ANALISE COMBINATORIA Um pouco de probabilidade

Tamanho: px
Começar a partir da página:

Download "ANALISE COMBINATORIA Um pouco de probabilidade"

Transcrição

1 ANALISE COMBINATORIA Um pouco de probabilidade Programa Pró-Ciência Fapesp/IME-USP-setembro de 1999 Antônio L. Pereira -IME USP (s. 234A) tel Um carro e dois bodes Você está em um programa de auditório, e o apresentador o convida a escolher uma entre três portas. Atrás de uma delas há um carro novinho em folha e atrás de cada uma das outras há um bode. Você ganhará o que estiver atrás da porta escolhida. Você então escolhe inicialmente, em caráter provisório, uma das três portas. O apresentador do programa, que sabe o que há atrás de cada porta, abre neste momento uma das outras duas portas, sempre revelando um dos dois bodes. Ele então pergunta a você se quer ficar com a porta inicialmente escolhida ou trocar pela outra porta fechada. Qual seria sua estratégia: você trocaria ou não de porta? Este problema causou intensa polêmica quando apareceu em um jornal americano em Muitas respostas incorretas, até algumas de matemáticos foram enviadas ao jornal. A polêmica só terminou com a publicação do artigo Let s Make a Deal: The Player s Dilemma no jornal The American Statistician. Posteriormente, o mesmo problema apareceu na RPM n o 33 no artigo Os dois bodes. Nesse caso, a revista preferiu não repetir a polêmica que também aqui se iniciava. Gostaríamos de apresentar aqui uma pequena introdução a este fascinante ramo da Matemàtica chamado Probabilidade. Esperamos que no final dessas notas estejamos preparados para discutir com proveito o problema dos bodes. 2 Breve nota histórica A Probabilidade pode ser descrita como a teoria Matemática da incerteza. Em um certo sentido, ela é usada cotidianamente por todos nós, por exemplo, para avaliar riscos. (Há nuvens negras no céu. É provável que chova. Melhor carregar um guarda-chuva). Neste sentido noções intuitivas de probabilidade certamente foram usadas desde a Pré-História. Entretanto, considera-se que a teoria matemática da probabilidade teve início no século XVII, com a correspondência entre os matemáticos franceses Blaise Pascal e Pierre Fermat, a propósito de chances de ganho em jogos de azar. Deste início um tanto frívolo, a teoria se desenvolveu tremendamente e alargou seu 1

2 campo de aplicações para diversas áreas da ciência e tecnologia (e também para este cassino moderno: o Mercado Financeiro). No século XX, com o surgimento da Mecânica Quântica a aplicação da Teoria de Probabilidade se estendeu ao âmago de nossa compreensão das leis da Natureza. 3 Que rolem os dados. Espaços Amostrais Para introduzir alguns conceitos básicos, voltemos à origem da teoria de probabilidades: jogos de azar. Um dos mais simples desses jogos é o lançamento de um ou mais dados. Suponhamos, por exemplo, que temos dois deles, um verde e outro amarelo (este será um jogo patriótico). Estamos interessados nos números que aparecem na face superior dos dados quando eles são lançados uma vez. Qualquer resultado possível deste experimento pode ser representado por um par ordenado (a, b), onde 1 a 6 é, digamos, o número que aparece na face superior do dado verde, e 1 b 6 é o mesmo para o dado amarelo. O conjunto Ω de todos os resultados possíveis é denominado o espaço amostral para o experimento. No exemplo, uma representação conveniente para Ω é então: Ω = {(a, b) 1 a, b 6} (observe que temos ao todo 36 resultados possíveis. Usamos a palavra aleatório para experimentos do tipo descrito acima, que satisfazem duas condições básicas. O experimento pode ser repetido sob as mesmas condições Não é possível prever o seu resultado a priori. Usaremos também a palavra evento para qualquer conjunto cujos elementos sejam resultados possíveis para um experimento aleatório, em outras palavras, para um subconjunto do espaço amostral Ω. Por exemplo, no caso do lançamento dos dois dados, o evento Obter um 7, seria: {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} Um ponto importante aqui é que um espaço amostral é um modelo matemático da situação real (e não ela própria). A razão para se construir este modelo (e outros) é que uma análise matemática só pode ser feita em modelos abstratos e não na realidade como tal. O que não pode ser esquecido é que os resultados obtidos serão então verdades matemáticas para o modelo abstrato. É claro que esperamos que esses resultados também reflitam fatos sobre o mundo real. Isto, entretanto, só pode se verdadeiro até o ponto em que o modelo reflita propriedades da situação real. A escolha do modelo não é um problema matemático mas é, certamente, extremamente importante para as aplicações. 2

3 4 Espaços Amostrais finitos e medidas de probabilidade Observe que, até este ponto, não introduzimos a idéia de probabilidade em nossa estrutura matemática, o espaço amostral. Para fazê-lo, consideremos novamente o exemplo dos dois dados, com os seus 36 resultados possíveis. Para cada um desses resultados, associemos um número entre 0 e 1 de tal forma que a soma desses números seja 1. O número associado com cada resultado é então a probabilidade deste resultado, e a coleção de todas essas atribuições de números é uma medida de probabilidade no espaço amostral. Se, agora, A é um evento não vazio, definimos a probabilidade de A como a soma das probabilidades dos elementos de A. Obviamente, existe um número infinito de maneiras de definir uma medida de probabilidade no espaço amostral Ω. Como antes, a maneira correta de fazê-lo não è um problema matemático. De fato, é mais apropriado perguntar se uma dada medida de probabilidade é útil ou não, em vista da situação real que se pretende modelar. No exemplo dos dados, parece natural por exemplo por razões de simetria, atribuir o valor 1 36 para cada um dos 36 resultados possíveis. Uma distribuição deste tipo, que atribui valor igual a qualquer resultado possível do espaço amostral é denominada distribuição uniforme. 5 Solução problema dos bodes Antes de falar na solução do problema, vamos tentar esclarecer melhor que problema exatamente estamos tentando resolver. De fato, esta é a grande fonte de confusão neste caso. O ponto é que, já que você vai escolher se troca ou não a porta, após a abertura de uma das portas restantes pelo apresentador você poderia tirar proveito de qualquer conhecimento que porventura tivesse sobre o comportamento dele. Por exemplo, pode ser que você tenha assistido o programa na televisão muitas vezes e saiba que o apresentador sempre escolhe a porta 3 se isto for possivel. Isto é uma informação adicional que pode ser usado em seu proveito! Se você escolheu a porta 1 e o apresentador abriu a porta 2, então dado que o apresentador sempre escolhe a porta 3 quanto pode conclui-se que o carro está com certeza na porta 3! Interpretado desta forma a solução do problema depende do conceito de probabilidade condicional que não introduzimos aqui. O problema que consideraremos é o de descobrir a estratégia adequada sem levar em conta os critério usado pelo apresentador para escolher a porta a ser aberta. Esta será, portanto, uma estratégia a priori, definida mesmo antes do jogo começar! Para resolver o problema, tudo o que precisamos é construir um espaço amostral com uma medida de probabilidade adequada. Vamos assumir que você troca de porta e calcular a sua probabilidade de ganhar o carro nesse caso. Obviamente, a probabilidade de ganho, caso você não 3

4 troque de porta será a diferença entre 1 e a probabilidade que vamos calcular. Para isto, precisamos explicitar algumas hipótes apenas sugeridas pelo enunciado. Vamos assumir então que temos 3 portas numeradas de 1 a 3 e: a) O carro tem igual probabilidade de estar atrás de qualquer uma das portas. b) Você escolhe uma das portas também com igual probabilidade. Um espaço amostral conveniente para o problema é então o seguinte: (1, 1, 2, P), (1, 1, 3, P), (1, 2, 3, G), (1, 3, 2, G) Ω := (2, 2, 1, P), (2, 2, 3, P), (2, 1, 3, G), (2, 3, 1, G) (3, 3, 1, P), (3, 3, 2, P) (3, 1, 2, G), (3, 2, 1, G) Nas quadras acima, o primeiro número representa a porta onde o carro está, o segundo a porta escolhida por você e o terceiro representa a porta aberta pelo apresentador após sua primeira escolha. As letras G ou P na quarta posição indicam apenas se você ganha o carro ou o perde (e ganha o bode). Elas são a rigor desnecessárias para o problema matemático em si mas são úteis para facilitar a exposição. Qual deve ser a probabilidade de cada um dos resultados acima? Consideremos, por exemplo, o resultado (1, 2, 3, G). Pelas considerações acima a probabilidade de que o primeiro número seja 1 é de 1/3 e a probabilidade de que o segundo seja 2 também é de 1/3. Agora, uma vez que o carro está na porta 1 e você escolheu a porta 2, o apresentador, pelas condições do problema, não tem outra alternativa: ele tem que abrir a porta 3 (do contrário abriria a porta onde está o carro). Concluímos que devemos atribuir a probabilidade 1/3 1/3 = 1/9 a este resultado. O mesmo vale para qualquer uma das quadras assinaladas com um G na quarta posição. O que se pode dizer a respeito das quadras onde o P aparece na última posicão? Tomemos, por exemplo, a quadra (1, 1, 2, P). Como acima, a probabilidade de termos 1 na primeira posição e 1 na segunda posição deve ser 1/9 Qual é a probabilidade de termos 2 na terceira posição? Isto não é claro, a partir dos dados do problema. Pois agora o apresentador pode optar pelas portas 2 ou 3 e não sabemos exatamente como ele faz para escolher. Pode ser, por exemplo, que ele escolha uma das duas possíveis com igual probabilidade. Neste caso, deveríamos atribuir probabilidade 1/18 para cada um dos resultados (1, 1, 2, P) e (1, 1, 3, P). Isto, entretando, não está claro e também não é necessário para resolver o problema em questão. De fato, só o que queremos calcular é sua probabilidade de ganhar, ou seja, queremos calcular a probabilidade do evento: A = (1, 2, 3, G), (1, 3, 2, G) (2, 1, 3, G), (2, 3, 1, G) (3, 1, 2, G), (3, 2, 1, G) Pelas considerações feitas acima, a probabilidade de cada um dos resultados em A deve ser igual a 1/9. Como existem 6 resultados possíveis em A segue que P(A) = 2/3. O evento B = voce perde, sendo complementar a A, terá então probabilidade 1 2/3 = 1/3. 4

5 Como observação final, queremos enfatizar mais uma vez que, para resolver o problema foi necessária traduzir o enunciado original formulado em uma linguagem um tanto ambígua, explicitando algumas hipóteses apenas sugeridas. É claro que estas hipóteses representam uma interpretação do problema, e podem haver outras interpretações plausíveis. No caso deste problema em especial, como já indicamos, podemos também formular um modelo matemático, levando em conta a estratégia adotada pelo apresentador para escolher a porta a ser aberta. Isto conduz a um problema matemático diferente no qual é preciso introduzir o conceito de probabilidade condicional. Para o leitor interessado recomendamos as referências abaixo, nas quais estas notas se baseiam. Referências [1] Isaac, R., The Pleasures of Probability, Undergraduate Texts in Mathematics, Springer-Verlag, [2] Morgan, J.P, Chaganty N.R., Dahiya R.C e Doviak M.J., Let s Make a Deal: The Player s Dilemma, The American Statistician, November 1991, vol 45, n. 4,

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

Experimentos Aleatórios e Espaços Amostrais

Experimentos Aleatórios e Espaços Amostrais Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Princípio da contagem e Probabilidade: conceito

Princípio da contagem e Probabilidade: conceito Princípio da contagem e Probabilidade: conceito característica do que é provável perspectiva favorável de que algo venha a ocorrer; possibilidade, chance. Ex.: há pouca possibilidade de chuva grau de segurança

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

Afinal o que são e como se calculam os quartis? Universidade do Algarve Departamento de Matemática

Afinal o que são e como se calculam os quartis? Universidade do Algarve Departamento de Matemática Afinal o que são e como se calculam os quartis? Susana Fernandes Mónica Pinto Universidade do Algarve Departamento de Matemática Introdução Imaginemos que queremos calcular os quartis de um conjunto de

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

TÓPICOS DE RESOLUÇÃO DE PROBLEMAS: COMBINATÓRIA

TÓPICOS DE RESOLUÇÃO DE PROBLEMAS: COMBINATÓRIA TÓPICOS DE RESOLUÇÃO DE PROBLEMAS: COMBINATÓRIA Heitor Achilles Dutra da Rosa CEFET RJ heitorachilles@aolcom Introdução Entendemos por Combinatória o ramo da Matemática que nos permite resolver problemas

Leia mais

Uma Proposta Didático-Pedagógica para o Estudo da Concepção Clássica de Probabilidade

Uma Proposta Didático-Pedagógica para o Estudo da Concepção Clássica de Probabilidade Uma Proposta Didático-Pedagógica para o Estudo da Concepção Clássica de Probabilidade José Marcos Lopes Depto de Matemática, FEIS, UNESP 15385-000, Ilha Solteira, SP E-mail: jmlopes@mat.feis.unesp.br Resumo:

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

1 O problema original

1 O problema original COMO GANHAR UM AUTOMOVEL Antonio Luiz Pereira - IME-USP O problema original Em seu artigo Como Perder Amigos e Enganar Pessoas Eureka! n 0 o Prof. Nicolau Saldanha discute quatro problemas envolvendo probabilidades,

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Probabilidade Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Distribuição Uniforme Usada comumente nas situações em que não há razão para atribuir probabilidades diferentes a um conjunto

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176

Leia mais

UMA PROPOSTA DE ENSINO DA PROBABILIDADE A PARTIR DO MÉTODO DE RESOLUÇÃO DE PROBLEMAS E DA LUDICIDADE EM SALA DE AULA

UMA PROPOSTA DE ENSINO DA PROBABILIDADE A PARTIR DO MÉTODO DE RESOLUÇÃO DE PROBLEMAS E DA LUDICIDADE EM SALA DE AULA UMA PROPOSTA DE ENSINO DA PROBABILIDADE A PARTIR DO MÉTODO DE RESOLUÇÃO DE PROBLEMAS E DA LUDICIDADE EM SALA DE AULA RESUMO José Jorge de Sousa; Francisco Aureliano Vidal Instituto Federal de Educação,

Leia mais

UMA SEQUÊNCIA DIDÁTICA PARA O ENSINO DA MATEMÁTICA PROBABILISTICA NA TERCEIRA SÉRIE DO ENSINO MÉDIO COM APOIO DE DISPOSITIVOS MÓVEIS

UMA SEQUÊNCIA DIDÁTICA PARA O ENSINO DA MATEMÁTICA PROBABILISTICA NA TERCEIRA SÉRIE DO ENSINO MÉDIO COM APOIO DE DISPOSITIVOS MÓVEIS UNIVERSIDADE SEVERINO SOMBRA Programa de Pós-Graduação Stricto Sensu Mestrado Profissional em Educação Matemática ROGÉRIO DELFINO DE SOUZA UMA SEQUÊNCIA DIDÁTICA PARA O ENSINO DA MATEMÁTICA PROBABILISTICA

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 11 Probabilidade Elementar: Novos Conceitos

Probabilidade e Estatística I Antonio Roque Aula 11 Probabilidade Elementar: Novos Conceitos Probabilidade Elementar: Novos Conceitos Vamos começar com algumas definições: Experimento: Qualquer processo ou ação bem definida que tenha um conjunto de resultados possíveis 1) Lançamento de um dado;

Leia mais

APOSTILA DE LÓGICA. # Proposições Logicamente Equivalentes. # Equivalências Básicas

APOSTILA DE LÓGICA. # Proposições Logicamente Equivalentes. # Equivalências Básicas INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. Fone (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

http://www.matematica.br/programas/icg. 5. Uma lousa denominada EPI (registrador de endereço de próxima instrução).

http://www.matematica.br/programas/icg. 5. Uma lousa denominada EPI (registrador de endereço de próxima instrução). Universidade de São Paulo Instituto de Matemática e Estatística DCC Leônidas O. Brandão 1 Computador à Gaveta O objetivo deste texto é introduzir os primeiros conceitos de algoritmos a partir de um modelo

Leia mais

Título do TCC. Nome do Aluno

Título do TCC. Nome do Aluno Universidade Federal de Goiás Instituto de Matemática e Estatística Programa de Mestrado Profissional em Matemática em Rede Nacional Título do TCC Nome do Aluno Goiânia 2013 Esta Página é a do Termo de

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

DISTRIBUIÇÃO DE FREQÜÊNCIAS

DISTRIBUIÇÃO DE FREQÜÊNCIAS DISTRIBUIÇÃO DE FREQÜÊNCIAS 1 Dados Brutos: são os dados tomados como eles são, de forma desorganizada. Indica-se por x i Rol: são os dados organizados em ordem crescente ou decrescente. Tamanho da amostra:

Leia mais

Como perder amigos e enganar pessoas

Como perder amigos e enganar pessoas Como perder amigos e enganar pessoas Nicolau C. Saldanha 9 de janeiro de 998 Neste artigo apresentaremos quatro situações simples em que probabilidades enganam. Em alguns casos a probabilidade de certos

Leia mais

Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF

Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF No capítulo anterior... Estratégias de busca auxiliadas por heurísticas (A*, BRPM)

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Projeto CONDIGITAL Probabilidade Roxa Guia do Professor

Projeto CONDIGITAL Probabilidade Roxa Guia do Professor Projeto CONDIGITAL Probabilidade Roxa Guia do Professor Página 1 de 7 Guia do Professor Caro(a) professor(a) A utilização de jogos digitais como objetos de aprendizagem tem sido difundida atualmente como

Leia mais

Como estudar o SIPIA CT

Como estudar o SIPIA CT Como estudar o SIPIA CT Versão 1.0 Índice 1. Introdução... 2 2. O Ambiente Virtual de Aprendizagem (AVA)... 2 3. Recursos do AVA... 4 3.1. Fórum de dúvidas e discussões... 5 3.2. Apostila Eletrônica...

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,

Leia mais

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira - Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito

Leia mais

1 Axiomas de Probabilidade

1 Axiomas de Probabilidade 1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada

Leia mais

A HISTÓRIA DA MATEMÁTICA As Fronteiras do Espaço

A HISTÓRIA DA MATEMÁTICA As Fronteiras do Espaço A HISTÓRIA DA MATEMÁTICA As Fronteiras do Espaço Resumo O interesse do Homem pelo espaço em que vive é coisa muito antiga. Ao longo de muitos séculos, o Homem vem tentando conhecer e representar as diferentes

Leia mais

Processos de gerenciamento de projetos em um projeto

Processos de gerenciamento de projetos em um projeto Processos de gerenciamento de projetos em um projeto O gerenciamento de projetos é a aplicação de conhecimentos, habilidades, ferramentas e técnicas às atividades do projeto a fim de cumprir seus requisitos.

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

Oficina 18: TRATAMENTO DA INFORMAÇÃO. Introdução

Oficina 18: TRATAMENTO DA INFORMAÇÃO. Introdução Oficina 18: TRATAMENTO DA INFORMAÇÃO Introdução Segundo os Parâmetros Curriculares Nacionais (PCNs) o conteúdo Tratamento da Informação, deve ser trabalhado de modo que estimule os alunos a fazer perguntas,

Leia mais

8 O Método de Alocação de Shapley

8 O Método de Alocação de Shapley 8 O Método de Alocação de Shapley Este capítulo é dividido em duas partes. A primeira apresenta o método de benefícios incrementais à medida que os agentes vão entrando na coalizão, ou seja, atribui a

Leia mais

Tabelas vista de estrutura

Tabelas vista de estrutura Tabelas vista de estrutura A vista de estrutura permite definir a configuração dos dados Vamos adicionar os restantes campos à tabela carros, de acordo com o modelo de dados feito no papel 47 Tabelas vista

Leia mais

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística

Leia mais

Matemática Aplicada às Ciências Sociais

Matemática Aplicada às Ciências Sociais Prova de Exame Nacional de Matemática Aplicada às Ciências Sociais Prova 835 2011 10.º e 11.º Anos de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Para: Direcção-Geral de Inovação e de Desenvolvimento

Leia mais

O jogo do carro e dos bodes: um problema de probabilidades que «deu que pensar»!

O jogo do carro e dos bodes: um problema de probabilidades que «deu que pensar»! 55 O jogo do carro e dos bodes: um problema de probabilidades que «deu que pensar»! CARLA HENRIQUES Departamento de Matemática, Escola Superior de Tecnologia de Viseu Há alguns anos atrás surgiu uma grande

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

Orientações para Mostra Científica IV MOSTRA CIENTÍFICA 2014 COLÉGIO JOÃO PAULO I

Orientações para Mostra Científica IV MOSTRA CIENTÍFICA 2014 COLÉGIO JOÃO PAULO I Orientações para Mostra Científica IV MOSTRA CIENTÍFICA 2014 COLÉGIO JOÃO PAULO I Tema VIDA EFICIENTE: A CIÊNCIA E A TECNOLOGIA A SERVIÇO DO PLANETA Cronograma Orientações Pré-projeto Metodologia Relatório

Leia mais

DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA

DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA INTRODUÇÃO O pesquisador social procura tirar conclusões a respeito de um grande número de sujeitos. Por exemplo, ele poderia desejar estudar: os 170.000.000 de cidadãos

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

TÉCNICAS DE PROGRAMAÇÃO

TÉCNICAS DE PROGRAMAÇÃO TÉCNICAS DE PROGRAMAÇÃO (Adaptado do texto do prof. Adair Santa Catarina) ALGORITMOS COM QUALIDADE MÁXIMAS DE PROGRAMAÇÃO 1) Algoritmos devem ser feitos para serem lidos por seres humanos: Tenha em mente

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

História da Probabilidade. Série Cultura. Objetivos 1. Apresentar alguns fatos históricos que levaram ao desenvolvimento da teoria da probabilidade.

História da Probabilidade. Série Cultura. Objetivos 1. Apresentar alguns fatos históricos que levaram ao desenvolvimento da teoria da probabilidade. História da Probabilidade Série Cultura Objetivos 1. Apresentar alguns fatos históricos que levaram ao desenvolvimento da teoria da probabilidade. História da Probabilidade Série Cultura Conteúdos História

Leia mais

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012 ESTATÍSTICA Prof. Ari Antonio, Me Ciências Econômicas Unemat Sinop 2012 1. Introdução Concepções de Estatística: 1. Estatísticas qualquer coleção consistente de dados numéricos reunidos a fim de fornecer

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas. Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos

Leia mais

4. Metodologia. Capítulo 4 - Metodologia

4. Metodologia. Capítulo 4 - Metodologia Capítulo 4 - Metodologia 4. Metodologia Neste capítulo é apresentada a metodologia utilizada na modelagem, estando dividida em duas seções: uma referente às tábuas de múltiplos decrementos, e outra referente

Leia mais

Atividades da Engenharia de Software ATIVIDADES DE APOIO. Atividades da Engenharia de Software. Atividades da Engenharia de Software

Atividades da Engenharia de Software ATIVIDADES DE APOIO. Atividades da Engenharia de Software. Atividades da Engenharia de Software Módulo 1 SCE186-ENGENHARIA DE SOFTWARE Profª Rosely Sanches rsanches@icmc.usp.br CONSTRUÇÃO Planejamento do Codificação Teste MANUTENÇÃO Modificação 2003 2 Planejamento do Gerenciamento CONSTRUÇÃO de Codificação

Leia mais

LISTA DE EXEMPLOS - PROBABILIDADE

LISTA DE EXEMPLOS - PROBABILIDADE LISTA DE EXEMPLOS - PROBABILIDADE EXEMPLO 1 CONVERTENDO UM ARREMESSO LIVRE Ache a probabilidade de que o jogador de basquete da NBA, Reggie Miller, converta um arremesso livre depois de sofrer uma falta.

Leia mais

Computadores podem pensar?

Computadores podem pensar? Computadores podem pensar? Descubra você mesmo 2008-2013 Menno Mafait (http://mafait.org) 1 Índice 1. Introdução...4 1.1. O conceito Thinknowlogy...4 2. A álgebra e lógica em linguagem natural...5 2.1.

Leia mais

CADA QUESTÃO DEVE SER RESOLVIDA NA SUA PRÓPRIA FOLHA

CADA QUESTÃO DEVE SER RESOLVIDA NA SUA PRÓPRIA FOLHA Nome: CADA QUESTÃO DEVE SER RESOLVIDA NA SUA PRÓPRIA FOLHA Universidade do Estado do Rio de Janeiro Mecânica Clássica Um fio tem a sua forma descrita por y = x 3. O fio esta orientado verticalmente com

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Preparação do Trabalho de Pesquisa

Preparação do Trabalho de Pesquisa Preparação do Trabalho de Pesquisa Ricardo de Almeida Falbo Metodologia de Pesquisa Departamento de Informática Universidade Federal do Espírito Santo Pesquisa Bibliográfica Etapas do Trabalho de Pesquisa

Leia mais

A CONSTRUÇÃO DO CONCEITO DE FUNÇÃO NO ENSINO FUNDAMENTAL

A CONSTRUÇÃO DO CONCEITO DE FUNÇÃO NO ENSINO FUNDAMENTAL A CONSTRUÇÃO DO CONCEITO DE FUNÇÃO NO ENSINO FUNDAMENTAL Monica Bertoni dos Santos PUCRS bertoni@pucrs.br Helena Koefender PUCRS helena@bewnet.com.br Karin Jelinek PUCRS karinjelinek@yahoo.com.br Márcia

Leia mais

Conjunto de todos os resultados possíveis de um experimento aleatório.

Conjunto de todos os resultados possíveis de um experimento aleatório. VII Probabilidades Em todos os fenômenos estudados pela Estatística, os resultados, mesmo nas mesmas condições de experimentação, variam de uma observação para outra, dificultando a previsão de um resultado

Leia mais

A interpretação gráfica e o ensino de funções

A interpretação gráfica e o ensino de funções A interpretação gráfica e o ensino de funções Adaptado do artigo de Katia Cristina Stocco Smole Marília Ramos Centurión Maria Ignez de S. Vieira Diniz Vamos discutir um pouco sobre o ensino de funções,

Leia mais

Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com

Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com Python e AI (Re)-introdução ao Python. Problemas de busca e principais abordagens. Exemplos em Python Por que

Leia mais

Sinopse da Teoria da Escolha

Sinopse da Teoria da Escolha 14.126 Teoria dos Jogos Sergei Izmalkov e Muhamet Yildiz Outono de 2001 Sinopse da Teoria da Escolha Esta nota resume os elementos da teoria da utilidade esperada. Para uma exposição em detalhes dos quatro

Leia mais

1. A corrida de vetores numa folha de papel.

1. A corrida de vetores numa folha de papel. 1. A corrida de vetores numa folha de papel. desenhando a pista. o movimento dos carros. o início da corrida. as regras do jogo. 2. A corrida no computador. o número de jogadores. o teclado numérico. escolhendo

Leia mais

CURSOS ON-LINE - ESTATÍSTICA BÁSICA CURSO REGULAR PROFESSOR SÉRGIO CARVALHO AULA 02

CURSOS ON-LINE - ESTATÍSTICA BÁSICA CURSO REGULAR PROFESSOR SÉRGIO CARVALHO AULA 02 Olá, amigos! AULA 02 Tudo bem com vocês? E aí, revisaram a aula passada? Espero que sim. Bem como espero que tenham resolvido as questões que ficaram pendentes! A propósito, vamos iniciar nossa aula de

Leia mais

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.

Leia mais

UM GUIA RÁPIDO ORIENTADO A RESULTADOS (vigência: 29 JUN 2009)

UM GUIA RÁPIDO ORIENTADO A RESULTADOS (vigência: 29 JUN 2009) GESTÃO DE PROCESSOS UM GUIA RÁPIDO ORIENTADO A RESULTADOS (vigência: 29 JUN 2009) 1. O QUE É PROCESSO? Processos têm sido considerados uma importante ferramenta de gestão, um instrumento capaz de aproximar

Leia mais

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para

Leia mais

Prevenção ao uso de drogas na escola: o que você pode fazer?

Prevenção ao uso de drogas na escola: o que você pode fazer? Prevenção ao uso de drogas na escola: o que você pode fazer? O educador pode contribuir para prevenir o abuso de drogas entre adolescentes de duas formas básicas: incentivando a reflexão e a adoção de

Leia mais

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.

Leia mais

Estatística Aplicada ao Serviço Social Módulo 1:

Estatística Aplicada ao Serviço Social Módulo 1: Estatística Aplicada ao Serviço Social Módulo 1: Introdução à Estatística Importância da Estatística Fases do Método Estatístico Variáveis estatísticas. Formas Iniciais de Tratamento dos Dados Séries Estatísticas.

Leia mais

Valor Prático da Distribuição Amostral de

Valor Prático da Distribuição Amostral de DISTRIBUIÇÃO AMOSTRAL DA MÉDIA DA AMOSTRA OU DISTRIBUIÇÃO AMOSTRAL DE Antes de falarmos como calcular a margem de erro de uma pesquisa, vamos conhecer alguns resultados importantes da inferência estatística.

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

UNIVERSIDADE DO ESTADO DO PARÁ DISCIPLINA PRISE/PROSEL - 1ª ETAPA

UNIVERSIDADE DO ESTADO DO PARÁ DISCIPLINA PRISE/PROSEL - 1ª ETAPA UNIVERSIDADE DO ESTADO DO PARÁ DISCIPLINA PRISE/PROSEL - 1ª ETAPA Competência Geral para a Matemática no Ensino Médio: Reconhecer, Interpretar e utilizar as informações matemáticas selecionadas a partir

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de

Leia mais

Avaliação e Desempenho Aula 4

Avaliação e Desempenho Aula 4 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios

Leia mais

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Mas, como utilizar essa ferramenta tão útil e que está à sua disposição?

Mas, como utilizar essa ferramenta tão útil e que está à sua disposição? Caríssimo aluno da Rede CEJA, Seja muito bem vindo à sua escola! Estamos muito felizes que você tenha optado por dar continuidade aos seus estudos conosco, confiando e acreditando em tudo o que poderemos

Leia mais

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA PORCENTAGEM MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA Quando é dito que 40% das pessoas entrevistadas votaram no candidato A, esta sendo afirmado que, em média, de cada pessoas, 40 votaram no candidato

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se

Leia mais

Imagens Mentais Por Alexandre Afonso

Imagens Mentais Por Alexandre Afonso 2 Imagens Mentais Por Alexandre Afonso 1ª Edição, 08/04/2016 As novas edições serão sempre disponibilizadas no link: http://alexandreafonso.com.br/e book imagens mentais 2016 alexandreafonso.com.br. Todos

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Inferências Geográfica: Inferência Bayesiana Processo Analítico Hierárquico Classificação contínua

Inferências Geográfica: Inferência Bayesiana Processo Analítico Hierárquico Classificação contínua Inferências Geográfica: Inferência Bayesiana Processo Analítico Hierárquico Classificação contínua Análise Multi-Critério Classificação continua (Lógica Fuzzy) Técnica AHP (Processo Analítico Hierárquico)

Leia mais

Introdução à Programação e Algoritmos. Aécio Costa

Introdução à Programação e Algoritmos. Aécio Costa Aécio Costa Programação é a arte de fazer com que o computador faça exatamente o que desejamos que ele faça. O que é um Programa? Uma seqüência de instruções de computador, para a realização de uma determinada

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS

PROF. LUIZ CARLOS MOREIRA SANTOS 1 - CONCEITO PROF. LUIZ CARLOS MOREIRA SANTOS CONJUNTOS Conjunto proporciona a idéia de coleção, admitindo-se coleção de apenas um elemento (conjunto unitário) e coleção sem nenhum elemento (conjunto vazio).

Leia mais

Construção de Ambientes de Saúde

Construção de Ambientes de Saúde Construção de Ambientes de Saúde Implantamos o que planejamos Se você recebeu este material provavelmente o projeto de seu ambiente de saúde foi feito conosco. Na L+M, é assim. Apostamos tanto em nossos

Leia mais

Uma avaliação de José Amostra para o cargo de Vendedor de XXX. Preparada para Company Brasil XX de março de 20XX

Uma avaliação de José Amostra para o cargo de Vendedor de XXX. Preparada para Company Brasil XX de março de 20XX Uma avaliação de para o cargo de Vendedor de XXX Preparada para Company Brasil XX de março de 20XX Perfil Caliper concluído em XX de março de 20XX Caliper Estratégias Humanas do Brasil Ltda., Rua Eça de

Leia mais