Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real."

Transcrição

1 Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração clássica v at Aceleração relativística v + at a t c Modelo probabilístico Exemplos Binomial n x. p.( p) f ( x) x 0 n x x {0,,..., n} c. c. X Causas Efeito Poisson Normal x λ. e f ( x) x! 0 f ( x) λ. e π. σ x N c. c. x µ. σ, x R

2 Experimento Aleatório Experiência para o qual o modelo probabilístico é adequado. Exemplos E : Joga-se um dado e observa-se o número da face superior. E : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; E : Joga-se uma moeda quatro vezes e observa-se a seqüência de caras e coroas; E 4 : Uma lâmpada nova é ligada e contase o tempo gasto até queimar; E 5 : Joga-se uma moeda até que uma cara seja obtida. Conta-se o número de lançamentos necessários; E 6 : Uma carta de um baralho comum de 5 cartas é retirada e seu naipe registrado; E 7 : Jogam-se dois dados e par de valores obtido; observa-se o Espaço amostra(l) Exemplos É o conjunto de resultados de uma experiência aleatória. S {,,, 4, 5, 6} S {0,,,, 4}

3 S { cccc, ccck, cckc, ckcc, kccc, cckk, kkcc, ckkc, kcck, ckck, kckc, kkkc, kkck, kckk, ckkk, kkkk} S 5 {,,,...} S 4 { t R / t 0 } S 6 {,,, } S 7 { (, ), (, ),(,), (, 4), (, 5), (, 6) (, ), (, ), (, ), (, 4), (, 5), (, 6) (, ), (, ), (, ), (, 4), (, 5), (, 6) (4, ), (4, ), (4, ), (4, 4), (4, 5), (4, 6) (5, ), (5, ), (5, ), (5, 4), (5, 5), (5, 6) (6, ), (6, ), (6, ), (6, 4), (6, 5), (6, 6) } Eventos Um evento é um subconjunto de um espaço amostra. Exemplo Se S {,,, 4, 5, 6 } é um espaço amostra, então são eventos: A {,, 5} B { 6 } C { 4, 5, 6} D E S Ocorrência de um evento Seja E um experimento com espaço amostra associado S. Diremos que o evento A ocorre se realizado E o resultado é um elemento de A.

4 Combinação de eventos Se A e B são eventos de um mesmo espaço amostra S. Diremos que ocorre o evento: A união B, A soma B ou A mais B, se e só se A ocorre ou B ocorre. A B A produto B, A vezes B ou A interseção B, se e só se A ocorre e B ocorre. A B A menos B, A diferença B, se e só se A ocorre e B não ocorre. A B Complementar de A (não A) se e só se A não ocorre. Eventos mutuamente excludentes (exclusivos) Dois eventos A e B são mutuamente excludentes se não puderem ocorrer juntos. A A C A 4

5 Conceitos de probabilidade Clássico CLÁSSICO FREQÜENCIAL (número de casos favoráveis) P(A) (número de casos possíveis) AXIOMÁTICO Exemplo: Solução: Casos favoráveis Qual a probabilidade de ganhar na Loto Fácil? Casos possíveis: P(Loto Fácil) Número de favoráveis Número de possíveis 5 5 0,0000% Frequência relativa de um evento (número de vezes que A ocorre) fr A (número de vezes que E é repetido) 5

6 Exemplo: Um dado é lançado 0 vezes e apresenta FACE SEIS 8 vezes. Então, a freqüência relativa de face seis é: fr6 númerode vezesque"f_seis"ocorre númerode vezesqueo dadoé jogado 8 0 0,5 5%. Conceito frequencial de probabilidade A probabilidade de um evento A é o limite para o qual tende a frequência relativa de A, quando o número de repetições do experimento tende ao infinito, isto é: P(A) lim fr n A Conceito axiomático P(A) é um número real que deve satisfazer as seguintes propriedades: () 0 P(A) () P(S) () P(AUB) P(A) + P(B) se A B Consequências dos axiomas (Propriedades) () P( ) 0 () P( A) - P(A) () P(A - B) P(A) - P(A B) 6

7 (4) P(AUB) P(A) + P(B) - P(A B) (5) P(AUBUC) P(A) + P(B) + P(C)- - P(A B) - P(A C) - P(B C) Probabilidade condicionada + P(A B C) Motivação Considere uma urna com 50 fichas, onde 40 são pretas e 0 são brancas. Suponha que desta urna são retiradas duas fichas, ao acaso e sem reposição: Sejam os eventos: A {a primeira ficha é branca} B {a segunda ficha é branca} Então: P(A) 0/50 0,0 0% P(B)?/49 Neste caso, não se pode avaliar P(B), pois para isso é necessário saber se A ocorreu ou não, isto é, se saiu ficha branca na primeira retirada. Se for informado que A ocorreu, então a probabilidade de B, será: P(B A) 9/49 0,87 8,7%. Observe a notação. 7

8 Esta representação é lida: P de B dado A; P de B dado que A ocorreu; Definição: P(A B) P(A B) / P(B) P de B condicionada a A. Mas: Se P(A B) P(A B) / P(B) então: P(A B) P(A B).P(B) E também: Se P(B A) P(A B) / P(A) então: P(A B) P(A).P(B A) Assim: P(A B) P(A).P(B A) P(A B).P(B) Esse resultado é conhecido como teorema da multiplicação. Independência Dois eventos A e B são ditos independentes se a probabilidade de um ocorrer não altera a probabilidade do outro ocorrer, isto é: Se: () P(A B) P(A) ou () P(B A) P(B) ou ainda () P(A B) P(A).P(B) 8

9 KKK X x X(s) s CKK KKC KCK CCK CKC KCC CCC S 0 R X(S) Variável Aleatória Uma função X que associa a cada elemento de S (s S) um número real x X(s) é denominada variável aleatória. O conjunto de valores O conjunto formado por todos os valores x, isto é, a imagem da variável aleatória X, é denominado de conjunto de valores de X. X(S) { x R X(s) x } Tipos de variáveis Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Variável Discreta (VAD) Se o conjunto de valores for finito ou então infinito enumerável a variável é dita discreta. 9

10 Variável Contínua (VAC) Se o conjunto de valores for infinito não enumerável então a variável é dita contínua. A função de probabilidade (fp) A função de probabilidade (fp) de uma VAD é a função que associa a cada x i X(S) o número f(x i ) P(X x i ) que satisfaz as seguintes propriedades: f(x i ) 0, para todo i f(x i ) A distribuição de probabilidade A coleção dos pares [x i, f(x i )] para i,,,... é denominada de distribuição de probabilidade da VAD X. Exemplo: Suponha que uma moeda equilibrada é lançada três vezes. Seja X número de caras. Então a distribuição de probabilidade de X é: KKK CKK KKC KCK CCK CKC KCC CCC S X x(s) 0 R f f (x) [0;] 0

11 KKK CKK 0 KKC KCK CCK CKC KCC X /8 /8 /8 /8 CCC R [0;] x(s) f (x) S f Exemplo: Suponha que um par de dados é lançado. Então X soma do par é uma variável aleatória discreta com o seguinte conjunto de valores: Como X((a, b)) a + b, o conjunto de valores de X é dado por: X(S) {,, 4, 5, 6, 7, 8, 9, 0,, } A função de probabilidade f(x) P(X x), associa a cada x X(S), um número no intervalo [0; ] dado por: f(x) P(X x) P(X(s) x) P([x X(S) / X(s) x}) Desta forma: f() P(X ) P{(,)} /6 f() P(X ) P{(,), (, )} /6... f() P(X) P{(6, 5), (5, 6)} /6 f() P(X ) P{(6, 6)} /6 A distribuição de probabilidade será: A distribuição de probabilidade de X será então: x Σ f(x)

12 Representação de uma distribuição de probabilidade: Poderá ser feita por meio de: uma tabela uma expressão analítica (fórmula) um diagrama Tabela Seja X número de caras, obtidas no lançamento de 4 moedas honestas. Então a distribuição de X é a da tabela ao lado. x f(x) 0 /6 4/6 6/6 4/6 4 /6 Σ Expressão analítica Diagrama Considere X soma do par, no lançamento de dois dados equilibrados, então: f : X(S) R x (x - )/6 se x 7 ( - x + )/6 se x > 7 0,8 0,6 0,4 0, 0,0 0,08 0,06 0,04 0,0 0, VAD - Caracterização (a) Expectância, valor esperado (Expectation) µ E(X) x.f(x) x.p(x x) (b) Variância (Variance) σ f(x) (x µ ) x f(x) µ E( X )-E(X) (iii) Desvio Padrão (Standard Deviation) σ f (x)(x µ ) x f (x) µ E( X )-E(X) (iv) O Coeficiente de Variação (Variation Coeficient) γ σ/µ

13 Exemplo Calcular o valor esperado, a variabilidade da variável X número de caras no lançamento de quatro moedas honestas. Cálculos x f(x) x.f(x) x f(x) 0 / /6 4/6 4/6 6/6 /6 4/6 4/6 /6 6/6 4 /6 4/6 6/6 Σ 5 Tem-se: Assim: (i) E(X) caras (ii) σ 5 4 cara (iii) γ / 00% A Função de Distribuição (FD) Seja X uma variável aleatória (discreta ou contínua). A função de distribuição (acumulada) ou simplesmente função de repartição é definida por: F(x) P(X x). Determinação de probabilidades a partir da FD (i) P(a < X b) F(b) F(a); (ii) P(X < a) F(a) e (iii) P(X > a) - F(a)

14 Bernoulli Binomial Poisson Experimento Qualquer um que corresponda a apenas dois resultados. Estes resultados são anotados por 0 ou fracasso e ou sucesso. A probabilidade de ocorrência de sucesso é representada por p e a de insucesso por q p. Conjunto de Valores X(S) {0, } A Função de Probabilidade (fp) p se x 0 f (x) P(X x) p se x A Função de Probabilidade (fp),0 Características Expectância ou Valor Esperado 0,8 0,6 0,4 0, 0,0 0 E(X) x.f (x) 0.q +.p p Variância V(X) E(X (0.q +.p) p p p ) - E(X) p( p) pq 4

15 Suponha que um circuito é testado e que ele seja rejeitado com probabilidade 0,0. Seja X o número de circuitos rejeitados em um teste. Determine a distribuição de X. Como se trata de um único teste, a variável X é Bernoulli com p 0%, assim a distribuição é: 0,9 f (x) P(X x) 0, se se x 0 x Experimento Como existem apenas duas situações: A ocorre ou não, pode-se determinar a probabilidade de A não ocorrer como sendo q p. A VAD definida por X número de vezes que A ocorreu nas n repetições de E é denominada BINOMIAL. Conjunto de Valores A Função de Probabilidade (fp) X(S) {0,,,,..., n} A Função de Probabilidade (fp) n f (x) P(X x) p x x q n x 0,8 0,6 0,4 0, 0,0 0,08 0,06 0,04 0,0 0,

16 Características Expectância ou Valor Esperado n x n x E(X) x.f (x) x. p q np x Variância V(X) E(X ) - E(X) n x n x E(X ) x. p q n(n -) p x + np V(X) E(X ) - E(X) n(n ) p + np (np) n p + np np( p) npq Assim: E (X) np σx npq Exemplo: Uma fábrica recebe um lote de 00 peças das quais cinco são defeituosas. Suponhamos que a fábrica aceite todas as 00 peças se não houver nenhuma defeituosa em uma amostra aleatória de 0 peças selecionadas para inspeção. Determinar a probabilidade de o lote ser aceito. Tem-se: n 0 e p 5/00 0, f (0) P(X 0) 0,05 0, ,87% 0 Tem-se: n 0 e p 5/00 5% Então: 0 0 f (0) P(X 0).(0,5).(0,95) 0 59,87% 0 6

17 Seja X uma variável aleatória com conjunto de valores X(S). Se o conjunto de valores for infinito não enumerável então a variável é dita contínua. A Função Densidade de Probabilidade É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: f(x) 0 f(x)dx A Distribuição de Probabilidade A coleção dos pares (x, f(x)) é denominada de distribuição de probabilidade da VAC X. Exemplo Seja X uma VAC. Determine o valor de c para que f(x) seja uma função densidade de probabilidade (fdp). c.x f (x) 0 se c. c. x Para determinar o valor de c, devemos igualar a área total a um, isto é, devemos fazer: - f(x)dx - c.x dx Tem-se: c.x dx - c x dx - x - c c - c c - 7

18 Representação Gráfica Cálculo da Probabilidade,5 P(a < X < b) b a f (x) dx,0 y 0,5 0,0 f (x) x -,5 -, -,0-0,8-0,5-0, 0,0 0, 0,5 0,8,0,,5 - X a b x a < X < b P(a < X < b) Isto é, a probabilidade de que X assuma valores entre os números a e b é a área sob o gráfico de f(x) entre os pontos x a e x b. b a f (x) dx Observações: Se X é uma VAC, então: a P(X a) f (x)dx 0 a P(a < X < b) P(a X < b) P(a < X b) P(a X b). Exemplo Seja X uma VAC. Determine a probabilidade de X assumir valores no intervalo [-0,5; 0,5]. x f (x) 0 se c. c. x A probabilidade solicitada é dada por: P( 0,5 < X < 0,5) 0,5-0,5 x dx 0,5 x x dx -0,5 [(0,5) (-0,5) ],50% 0,5-05 8

19 VAC Caracterização (a) Expectância, valor esperado (iii) Desvio Padrão µ E(X) xf (x) dx σ (x µ) f (x)dx (b) Variância x f (x)dx µ E(X ) E(X) σ V(X) (x µ) f (x)dx x f (x)dx x f (x)dx µ ( xf (x)dx) E(X ) E(X) (iv) O Coeficiente de Variação γ σ/µ Exemplo : Determinar a expectância e o desvio padrão da variável X dada por: x f (x) 0 se c. c. x µ E(X) x.f(x)dx x. x - -.dx x 4 dx x σ E(X ) E(X). x E(X ) x dx - 5 x x dx , O desvio padrão de X será, então: σ E(X ) E(X) 0,60 0 0,77 9

20 A Função de Distribuição É a função F(x) definida por: F(x) P(X x) f (u)du A F(x) é a integral da f(x) até um ponto genérico x. x Considerando a função abaixo como a fdp de uma VAC X, determinar a F(x). Exemplo x f (x) 0 se c. c. x A F(x) é uma função definida em todo o intervalo real da seguinte forma: F(x) 0 x u du se x < - se x se x > Vamos determinar o valor da integral em u : F(x) x u du x x u du u x x + [u ] Assim a Função de Distribuição Acumulada (FDA) é: 0 se x < - x + F(x) se x se x > Representação Gráfica,0 0,9 x + F(x) 0,8 0,7 0,6 0,5 0,4 0, 0, 0, 0,0 -,5 -,0-0,5 0,0 0,5,0,5 0

21 Cálculo de Probabilidade com a FDA O uso da FDA é bastante prático no cálculo das probabilidades, pois não é necessário integrar, já que ela é uma função Integral. Usando a FDA, teremos sempre três casos possíveis: P(X x) F(x) P(X > x) F(x) P(x < X < x) F(x) F(x) Normal t (de Student) χ (Qui-Quadrado) F de Snedecor A distribuição normal Representação gráfica Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: 0,8 0,6 N(0; ) N(0; 0,5) N(0; ) N(; ) f (x).e π. σ x µ. σ, x R 0,4 0, com - < µ < e σ > 0 0,

22 Cálculo de probabilidades P(X x) x.e π. σ u µ. σ du? A normal não é integrável por meio do TFC, isto é, não existe uma F(x) tal que F (x) f(x). Solução: Utilizar integração numérica. Como não é possível fazer isto com todas as curvas, escolheu-se uma para ser tabelada (integrada numericamente). A normal padrão A curva escolhida é a N(0, ), isto é, com µ 0 e σ. Se X é uma N(µ, σ), então: Z X µ σ Será uma N(0; ). A fdp da variável Z é dada por: ϕ(z).e π z., z R uma vez que µ 0 e σ. A distribuição N(0, ) 0,4 0, 0, 0, 0,0-4,0 -,0 -,0 -,0 0,0,0,0,0 4,0 Tabela (ou planilha): O que é tabelado ou obtido na planilha é a FDA da variável Z, isto é: z - P(Z z) ϕ(u)du u z..e du Φ(z) - π

23 A FDA da N(0; ) Φ(z),0 0,9 0,8 0,7 0,6 0,5 0,4 0, 0, 0, 0,0-4,0 -,0 -,0 -,0 0,0,0,0,0 4,0 z Uso da tabela ou Planilha Área à esquerda (abaixo) de z P(Z z) Φ(z) Leitura direta Área à direita (acima) de z P(Z > z) - P(Z z) - Φ(z) Φ( z) Área entre dois valores de z P( z < Z < z) Φ(z) Φ(z) Exemplo: Uma VAC tem distribuição normal de média 50 e desvio padrão 8. Determinar: (a) P(X 40) (b) P(X > 65) (c) P(45 < X < 6) (a) P(X 40) X µ P(X 40) P( ) σ 8 P(Z,5) 0,56% (b) P(X > 65) X µ P(X > 65) P( > ) σ 8 P(Z >,88) P(Z <,88) Φ(,88) Φ(,88),0% (c) P(45 < X < 6) P(45 < X < 6) X µ 6 50 P( < < ) 8 σ 8 P( 0,6 < Z <,50) Φ(,50) Φ( 0,6) 9,% 7,67% 65,65%

24 A função inversa: Uma VAC tem distribuição normal de média 50 e desvio padrão 8. Determinar: (a) P(X x) 5% (b) P(X > x) % Para resolver este tipo de exercício é preciso utilizar a função inversa, isto pode ser feito utilizando a função Invnorm da planilha. Graficamente 0,05 Em (a) temos P(X x) 5% 0,04 0,0 0,0 0,0 5% P(X x) 5% x 0, X µ x 50 P(X x) P( ) σ 8 P(Z z) Φ(z) 5% onde z x 50 8 SeΦ(z) 5%, então Φ [Φ(z)] Φ z Φ (0,05) (5%) O valor acima pode ser obtido diretamente da planilha. Assim z,645 x 50 Como z, tem se: 8 x 50,645 z 8 x 50, ,84 4

25 0,05 X µ x 50 P(X > x) P( > ) σ 8 P(Z > z) Φ(z) % 0,0 Mas Em (b) temos P(X > x) % Φ(z) Φ( z) Logo z Φ (0,0) 0,05 0,04 0,04 0,0 0,0 0,0 0,0 0,0 0,0 % P(X > x) % 0,00 0, x Uma variável aleatória X tem uma distribuição t ou de Student se sua fdp for do tipo: f (x) υ+ υ + x Γ + υ υ πυ. Γ para x R 0,40 0,0 0,0 0,0 fdp de t() t(5) t(5) 0, Expectância ou Valor esperado Variância µ E (X) Var(X) 0 υ υ - O valor υ é denominado de Grau de liberdade 5

26 A planilha fornece a função direta e inversa (percentis), em relação a área à direita (unilateral) ou da soma das caudas (bilateral) de cada curva, isto é, a tabela retorna um valor t tal que P(Τ t) α (unilateral) ou P( T t) α. Uma variável aleatória X tem uma distribuição Qui-Quadrado se sua fdp for do tipo: υ x x e υ f (x) υ Γ 0 se x > 0 se x 0 Expectância ou Valor esperado Variância E (X) Var(X) υ υ O valor υ é denominado de Grau de liberdade,00 0,80 Q() Q() Q() A planilha fornece a função direta e 0,60 0,40 0,0 0,00 0,0,0,0,0 4,0 5,0 6,0 7,0 8,0 inversa, em relação a área à direita de cada curva (uma para cada linha), isto é, dado um valor de área na cauda direita (α), a tabela retorna um valor x tal que P(χ x) α 6

27 Uma variável aleatória X tem uma distribuição F ou de Snedecor se sua fdp for do tipo: m n m m + n Γ m n x f (x) m n Γ Γ 0 ( n + mx ) m+ n se x 0 se x > 0 Expectância ou Valor esperado m E(X) m Variância Var(X) (m + n - ) m m(n - )(n - 4) m é o grau de liberdade do numerador e n do denominador,0 0,8 0,6 0,4 0, 0,0 fdp de F(, ) F(, 5) F(5, 0) F(0, 0) A planilha fornece a função direta e inversa da área à direita de cada curva (uma para cada par de valores numerador, denominador). 7

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M /r

Leia mais

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr.

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/~viali Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Texto SII: ELEMENTOS DE PROBABILIDADE 3.1. INTRODUÇÃO...9

Texto SII: ELEMENTOS DE PROBABILIDADE 3.1. INTRODUÇÃO...9 SUMÁRIO 1. INTRODUÇÃO...2 1.1. MODELOS...2 1.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)...2 1.3. O ESPAÇO AMOSTRAL...3 1.4. EVENTOS...4 1.5. COMBINAÇÃO DE EVENTOS...4 1.6. EVENTOS MUTUAMENTE EXCLUDENTES...5

Leia mais

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas;

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali Eperiência na qual o resultado é incerto. E : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; E : Joga-se uma

Leia mais

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras;

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras; Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Eperimento Aleatório Eperiência para o qual o modelo probabilístico é adequado. Eemplos E : Joga-se uma moeda quatro vezes e observa-se

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

I NTRODUÇÃO. SÉRIE: Probabilidade

I NTRODUÇÃO. SÉRIE: Probabilidade SUMÁRIO 1. COMBINATÓRIA... 5 1.1. CONJUNTOS... 5 1.2. OPERAÇÕES COM CONJUNTOS... 5 1.3. APLICAÇÕES DOS DIAGRAMAS DE VENN... 6 1.4. FATORIAL... 6 1.5. PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PRINCÍPIO MULTIPLICATIVO)...

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Texto SII: ELEMENTOS DE PROBABILIDADE

Texto SII: ELEMENTOS DE PROBABILIDADE SUMÁRIO 1. INTRODUÇÃO... 2 1.1. MODELOS... 2 1.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)... 2 1.3. O ESPAÇO AMOSTRAL... 3 1.4. EVENTOS... 4 1.5. COMBINAÇÃO DE EVENTOS... 4 1.6. EVENTOS MUTUAMENTE EXCLUDENTES...

Leia mais

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas

Leia mais

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 SUMÁRIO 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 1.1. CÁLCULO DE PROBABILIDADE COM UMA VAC... 2 1.2. A FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA... 3 1.3. VARIÁVEL ALEATÓRIA CONTÍNUA (CARACTERIZAÇÃO)... 4 1.3.1.

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

M501 Probabilidade, Estatística e Processos Estocásticos

M501 Probabilidade, Estatística e Processos Estocásticos Notas de aula M501 Probabilidade, Estatística e Processos Estocásticos Dayan Adionel Guimarães Novembro de 007 Agradecimento Aos professores: Dr. José Marcos Câmara Brito Dr. Carlos Alberto Ynoguti M.Sc.

Leia mais

SÉRIE: Probabilidade Texto 1: PROBABILIDADE UNIVARIADA I 1. INTRODUÇÃO...3

SÉRIE: Probabilidade Texto 1: PROBABILIDADE UNIVARIADA I 1. INTRODUÇÃO...3 SUMÁRIO. INTRODUÇÃO...3.. MODELOS...3... Modelo determínistico...3..2. Modelo não-determinístico ou probabilístico...3.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)...4.2.. Características dos Experimentos

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

UFRGS - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA - DEPARTAMENTO DE ESTATÍSTICA

UFRGS - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA - DEPARTAMENTO DE ESTATÍSTICA UFRGS - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA - DEPARTAMENTO DE ESTATÍSTICA SUMÁRIO 1. COMBINATÓRIA... 3 1.1. CONJUNTOS... 3 1.2. OPERAÇÕES COM CONJUNTOS... 3 1.3. APLICAÇÕES

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

Avaliação e Desempenho Aula 4

Avaliação e Desempenho Aula 4 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios

Leia mais

Experimento Aleatório

Experimento Aleatório Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar

Leia mais

Conceitos Básicos de Estatística Aula 2

Conceitos Básicos de Estatística Aula 2 Conceitos Básicos de Estatística Aula 2 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes diana.mendes@iscte.pt 13 de Setembro de 2011 DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Estatística 13 de Setembro

Leia mais

Probabilidades. Ricardo S. Ehlers. Departamento de Matemática Aplicada e Estatística Universidade de São Paulo.

Probabilidades. Ricardo S. Ehlers. Departamento de Matemática Aplicada e Estatística Universidade de São Paulo. Ricardo S. Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo. Ricardo Ehlers 1 1 NOÇÕES BÁSICA 1 Noções Básicas Os métodos estatísticos para análise de dados estão associados

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA PROBABILIDADES E ESTATÍSTICA Ao conjunto de todos os resultados possíveis, de uma eperiência aleatória, chamamos espaço amostral e representamos por S. Define-se acontecimento como sendo um subconjunto

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

CÁLCULO DE PROBABILIDADES ASSOCIADAS ÀS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

CÁLCULO DE PROBABILIDADES ASSOCIADAS ÀS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 2015: Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática Universidade Federal de São João del-rei - UFSJ Sociedade Brasileira de Matemática - SBM CÁLCULO DE PROBABILIDADES ASSOCIADAS

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli CAPÍTULO 5 - Algumas distribuições de variáveis aleatórias discretas e contínuas (parte considerada incompleta visto o volume de informações importantes não incluídas, além de eercícios. Tais informações

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em

Leia mais

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.

Leia mais

1 Axiomas de Probabilidade

1 Axiomas de Probabilidade 1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO SUMÁRIO. INTRODUÇÃO... 3.. GENERALIDADES... 3.. METODOLOGIA DO TESTE DE HIPÓTESES... 3.3. AS HIPÓTESES... 3.4. A ESCOLHA DO TESTE ESTATÍSTICO... 4.5. CONCEITOS ADICIONAIS DO TESTE DE HIPÓTESES... 4.6.

Leia mais

Exercícios Resolvidos da Distribuição Binomial

Exercícios Resolvidos da Distribuição Binomial . a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira - Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Datas Importantes 2013/01

Datas Importantes 2013/01 INSTRUMENTAÇÃO CARACTERÍSTICAS DE UM SISTEMA DE MEDIÇÃO PROBABILIDADE PROPAGAÇÃO DE INCERTEZA MÍNIMOS QUADRADOS Instrumentação - Profs. Isaac Silva - Filipi Vianna - Felipe Dalla Vecchia 2013 Datas Importantes

Leia mais

Distribuição Binomial

Distribuição Binomial Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?

Leia mais

Inferência Estatística Aula 3

Inferência Estatística Aula 3 Inferência Estatís Aula 3 Agosto de 008 Mônica Barros Conteúdo Revisão de Probabilidade Algumas das principais distribuições discretas Distribuição de Poisson Distribuição Poisson como aproximação da Binomial

Leia mais

INTEGRAIS DEFINIDAS E ECONOMIA

INTEGRAIS DEFINIDAS E ECONOMIA Capítulo 13 INTEGRAIS DEFINIDAS E ECONOMIA 13.1 A Integral Definida como Variação Total Neste capítulo estudaremos o problema inverso do estudado na Análise Marginal. Suponha que desejamos determinar o

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS ESPERANÇA MATEMÁTICA. Camila Macedo Lima

UNIVERSIDADE ESTADUAL DE SANTA CRUZ DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS ESPERANÇA MATEMÁTICA. Camila Macedo Lima UNIVERSIDADE ESTADUAL DE SANTA CRUZ DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS ESPERANÇA MATEMÁTICA Camila Macedo Lima Ilhéus, Bahia 2003 ESPERANÇA MATEMÁTICA Monografia apresentada à Disciplina Seminário

Leia mais

PROBABILIDADE ESTATÍSTICA

PROBABILIDADE ESTATÍSTICA PROBABILIDADE E ESTATÍSTICA (1000 ton) 2500 Gráfico 4.1. Produção de Arroz do Município X - 1984-1994 2000 1500 1000 500 0 84 85 86 87 88 89 90 91 92 93 94 M. Bastos 2005 SUMÁRIO 1 TEORIA DOS CONJUNTOS

Leia mais

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:

Leia mais

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo: Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira

Leia mais

Operações sobre uma variável aleatória

Operações sobre uma variável aleatória Capítulo 3 Operações sobre uma variável aleatória - Esperança matemática Neste capítulo, introduz-se algumas operações importantes que podem ser realizadas sobre uma variável aleatória. 3.1 Esperança Valor

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 quadrimestre 011 Além

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

Probabilidade. Definições, Notação, Regra da Adição

Probabilidade. Definições, Notação, Regra da Adição Probabilidade Definições, Notação, Regra da Adição Definições básicas de probabilidade Experimento Qualquer processo de observação ou medida que permita ao pesquisador fazer coleta de informações. Evento

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Aula 10 Variáveis aleatórias discretas

Aula 10 Variáveis aleatórias discretas Variáveis aleatórias discretas MÓDULO - AULA 10 Aula 10 Variáveis aleatórias discretas Nesta aula você aprenderá um conceito muito importante da teoria de probabilidade: o conceito de variável aleatória.

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

2 T Probabilidade: Definições básicas. 3 T Probabilidade: Definições básicas

2 T Probabilidade: Definições básicas. 3 T Probabilidade: Definições básicas Programa do Curso Métodos Estatísticos sticos de Apoio à Decisão Aula 4 Mônica Barros, D.Sc. Julho de 2008 Disciplina Métodos Estatísticos de Apoio à Decisão - BI MASTER 2008 Responsável Mônica Barros

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

Revisão de Estatística Aplicada a Finanças

Revisão de Estatística Aplicada a Finanças Revisão de Estatística Aplicada a Finanças INTRODUÇÃO A revisão que apresentaremos destina-se a examinar conceitos importantes de Estatística, que tornem possível a compreensão do conteúdo do livro de

Leia mais

Probabilidade - aula III

Probabilidade - aula III 27 de Março de 2014 Regra da Probabilidade Total Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a Regra da Probabilidade

Leia mais

Experimentos Aleatórios e Espaços Amostrais

Experimentos Aleatórios e Espaços Amostrais Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

Exercícios Resolvidos da Distribuição de Poisson

Exercícios Resolvidos da Distribuição de Poisson . a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo: Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

1 Probabilidade Condicional - continuação

1 Probabilidade Condicional - continuação 1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais