Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Tamanho: px
Começar a partir da página:

Download "Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder"

Transcrição

1 Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder

2 Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias contínuas. Começaremos com a variável aleatória contínua mais simples que é chamada de variável aleatória contínua uniforme. Suponhamos que temos um relógio com um ponteiro que funcione como uma roleta de cassino. Giramos aleatoriamente este ponteiro e verificamos em que posição ele para. De um ponto de vista matemático, temos um número infinito de pontos na circunferência do relógio. Então teóricamente a probabilidade do ponteiro parar exatamente em um ponto é igual a zero, porque aquele ponto é matematicamente infinitesimal. Ou seja, ele é apenas um ponto dentro do conjunto infinito de pontos que estão contidos na circunferência do relógio.

3 No entanto se quisermos calcular a probabilidade de que o ponteiro do relógio pare em um determinado intervalo de pontos, por exemplo, caia entre o número 12 e o número 3 do relógio, teremos um valor distinto de zero para esta probabilidade. A probabilidade do ponteiro parar neste intervalo é numericamente igual a 1/4 porque sabemos que este intervalo corresponde a esta fração do conjunto total de pontos do relógio (mesmo que este seja infinito!). Desta forma, qualquer intervalo de pontos finito tem uma probabilidade associada distinta de zero. E a probabilidade do ponteiro parar em exatamente um ponto (digamos o número 12 exatamente) é igual a zero. Porque este é apenas um pequeno ponto infinitesimal diante de um número infinito de pontos ao redor da circunferência do relógio. Quando estamos afirmando isto, estamos seguindo a definição clássica de probabilidade, que afirma que a probabilidade de um evento é o número de eventos favoráveis dividido pelo número de eventos possíveis e equiprováveis do espaço amostral. O número de eventos favoráveis neste caso é igual a 1 e o

4 número de eventos possíveis e equiprováveis é igual a e a divisão de 1 por é (pelo menos no limite) igual a zero. Para representar tudo isto temos que usar o conceito de função densidade de probabilidade (ou simplesmente função densidade). Para uma variável aleatória contínua não podemos usar uma função de probabilidade, tal como no caso de uma variável aleatória discreta. Para esta última, a variável aleatória só assume um determinado número supostamente finito de valores. Desta forma podemos associar valores de probabilidade para cada valor da variável aleatória. Isto não ocorre com as variáveis aleatórias contínuas. Neste caso, como vimos no exemplo do relógio, temos um número infinito de valores para uma variável aleatória contínua. Não temos como associar um valor de probabilidade para cada valor da variável aleatória e sabemos que todos estes valores são nulos. Podemos definir uma função matemática que será chamada de função densidade cujas propriedades serão: ˆ + f (x)dx = 1 (1)

5 e P(a X b) = ˆ b a f (x)dx (2) No caso do experimento aleatório do relógio temos uma função densidade: f (x) = 1/12 para qualquer valor de x no intervalo 0 X 12. Se quisermos calcular a probabilidade de que o ponteiro do relógio pare no intervalo que vai de 6 a 8, teremos: P(6 X 8) = 8 6 f (x)dx = dx = x = = 1 6 Então podemos dizer que uma função densidade é um instrumento matemático definido para variáveis aleatórias contínuas e que pode ser usada para calcular probabilidade de ocorrência destas variáveis em determinados intervalos. Estamos aqui definindo um exemplo de função densidade, chamado de função densidade uniforme que está associada a uma variável aleatória contínua uniforme. De uma forma geral uma função densidade uniforme pode ser qualquer função constante que respeite as condições (1) e (2).

6 O valor constante da ordenada desta função irá depender do intervalo de variação definido para esta função. Digamos, de uma forma geral que a função é definida no intervalo fechado de números reais [a,b]. Então f (x) = 1 b a. Especificamente, no caso do relógio, quando a = 0 e b = 12, f (x) = 1 12.

7 Esperança matemática e variância de uma variável aleatória contínua De uma forma análoga ao caso de uma variável aleatória discreta, para o caso de uma variável aleatória contínua X com função densidade f (x), definimos esperança matemática de X como sendo: E(X) = ˆ + Xf (x)dx (3) No caso de uma variável aleatória contínua uniforme na sua forma geral, com função densidade igual a f (x) = 1 (b a) temos: E(X) = + Xf (x)dx = b a X 1 (b a) dx = x 2 2(b a) b a = b2 a 2 2(b a) = a+b 2 A variância de uma variável aleatória contínua pode ser definida como sendo: var(x) = ˆ + (X E(X)) 2 f (x)dx = ( ˆ + X 2 f (x)dx) E(X) 2 (4)

8 Novamente, no caso de uma variável aleatória contínua uniforme na sua forma geral, com função densidade igual a f (x) = 1 (b a) temos: var(x) = ( + b 3 a 3 3(b a) ( a+b 2 )2 X 2 1 (b a) dx) ( a+b 2 )2 = x 3 3(b a) b a ( a+b 2 )2 = Podemos ter uma variável aleatória contínua com uma função densidade com forma triangular: { cx/k para 0 x k f (X) = 2c cx/k para k x 2k Exercício: Determine as condições para c e k de forma que f(x) seja uma função densidade e determine as expressoes para a esperança matemática e variância para esta variável aleatória.

9 Variável aleatória Normal Uma variável aleatória normal é uma variável aleatória contínua que tem a seguinte função densidade: f (x) = 1 σ (X µ) 2 2π e 2 (5) A mais importante (e mais utilizada na prática) variável aleatória contínua é a variável aleatória normal. A variável aleatória normal tem uma função densidade de probabilidade (chamada de curva normal) que apresenta a forma de um sino e é unimodal no centro exato da distribuição. A média, mediana e a moda da distribuição normal são iguais e localizadas no pico da distribuição. Metade da área sob a curva está acima do ponto central (pico) e a outra metade está acima dele. A distribuição de probabilidade normal é simétrica em relação a sua média.

10 Ela é assintótica: a curva aproxima-se cada vez mais do eixo X mas nunca toca efetivamente ele. scalar sigma = 1 scalar mu = 0 twoway function y = (1/(sigma*sqrt(2*_pi)))*exp(-(x-mu)^2/2), range(-3 3) Para desenhar a função de densidade da variável aleatória normal vamos usar alguns recursos gráficos do Stata, de acordo com a segueinte sequência de comandos:

11 y x Figura : Função densidade da variável normal padrão

12 De propósito, definimos que a nossa função densidade normal tem como parâmetros µ = 0 e σ = 1. Este é um caso particular de função densidade normal, chamado de função densidade normal padrão associada a variável aleatória normal padrão. A maior parte dos livros de Estatística apresentam tabelas que contem as probabilidades observadas em diversos intervalos de valores para a variável normal padrão. Vamos aproveitar o Stata para calcular valores de probabilidades para determinados intervalos da variável normal padrão. Por exemplo, desejamos calcular a probabilidade de que a variável normal padrão esteja contida no intervalo [1,3]. Para isto usamos o seguinte comando Stata: disp normal(3) - normal(1) O resultado é , o que significa que P(1 < X < 3) = Como é uma função densidade (associada a uma variável aleatória contínua), podemos dizer que: P(1 < X < 3) = P(1 X < 3) = P(1 < X 3) = e

13 que P(X = 1) = P(X = 3) = 0. twoway (function X1 = (1/(2*sqrt(2*_pi)))*exp(-(x-2)^2/2), range(-3 8)) (function X2 = (1/(4*sqrt(2*_pi)))*exp(-(x-2)^2/2), range(-3 8)) Vamos agora construir dois gráficos de função densidade justapostos - um com desvio padrão 2 e outro com desvio padrão 4, ambos com média 2:

14 x X1 X2 Figura : Duas funções densidade para variáveis aleatórias normais com distintos desvios padrões

15 O mais interessante deste último gráfico é que nele é mostrado que a função densidade com desvio padrão menor (curva em azul) abarca ( encompasses ) a distribuição com maior (curva em vermelho) desvio padrão. Poderiamos querer calcular o valores de probabilidades para as duas variáveis aleatórias normais do ultimo gráfico. Chamemos a variável normal que tem desvio padrão igual a 2 de X 1 e a variável normal que tem desvio padrão igual a 4 de X 2. Para calcularmos P(3 < X 1 < 5) temos que fazer a seguinte transformação: P(3 < X 1 < 5) = P( < z < ) = P(0, 5 < z < 1, 5) = O comando Stata para fazer este último cálculo é: disp normal(1.5)-normal(.5) Da mesma forma podemos calcular: P(3 < X 2 < 5) = P( < z < ) = P(0, 25 < z < 0, 75) = Estes resultados estão bastante coerentes com o que mostra o último gráfico: a distribuição com maior desvio padrão tem uma

16 probabilidade menor (para o mesmo intervalo da variável aleatória normal X). Temos que explicar dois pontos importantes: 1) Porque fizemos a transformação anterior? 2) Podemos igualar probabilidades a áreas abaixo da função densidade? Fizemos a transformação P(3 < X 1 < 5) = P( < z < ) porque as probabilidades não sçao calculadas diretamente para qualquer variável normal, mas indiretamente a partir de probabilidades para a variável normal padrão. Assim podemos converter qualquer variável aleatória normal em uma normal padrão através da seguinte expressão de transformação: z = X µ σ Utilizamos esta expressão para converter a probabilidade de uma variável normal qualquer estar contida em um determinado intervalo para achar o correspondente intervalo para a variável normal padrão. Todas as funções densidade de variáveis aleatórias normais (sejam o não padrão) devem ter uma área total sob a (6)

17 curva da função densidade igual a 1, ou seja, devem cumprir a condição (1) para uma função densidade. Vimos que a propriedade (2) de uma função densidade f(x) é: P(a X b) = b a f (x)dx. Como a integral definida da função densidade é numericamente igual a área abaixo da curva (e delimitada no intervalo [a,b]), podemos dizer que probabilidades de ocorrência de uma variável aleatória contínua podem ser medidas como sendo a área abaixo da curva correspondente a função densidade. Podemos definir função de distribuição cumulativa F(x), como sendo: F (x) = ˆ x f (x)dx (7) Particularmente, para a função densidade normal padrão temos a função de distribuição cumulativa da normal padrão que é simbolizada por φ(x). Então, se P( < z < 1) = então podemos dizer que φ(1) = e que P(a < z < b) = φ(b) φ(a) onde z é a variável aleatória normal padrão.

18 Exemplos 1) Numa distribuição normal, 30% dos elementos são menores que 45 e 10% são maiores que 64. Calcular os parâmetros que definem a distribuição (média e desvio-padrão). Solução: P(X < 45) = 0, 30 P(X > 64) = 0, 10 P(z < 45 µ X σ x ) = 0, 30 Determinamos um valor de z = z de tal forma que P(z < z ) = 0, 30. Isto corresponde a função inversa da distribuição normal cumulativa da normal padrão. No Stata basta digitar o comando: disp invnormal(.30) O resultado é: Ou seja P(z < ) = 0, 30

19 Desta forma descobrimos que 45 µx σ x = De forma análoga obtemos que P(z > ) = 0, 10 através do comando disp invnormal(.90) e descobrimos que: 64 µ x σ x = Agora basta resolver o seguinte sistema de duas equações a duas incógnitas: 45 µ x σ x = µ x σ x = Que resultarão em: σ x µ x = σ x µ x = 64 Multiplicando a primeira equação por (-1) e somando-se a segunda equação, temos: ( ) σ x = σ x = µ x = = ) O tempo de vida de transistores produzidos pela Indústria Zeppelin Ltda. tem distribuição aproximadamente normal, com valor esperado e desvio-padrão igual a 500 horas e 50 horas,

20 respectivamente. Se o consumidor exige que pelo menos 95% dos transistores fornecidos tenham vida superior a 400 horas, pergunta-se se tal especificação é atendida. Justifique! Solução: P(X > 400) = P( X > ) = P(z > 2) = 1 φ( 2) = = A especificação é atendida já que 97,72% dos transístores atende a especificação. 3) Seja X normalmente distribuída com média µ X = 100 e desvio padrão σ X = 7 (daqui a diante indicaremos tal distribuição como X ~ N(100;7) ). Determinar: a. P(X = 80) b. P(X > 100) c. P( X 95 < 5)d. P( X 100 < 10) Solução: a. P(X = 80) = 0 b. P(X > 100) = P( X ) = P(z > 0) = 0.50 c. Se X 95 0 então P( X 95 < 5) = P(X 95 < 5) = P(X < 100) = 0.50 Se X 95 < 0 então P( X 95 < 5) = P(95 X < 5) = 7 > P( X < 90) = P(X > 90) = P( X > ) = P(z >

21 ) = 1 φ( ) = ). Os pesos de certos produtos em quilogramas são normalmente distribuídos com média µ X = 180 e desvio padrão σ X = 4. Se uma unidade deste produto é escolhida aleatoriamente, qual é o peso desta unidade se a probabilidade de ocorrência: a. De um peso maior é igual a 0,10? b. De um peso menor é igual a 0,05? Solução: a. P(X > x ) = 0.10 Portanto P(z > x ) = 0.10 Temos que achar no Stata o valor de z tal que φ(z) = 0.90 Isto pode ser feito através do comando: disp invnormal(.90) Resultado: Portanto: x = e x = = ) Se uma distribuição normal tem média 200 e desvio padrão 20, ache K tal que a probabilidade de que um valor amostral seja menor do que K é 0,975. Solução: P(X < k) = Portanto P(z < k ) = 0.975

22 Através do comando disp invnormal(.975) achamos o valor Portanto k = e k = = Uma alternativa ao Stata para fazer cálculos de probabilidades correspondentes a variáveis aleatórias normais é o Excel. Por exemplo se quisermos calcular φ( ) colocamos em qualquer célula a função =DIST.NORMP( ) e retorna o resultado Para a função inversa da distribuição normal cumulativa da normal padrão se quisermos calcular φ 1 (.90) colocamos em uma célula a função =INV.NORMP(0.9) e retornamos ao valor anterior Vamos gerar no Stata uma Tabela da Função de Distribuição Cumulativa da Variável Normal Padrão φ(x), através da seguinte sintaxe (do file): * SINTAXE PARA GERAR UMA TABELA PARA A FUNÇÃO DISTRIBUIÇÃO phi(x) matrix C = J(31,11,0) forvalues j = 2(1)11 { matrix C[1, j ] = j - 2

23 } forvalues i = 2(1)31 { matrix C[ i,1] = ( i - 2)/10 } forvalues i = 2(1)31 { forvalues j = 2(1)11 { scalar x = ( i -2)/10 + ( j -2)/100 scalar phi = normal(x) matrix C[ i, j ] = phi } } matrix list C svmat C, names(c) format C2-C11 %5.4f xmlsave "D:\ECN26\APOSTILA DE ESTATISTICA\TABELA DISTRIBUIÇÃO NORMAL.xml", doctype(excel) replace

24 Tabela da distribuição cumulativa da variável normal padrão φ(x)

25 Tabela da distribuição cumulativa da variável normal padrão φ(x) (cont.)

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

Revisão de Estatística Aplicada a Finanças

Revisão de Estatística Aplicada a Finanças Revisão de Estatística Aplicada a Finanças INTRODUÇÃO A revisão que apresentaremos destina-se a examinar conceitos importantes de Estatística, que tornem possível a compreensão do conteúdo do livro de

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

Operações sobre uma variável aleatória

Operações sobre uma variável aleatória Capítulo 3 Operações sobre uma variável aleatória - Esperança matemática Neste capítulo, introduz-se algumas operações importantes que podem ser realizadas sobre uma variável aleatória. 3.1 Esperança Valor

Leia mais

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 SUMÁRIO 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 1.1. CÁLCULO DE PROBABILIDADE COM UMA VAC... 2 1.2. A FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA... 3 1.3. VARIÁVEL ALEATÓRIA CONTÍNUA (CARACTERIZAÇÃO)... 4 1.3.1.

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA Em um amostra, quando se têm os valores de uma certa característica, é fácil constatar que os dados normalmente não se distribuem uniformemente, havendo uma

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Conceitos Básicos de Estatística Aula 2

Conceitos Básicos de Estatística Aula 2 Conceitos Básicos de Estatística Aula 2 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes diana.mendes@iscte.pt 13 de Setembro de 2011 DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Estatística 13 de Setembro

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Testedegeradoresde. Parte X. 38 Testes de Ajuste à Distribuição. 38.1 Teste Chi-Quadrado

Testedegeradoresde. Parte X. 38 Testes de Ajuste à Distribuição. 38.1 Teste Chi-Quadrado Parte X Testedegeradoresde números aleatórios Os usuários de uma simulação devem se certificar de que os números fornecidos pelo gerador de números aleatórios são suficientemente aleatórios. O primeiro

Leia mais

0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel

0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel Nível Intermediário 0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel Quando um jovem estudante de matemática começa a estudar os números reais, é difícil não sentir certo desconforto

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,

Leia mais

Estatística Básica. Armando Oscar Cavanha Filho

Estatística Básica. Armando Oscar Cavanha Filho Estatística Básica Armando Oscar Cavanha Filho 1- INTRODUÇÃO A Estatística tem ampliado a sua participação na linguagem das atividades profissionais da atualidade, já que os números e seus significados

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Janete Pereira Amador Introdução Os métodos utilizados para realização de inferências a respeito dos parâmetros pertencem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através

Leia mais

4Distribuição de. freqüência

4Distribuição de. freqüência 4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard O mercado de bens Olivier Blanchard Pearson Education CAPÍTULO 3 3.1 A composição do PIB A composição do PIB Consumo (C) são os bens e serviços adquiridos pelos consumidores. Investimento (I), às vezes

Leia mais

Inferência Estatística Aula 3

Inferência Estatística Aula 3 Inferência Estatís Aula 3 Agosto de 008 Mônica Barros Conteúdo Revisão de Probabilidade Algumas das principais distribuições discretas Distribuição de Poisson Distribuição Poisson como aproximação da Binomial

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis Curso de Avaliações Prof. Carlos Aurélio Nadal cnadal@ufpr.br 1 AULA 03 Revisão: Noções básicas de estatística aplicada a avaliações de imóveis 2 OBSERVAÇÃO: é o valor obtido durante um processo de medição.

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

ANALISE COMBINATORIA Um pouco de probabilidade

ANALISE COMBINATORIA Um pouco de probabilidade ANALISE COMBINATORIA Um pouco de probabilidade Programa Pró-Ciência Fapesp/IME-USP-setembro de 1999 Antônio L. Pereira -IME USP (s. 234A) tel 818 6214 email:alpereir@ime.usp.br 1 Um carro e dois bodes

Leia mais

2 Pesquisa de valores em uma lista de dados

2 Pesquisa de valores em uma lista de dados 2 Pesquisa de valores em uma lista de dados Vinicius A. de Souza va.vinicius@gmail.com São José dos Campos, 2011. 1 Sumário Tópicos em Microsoft Excel 2007 Introdução...3 Funções PROCV e PROCH...3 PROCV...3

Leia mais

M501 Probabilidade, Estatística e Processos Estocásticos

M501 Probabilidade, Estatística e Processos Estocásticos Notas de aula M501 Probabilidade, Estatística e Processos Estocásticos Dayan Adionel Guimarães Novembro de 007 Agradecimento Aos professores: Dr. José Marcos Câmara Brito Dr. Carlos Alberto Ynoguti M.Sc.

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

Este procedimento gera contribuições não só a φ 2 e φ 4, mas também a ordens superiores. O termo por exemplo:

Este procedimento gera contribuições não só a φ 2 e φ 4, mas também a ordens superiores. O termo por exemplo: Teoria Quântica de Campos II 168 Este procedimento gera contribuições não só a φ 2 e φ 4, mas também a ordens superiores. O termo por exemplo: Obtemos acoplamentos com derivadas também. Para o diagrama

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com;

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com; Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 26 GRUPOS DE PERMUTAÇÕES E ALGUMAS DE PROPOSIÇÕES Thiago Mariano Viana 1, Marco Antônio Travasso 2 & Antônio Carlos

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS.

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. 1 CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados Estatística descritiva Também designada Análise exploratória de dados ou Análise preliminar de dados 1 Estatística descritiva vs inferencial Estatística Descritiva: conjunto de métodos estatísticos que

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Experimento 3 # Professor: Data: / / Nome: RA:

Experimento 3 # Professor: Data: / / Nome: RA: BC-0209 Fenômenos Eletromagnéticos Experimento 3 # Campo Magnético de Correntes Elétricas Professor: Data: / / Introdução e Objetivos Relatos históricos indicam que a bússola já era um instrumento utilizado

Leia mais

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0 1 - FUNÇÃO QUADRÁTICA UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 01 É toda função do tipo f(x)=ax 2 +bx+c, onde a, b e c são constantes reais com a 0. Ou, simplesmente, uma função polinomial de grau

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

Eletricista Instalador Predial de Baixa Tensão Eletricidade Básica Jones Clécio Otaviano Dias Júnior Curso FIC Aluna:

Eletricista Instalador Predial de Baixa Tensão Eletricidade Básica Jones Clécio Otaviano Dias Júnior Curso FIC Aluna: Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Eletricista Instalador Predial de Baixa Tensão Eletricidade

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Análise Descritiva de Dados de Pesquisa

Análise Descritiva de Dados de Pesquisa Capítulo 2 Análise Descritiva de Dados de Pesquisa Luiz Pasquali Preliminar Tipicamente uma pesquisa científica produz no final uma série (para não dizer, uma carrada) de números. O que é que esses números

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 quadrimestre 011 Além

Leia mais

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais

Fractais com o Mathematica

Fractais com o Mathematica Fractais com o Mathematica E. Marques de Sá DMUC, 2009 Dou alguns exemplos de fractais e respectivas imagens que podem facilmente obter-se usando o programa Mathematica. O texto explica brevemente a parte

Leia mais

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2 Distribuição exponencial Solução. (a) f := (lambda, x) -> lambda*exp(-lambda*x); f := l, x /l e Kl x Probabilidade e Estatística 009/ Prof. Fernando Deeke Sasse CCT-UDESC Exercícios A distância entre os

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais