓDULO 1. I - Estatística Básica MÓDULO 1 I - 1 - Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos e empíricamente observáveis. Unidade Estatística nome dado a cada observação de um

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

IV TESTES PARA DUAS AMOSTRAS INDEPENDENTES

IV TESTES PARA DUAS AMOSTRAS INDEPENDENTES IV TESTES PARA DUAS AMOSTRAS INDEPENDENTES Estes testes se aplicam a planos amostrais onde se deseja comparar dois grupos independentes. Esses grupos podem ter sido formados de duas maneiras diferentes:

Leia mais

Pesquisa Estatística. Estatística Descritiva. Gestão Ambiental Prof. Luiz Rogério Mantelli

Pesquisa Estatística. Estatística Descritiva. Gestão Ambiental Prof. Luiz Rogério Mantelli Gestão Ambiental Prof. Luiz Rogério Mantelli Pesquisa Estatística Estatística Descritiva São técnicas utilizadas para descrever um conjunto de dados ou apresentá-lo de forma resumida. 1.Gráficos descritivos:

Leia mais

Padronização e Escores z. Transformação z Percentis

Padronização e Escores z. Transformação z Percentis Padronização e Escores z Transformação z Percentis Padronização Definição Padronização de escores é o processo de converter o escore bruto de uma distribuição em escore z. Escore bruto O valor individual

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais