24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18"

Transcrição

1 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis de energia. 4/Abril/013 Aula 19 Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial 1

2 Aula anterior Princípio de Incerteza de Heisenberg (cont.) Se uma medição da posição for feita com precisão x e, simultaneamente, se se medir a componente p x do momento com precisão p x, então o produto das duas incertezas não pode ser inferior a h / (). Princípio da Incerteza xp com h Se existe uma incerteza no momento da partícula, também existirá uma incerteza na sua energia. E t Esta relação impõe um limite para a medição da energia de um sistema.

3 Aula anterior Probabilidade de encontrar uma partícula numa certa região A probabilidade P ab de encontrar a partícula no intervalo b x a é igual a P ab b a dx Experimentalmente, existe sempre alguma probabilidade de encontrar a partícula num ponto para um dado instante, pelo que a probabilidade vai estar entre 0 e 1. Por exemplo, se a probabilidade de encontrar uma partícula entre dois pontos for igual a 0,3, então há 30% de hipóteses de ela estar nesse intervalo. A probabilidade de uma partícula se encontrar entre os pontos a e b é igual à área definida pela curva entre a e b. 3

4 Aula anterior Posição média de uma partícula A função de onda, para além de permitir calcular a probabilidade de encontrar uma partícula numa dada região, também pode dar informações de outras quantidades mensuráveis, como o momento e a energia. Em particular, é por vezes útil conhecer qual a posição média de uma partícula numa dada região: valor expectável. O valor expectável é definido como b x x dx a e é igual ao valor médio da posição da partícula representada pela função de onda na região delimitada por a e b. 4

5 Aula anterior Partícula numa caixa de potencial a) funções de onda b) distribuições de probabilidade A partir da função de onda (x) = A sen (n x / L) que tipo de informações será possível obter acerca da partícula? 5

6 Energia Aula anterior Partícula numa caixa (cont.) E h 8 m L n n com n = 1,, 3 No estado com menor energia (n =1) esta tem o valor de E h 1 8 m L Os estados mais energéticos (n >1) têm energias A energia mínima é > 0 E = 4E 1, E 3 = 9 E 1, Uma partícula numa caixa não pode ter energia nula 6

7 Equação de Schrödinger Será possível usar o modelo da partícula numa caixa para prever os níveis de energia electrónicos num átomo? Problema: O electrão não está confinado a uma caixa de paredes infinitas (nem as paredes são verticais). Modelo da energia potencial em função da distância ao núcleo para um átomo. 7

8 Equação de Schrödinger (cont.) Solução: a equação de Schrödinger permite determinar as funções de onda de uma partícula num poço de potencial qualquer, de uma maneira sistemática; a partir das funções de onda é possível determinar as densidades de probabilidade, os comprimentos de onda, os momentos, os níveis de energia, 8

9 Equação de Schrödinger (cont.) A expressão geral (clássica) da equação das ondas para ondas que se deslocam ao longo do eixo x é 1 x v t em que v é a velocidade da onda e depende do espaço (x) e do tempo (t ) No caso mais simples, é possível separar a dependência no espaço da dependência no tempo: (x, t ) = (x) cos t Substituindo na equação das ondas, vem cos t - cos t x v - x v 9

10 Equação de Schrödinger (cont.) Partindo da expressão anterior e considerando as relações de de Broglie para as ondas (de matéria) = f = v / e p = h / 4 p p v h Sendo a energia total E a soma das energias cinética e potencial p E E U U m total cin pot pot p m Etotal -U pot v p m E -U total pot 10

11 Equação de Schrödinger (cont.) Substituindo na equação das ondas obtém-se a Equação de Schrödinger na sua forma mais simples, independente do tempo, para uma partícula com movimento ao longo de x : x d - U pot x x Etotal x m dx Equação de Schrödinger d x m - E -U dx 11

12 Aplicações da equação de Schrödinger 1º partícula numa caixa de potencial A equação de Schrödinger permite explicar os sistemas atómico e nuclear, onde os métodos clássicos falham. Equação de Schrödinger para uma partícula numa caixa: d x m - E -U dx A energia potencial nas paredes da caixa é nula e as paredes são infinitas. U (x) = 0 para 0 x L U (x) = para x 0 e x L 1

13 1º partícula numa caixa de potencial (cont.) Na região 0 x L a equação de Schrödinger pode ser escrita como d x - m E dx Para simplificar, se se fizer k m E d dx x -k 13

14 1º partícula numa caixa de potencial (cont.) Agora é necessário resolver a equação de Schrödinger para determinar a função de onda que representa a partícula na caixa. Como as paredes são infinitas, vai ser nula fora da caixa. Neste caso, as duas condições fronteira são : (x) = 0 para x = 0 e x = L A solução da equação de Schrödinger que satisfaz estas condições é do tipo x A sen k x 14

15 Energia 1º partícula numa caixa, verificação da solução 1ª condição fronteira : (x) = 0 para x = 0 É verificada (sen 0 = 0) ª condição fronteira : (x) = 0 para x = L É verificada se k L for um múltiplo de, ou seja, se k L = n, com n inteiro Como se definiu k m E, tem-se, a partir desta condição m E k L L n A energia mínima é > 0 15

16 1º partícula numa caixa, verificação da solução (cont.) m E k L L n (em função da energia) E h 8 m L n n (idêntico ao resultado obtido anteriormente) 16

17 1º partícula numa caixa, verificação da solução (cont.) x A sen k x m E k L L n x n x A sen L Para determinar A vai ser necessário usar a condição de normalização: dx 1 17

18 1º partícula numa caixa, verificação da solução (cont.) A probabilidade da partícula estar na caixa (ou seja, em 0 < x < L) tem de ser igual a 1: L 0 dx1 x n x A sen L L L n x dx A sen dx 1 L 0 0 Dado que sen ax x sen ax dx 4a L n x L 0 L A sen dx A 1 L 18

19 1º partícula numa caixa, verificação da solução (cont.) x n x sen L L (finalmente ) 19

20 Uma partícula é descrita pela função de onda = a x entre x = 0 e x = 1 e por = 0 fora desta região. O seu movimento está limitado ao eixo x. Determine a probabilidade da partícula ser encontrada entre x = 0,45 e x = 0,55. A função de onda pode ser representada por: 0 0,45 0,55 1 x A probabilidade vai ser dada por: x1 0, ,55 x P dx a x dx a 0,05 a 3 x 0,45 0,45 0

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Além do Modelo de Bohr

Além do Modelo de Bohr Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

22/Abr/2015 Aula 15. 17/Abr/2015 Aula 14

22/Abr/2015 Aula 15. 17/Abr/2015 Aula 14 17/Abr/2015 Aula 14 Introdução à Física Quântica Radiação do corpo negro; níveis discretos de energia. Efeito foto-eléctrico: - descrições clássica e quântica - experimental. Efeito de Compton. 22/Abr/2015

Leia mais

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas.

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas. UniposRio - FÍSICA Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro 9 de novembro de 00 Nome (legível): Assinatura: Leia atentamente as oito (8) questões e responda nas folhas de

Leia mais

Princípios da Mecânica Quântica

Princípios da Mecânica Quântica Princípios da Mecânica Quântica Conceitos básicos de Mecânica Quântica Em 1900 Max Planck introduziu o conceito de quantum de energia. Neste conceito a energia só poderia ser transferida em unidades discretas

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Faculdades Anhanguera

Faculdades Anhanguera 2º Aula de Física 2.1 Posição A posição de uma partícula sobre um eixo x localiza a partícula em relação á origem, ou ponto zero do eixo. A posição é positiva ou negativa, dependendo do lado da origem

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Vestibular UFRGS 2015 Resolução da Prova de Matemática

Vestibular UFRGS 2015 Resolução da Prova de Matemática Vestibular UFRGS 015 Resolução da Prova de Matemática 6. Alternativa (D) (0,15) 15 1 15 8 1 15 [() ] 15 5 7. Alternativa (C) Algarismo da unidade de 9 99 é 9 Algarismo da unidade de é 6 9 6 8. Alternativa

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

Lista de Exercícios de Física II Refração Prof: Tadeu Turma: 2 Ano do Ensino Médio Data: 03/08/2009

Lista de Exercícios de Física II Refração Prof: Tadeu Turma: 2 Ano do Ensino Médio Data: 03/08/2009 Lista de Exercícios de Física II Refração Prof: Tadeu Turma: 2 Ano do Ensino Médio Data: 03/08/2009 1. Na figura a seguir, está esquematizado um aparato experimental que é utilizado para estudar o aumento

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

FÍSICA PRIMEIRA ETAPA - 1998

FÍSICA PRIMEIRA ETAPA - 1998 FÍSICA PRIMEIRA ETAPA - 1998 QUESTÃO 01 Este gráfico, velocidade versus tempo, representa o movimento de um automóvel ao longo de uma estrada reta A distância percorrida pelo automóvel nos primeiros 1

Leia mais

Ondas Sonoras. Velocidade do som

Ondas Sonoras. Velocidade do som Ondas Sonoras Velocidade do som Ondas sonoras são o exemplo mais comum de ondas longitudinais. Tais ondas se propagam em qualquer meio material e sua velocidade depende das características do meio. Se

Leia mais

Introdução às equações diferenciais

Introdução às equações diferenciais Introdução às equações diferenciais Professor Leonardo Crochik Notas de aula 1 O que é 1. é uma equação:... =... 2. a incógnita não é um número x R, mas uma função x(t) : R R 3. na equação estão presentes,

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN MÉTODOS DESCRITIVOS Há determinados problemas em Geometria Descritiva

Leia mais

Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013

Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013 Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013 01 - A figura mostra uma série de fotografias estroboscópicas de duas esferas, A e B, de massas diferentes. A esfera A foi abandonada em queda livre

Leia mais

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar?

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar? Matemática Aplicada 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo que as unidades estão em quilômetros. A altitude em

Leia mais

ESPECIALIZAÇAO EM CIÊNCIAS E TECNOLOGIAS NA EDUCAÇÃO ACÚSTICA

ESPECIALIZAÇAO EM CIÊNCIAS E TECNOLOGIAS NA EDUCAÇÃO ACÚSTICA ESPECIALIZAÇAO EM CIÊNCIAS E TECNOLOGIAS NA EDUCAÇÃO ACÚSTICA INTRODUÇÃO É o segmento da Física que interpreta o comportamento das ondas sonoras audíveis frente aos diversos fenômenos ondulatórios. Acústica

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

(D) A propriedade que permite reconhecer dois sons correspondentes à mesma nota musical, emitidos por fontes sonoras diferentes, é a frequência.

(D) A propriedade que permite reconhecer dois sons correspondentes à mesma nota musical, emitidos por fontes sonoras diferentes, é a frequência. Escola Físico-Química 8. Ano Data Nome N.º Turma Professor Classificação 1. O som é produzido pela vibração de uma fonte sonora. Essa vibração, ao propagar-se num meio material, como, por exemplo, o ar,

Leia mais

2 Mecânica ondulatória

2 Mecânica ondulatória - Mecânica ondulatória. Equação de Schrödinger Em só dois anos, de 95-96, foram desenvolvidas duas novas abordagens aos fenômenos atômicos. Werner Heisenberg (9-976) criou sua mecânica matricial e Erwin

Leia mais

De acordo a Termodinâmica considere as seguintes afirmações.

De acordo a Termodinâmica considere as seguintes afirmações. Questão 01 - (UFPel RS/2009) De acordo a Termodinâmica considere as seguintes afirmações. I. A equação de estado de um gás ideal, pv = nrt, determina que a pressão, o volume, a massa e a temperatura podem

Leia mais

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson

Leia mais

RAIOS E FRENTES DE ONDA

RAIOS E FRENTES DE ONDA RAIOS E FRENTES DE ONDA 17. 1, ONDAS SONORAS ONDAS SONORAS SÃO ONDAS DE PRESSÃO 1 ONDAS SONORAS s Onda sonora harmônica progressiva Deslocamento das partículas do ar: s (x,t) s( x, t) = s cos( kx ωt) m

Leia mais

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação. Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que

Leia mais

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar 3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar Vimos que as previsões sobre as capacidades caloríficas molares baseadas na teoria cinética estão de acordo com o comportamento

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

Aula 8.1 Conteúdo: Eletrodinâmica: Associação de resistores em série, potência elétrica de uma associação em série de resistores. INTERATIVIDADE FINAL

Aula 8.1 Conteúdo: Eletrodinâmica: Associação de resistores em série, potência elétrica de uma associação em série de resistores. INTERATIVIDADE FINAL Aula 8.1 Conteúdo: Eletrodinâmica: Associação de resistores em série, potência elétrica de uma associação em série de resistores. Habilidades: Reconhecer as utilidades dos resistores elétricos, assim como,

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

Horário de Aulas Fundamental II

Horário de Aulas Fundamental II Infantil - Fundamental - Médio Horário de Aulas Fundamental II 1ª AULA 7H10 ÀS 8H 2ª AULA 8H ÀS 8H50 3ª AULA 8H50 ÀS 9H40 INTERVALO 9H40 ÀS 10H 4ª AULA 10H ÀS 10H50 5ª AULA 10H50 ÀS 11H40 6ª AULA 11H40

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Planeamento de uma Linha Eléctrica

Planeamento de uma Linha Eléctrica Introdução aos Computadores e à Programação 006/007, º Semestre 1º Trabalho de OCTAVE Planeamento de uma Linha Eléctrica Introdução Pretende-se instalar uma linha eléctrica entre as localidades de Aldeia

Leia mais

4 Aplicações I. 4.6 Exercícios. partícula numa caixa. 4.6.1 A probabilidade de transição de uma 2 L 4-1

4 Aplicações I. 4.6 Exercícios. partícula numa caixa. 4.6.1 A probabilidade de transição de uma 2 L 4-1 4-1 4 Aplicações I 4.6 Exercícios 4.6.1 A probabilidade de transição de uma partícula numa caixa A seguir iremos calcular a probabilidade de transição para uma partícula de massa m e de carga e numa caixa

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE 23 ANOS

PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE 23 ANOS PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE ANOS Duração: 60 minutos Nome: 1ª Parte Para cada uma das seguintes questões de escolha múltipla, seleccione a resposta correcta com um círculo de entre

Leia mais

Campos Vetoriais e Integrais de Linha

Campos Vetoriais e Integrais de Linha Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

Matemática A. Fevereiro de 2010

Matemática A. Fevereiro de 2010 Matemática A Fevereiro de 2010 Matemática A Itens 10.º Ano de Escolaridade No Teste intermédio, que se irá realizar no dia 5 de Maio de 2010, os itens de grau de dificuldade mais elevado poderão ser adaptações

Leia mais

O degrau de potencial. Caso II: energia maior que o degrau

O degrau de potencial. Caso II: energia maior que o degrau O degrau de potencial. Caso II: energia maior que o degrau U L 9 Meta da aula plicar o formalismo quântico ao caso de uma partícula quântica que incide sobre o degrau de potencial, definido na ula 8. Vamos

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA CAPÍTULO 1. Prof. Carlos R. A. Lima INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL

NOTAS DE AULAS DE FÍSICA MODERNA CAPÍTULO 1. Prof. Carlos R. A. Lima INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 1 INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL Edição de junho de 2014 2 CAPÍTULO 1 TEORIA DA RELATIVIDADE ESPECIAL ÍNDICE 1.1-

Leia mais

objetivos A partícula livre Meta da aula Pré-requisitos

objetivos A partícula livre Meta da aula Pré-requisitos A partícula livre A U L A 7 Meta da aula Estudar o movimento de uma partícula quântica livre, ou seja, aquela que não sofre a ação de nenhuma força. objetivos resolver a equação de Schrödinger para a partícula

Leia mais

4 Sistemas de Equações Lineares

4 Sistemas de Equações Lineares Nova School of Business and Economics Apontamentos Álgebra Linear 4 Sistemas de Equações Lineares 1 Definição Rank ou característica de uma matriz ( ) Número máximo de linhas de que formam um conjunto

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14 FGV Administração - 01.06.1 VETIBULAR FGV 01 01/06/01 REOLUÇÃO DA QUETÕE DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DICURIVO QUETÃO 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito

Leia mais

LISTA BÁSICA MATEMÁTICA

LISTA BÁSICA MATEMÁTICA LISTA BÁSICA Professor: ARGENTINO FÉRIAS: O ANO DATA: 0 / 06 / 0 MATEMÁTICA 6 0 6 +, + 4 é:. O valor de ( ) ( ) ( ) a) b) c) 7 d) 9 e). Considere a epressão numérica a) 9 b) 0 c) 8,00 d) 69 e) 9,00000

Leia mais

Aula 8 Fótons e ondas de matéria II. Física Geral F-428

Aula 8 Fótons e ondas de matéria II. Física Geral F-428 Aula 8 Fótons e ondas de matéria II Física Geral F-428 1 Resumo da aula anterior: Planck e o espectro da radiação de um corpo negro: introdução do conceito de estados quantizados de energia para os osciladores

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

FÍSICA. Professor Felippe Maciel Grupo ALUB

FÍSICA. Professor Felippe Maciel Grupo ALUB Revisão para o PSC (UFAM) 2ª Etapa Nas questões em que for necessário, adote a conversão: 1 cal = 4,2 J Questão 1 Noções de Ondulatória. (PSC 2011) Ondas ultra-sônicas são usadas para vários propósitos

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios.

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. Exercícios A U L A 10 Meta da aula Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. objetivo aplicar os conhecimentos adquiridos nas Aulas 4 a 9 por meio da

Leia mais

Freqüência dos sons audíveis: entre 20Hz (infra-sônica) e 20.000Hz (ultra-sônica, audíveis para muitos animais).

Freqüência dos sons audíveis: entre 20Hz (infra-sônica) e 20.000Hz (ultra-sônica, audíveis para muitos animais). Ondas Sonoras: - São ondas longitudinais de pressão, que se propagam no ar ou em outros meios. - Têm origem mecânica, pois são produzidas por deformação em um meio elástico. - As ondas sonoras não se propagam

Leia mais

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004 QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma escola paga, pelo aluguel anual do ginásiodeesportesdeumclubea,umataxa fixa de R$.000,00 e mais R$ 0,00 por aluno. Um clube B cobraria pelo aluguel anual de um ginásio equivalente

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

Assinale a alternativa que contém o gráfico que representa a aceleração em função do tempo correspondente ao movimento do ponto material.

Assinale a alternativa que contém o gráfico que representa a aceleração em função do tempo correspondente ao movimento do ponto material. Física 53. O gráfico da velocidade em função do tempo (em unidades aritrárias), associado ao movimento de um ponto material ao longo do eixo x, é mostrado na figura aaixo. Assinale a alternativa que contém

Leia mais

MATEMÁTICA. y Q. (a,b)

MATEMÁTICA. y Q. (a,b) MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que QUESTÃO 29 QUESTÃO 27 Uma escada de massa m está em equilíbrio, encostada em uma parede vertical, como mostra a figura abaixo. Considere nulo o atrito entre a parede e a escada. Sejam µ e o coeficiente

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

(Exames Nacionais 2002)

(Exames Nacionais 2002) (Exames Nacionais 2002) 105. Na figura estão representadas, num referencial o.n. xoy: parte do gráfico de uma função f, de domínio R +, definida por f(x)=1+2lnx; a recta r, tangente ao gráfico de f no

Leia mais

Nome 3ª série Nº Conceito

Nome 3ª série Nº Conceito Prova Recuperação do 2º Semestre (Novembro) Física Prof. Reinaldo Nome 3ª série Nº Conceito Nº de questões 14 Tempo 100 min Data 13/11/15 Não é permitido o uso de calculadora. 0 = 4..10 7 T.m/A B = 0.i

Leia mais

4 e 6/Maio/2016 Aulas 17 e 18

4 e 6/Maio/2016 Aulas 17 e 18 9/Abril/016 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Os Postulados da Mecânica Quântica

Os Postulados da Mecânica Quântica Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Postulados Introdução Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o

Leia mais

Física. INSTRUÇÃO: Responder às questões 28 e 29 com base na figura e nas informações abaixo.

Física. INSTRUÇÃO: Responder às questões 28 e 29 com base na figura e nas informações abaixo. Física INSTRUÇÃO: Responder às questões 26 e 27 com base no gráfico e nas informações A velocidade escalar V, em m/s, de um móvel é representada no gráfico, em função do tempo t, em segundos. INSTRUÇÃO:

Leia mais

MATEMÁTICA UFRGS 2011

MATEMÁTICA UFRGS 2011 MATEMÁTICA UFRGS 2011 01. Uma torneira com vazamento pinga, de maneira constante, 25 gotas de água por minuto. Se cada gota contém 0,2 ml de água, então, em 24 horas o vazamento será de a) 0,072 L. b)

Leia mais

ESTÁTICA DEC - COD 3764 I - 2007

ESTÁTICA DEC - COD 3764 I - 2007 ESTÁTICA DEC - COD 3764 I - 2007 Resumo das notas de aula do professor. Adaptação do material de vários professores, e do livro Mecânica vetorial para engenheiros, Ferdinand. Beer e E. Russell Johnston,

Leia mais

...uma vez que no espectro de emissão se observam duas riscas brilhantes, na zona do amarelo.

...uma vez que no espectro de emissão se observam duas riscas brilhantes, na zona do amarelo. 1. 1.1. Opção D. Ocorre emissão de radiação quando os electrões transitam de níveis energéticos superiores para níveis energéticos inferiores. A energia dessa radiação está quantificada, sendo igual à

Leia mais

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 2010 FSE 1 PROV DE FÍSIC E SEU ENSINO Caro professor, esta prova tem 4 (quatro) questões, com valores diferentes indicados nas próprias questões. Duas das questões são objetivas,

Leia mais

MÉTODOS ESTATÍSTICOS I 3ª. AVALIAÇÃO PRESENCIAL 1º Semestre de 2010 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor

MÉTODOS ESTATÍSTICOS I 3ª. AVALIAÇÃO PRESENCIAL 1º Semestre de 2010 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor MÉTODOS ESTATÍSTICOS I ª. AVALIAÇÃO PRESENCIAL º Semestre de 00 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor. (,0 pontos) Em uma cidade onde se publicam jornais: A, B e C, constatou-se

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Considerando o seguinte eixo de referência:

Considerando o seguinte eixo de referência: FORÇA É uma interacção que se estabelece entre dois corpos capaz de alterar o seu estado de movimento ou de repouso ou de lhes causar deformação. Podem ser interacções à distância ou interacções de contacto.

Leia mais

Departamento de Ciências da Natureza Física Prof. Rafael

Departamento de Ciências da Natureza Física Prof. Rafael 1. (FCC-Londrina-PR) Uma carga elétrica pontual de +1, x 1-6 C situa-se num dos vértices de um triângulo equilátero de,3m de lado. Com centro no segundo vértice, se localiza uma esfera isolante com diâmetro

Leia mais

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade Física 1 ano Prof. Miranda Lista de Exercícios II Unidade mirandawelber@gmail.com 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 1.2 Conceitos de Equilíbrio em jogos não-cooperativos na forma normal Isabel Mendes 2007-2008 Na aula teórica 1.1 mostrámos

Leia mais

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de

Leia mais