Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina"

Transcrição

1 Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48

2 Sumário Arredondamentos Erros 2/48

3 Sumário Arredondamentos Erros 3/48

4 Introdução Tópicos do Capítulo 1. Representação aproximada de números reais em notação digital nas máquinas computacionais 2. Definição de sistema de ponto flutuante 3. Funções de arredondamento 4. Tipos de erros que surgem com arredondamentos 5. Diferença entre precisão e exatidão 6. Instabilidade de algoritmos e de problemas 4/48

5 Sistema de Ponto Flutuante Números reais são aproximados por números racionais em máquinas digitais de precisão finita (número de dígitos limitados) Erros podem ser amplificados à medida que operações aritméticas são executadas É necessário representar números reais em máquinas computacionais É importante entender como que as operações são executadas 5/48

6 Sistema de Ponto Flutuante Importância Tal conhecimento servirá de base para análise e depuração de algoritmos Será útil na validação de resultados obtidos através de métodos numéricos 6/48

7 Exemplo Vamos utilizar várias máquinas para calcular a expressão abaixo: H = 1/2 X = 2/3 H Y = 3/5 H E = (X +X +X) H F = (Y +Y +Y +Y +Y) H G = F/E Os resultados destas operações nas máquinas HP-25, SR-50, PCRII, IBM-4341 e Matlab (IBM-PC) serão apresentados Os resultados variam significativamente, dependendo da capacidade de representação destas máquinas 7/48

8 Exemplo Resultados de Operações Aritméticas Tabela: Operações Aritméticas HP 25 SR50 PCRII H = 0.5 H = 0.5 H = 0.5 X = X = X = Y = 0.1 Y = 0.1 Y = 0.1 E = E = E = F = 0 F = 0 F = 0 G = nd G = nd G = nd 8/48

9 Exemplo Resultados de Operações Aritméticas Tabela: Operações Aritméticas IBM4341 Matlab H = 0.5 H = 0.5 X = X = Y = 0.1 Y = 0.1 E = E = F = F = G = G = 1 9/48

10 Exemplo G = F/E (Y +Y +Y +Y +Y) H = (X +X +X) H (3/5 H +3/5 H +3/5 H +3/5 H +3/5 H) 1/2 = (2/3 H +2/3 H +2/3 H) 1/2 = 5 3/5 5 1/2 1/2 3 2/3 3 1/2 1/2 = 3 5/2 1/2 2 3/2 1/2 = = /48

11 Definição: Número de Ponto Flutuante Definição x R é dito número de ponto flutuante normalizado se valer: 1) x = m b e 2) m = ±0 d 1 d 2...d n,n N 3) 1 d 1 b 1 e 0 d j b 1, j = 2,...,n 4) e 1 e e 2, sendo e 1 0,e 2 1,e 1,e 2 Z onde: b é chamado de base, b 2 e é o expoente (e 1 é o menor e e 2 é o maior expoente) m é chamado de mantissa n é o número máximo de dígitos na representação do número d j, j = 1,...,n, são os dígitos do número 11/48

12 Definição: Sistema de Ponto Flutuante Definição A união de todos os números de ponto flutuante com o ZERO, que é representado na seguinte forma: 0 = b e1 é chamado de sistema de ponto flutuante. Notação Usualmente, procuramos representar um sistema de ponto flutuante por F = F(b,n,e 1,e 2 ), onde e 1 e e 2 são respectivamente o menor e o maior expoente, b é a base e n é a precisão. 12/48

13 Sistema de Ponto Flutuante: Exemplo Exemplos Alguns exemplos de sistemas de ponto flutuante: 1) HP25: F(10,9, 98,100) 2) IBM 360/370: F(16,6, 64,63) 3) B6700: F(8,13, 51,77) 13/48

14 Sistema de Ponto Flutuante: Propriedades Propriedades Algumas propriedades de sistemas de ponto flutuante são: Menor número em módulo: Maior número: Cardinalidade de F = F(b,n,e 1,e 2 ) : #F = 2(b 1)(b n 1 )(e 2 e 1 +1)+1 14/48

15 Sistema de Ponto Flutuante: Propriedades Algumas propriedades de sistemas de ponto flutuante são: Menor número em módulo: 0.1 b e 1 Maior número: 0.[b 1][b 1]...[b 1] b e 2 15/48

16 Sistema de Ponto Flutuante: Propriedades Algumas propriedades de sistemas de ponto flutuante são: Cardinalidade de F = F(b,n,e 1,e 2 ) : #F = 2(b 1)(b n 1 )(e 2 e 1 +1)+1, que pode ser obtido adicionando-se as parcelas: O número de mantissas positivas é dado por (b 1)(b n 1 ) Como cada uma dessas mantissas pode ter um dos (e 2 e 1 +1) expoentes possíveis, temos ao todo (b 1)(b n 1 )(e 2 e 1 +1) números possíveis Logo, incluindo os negativos e o zero, obtemos #F = 2(b 1)(b n 1 )(e 2 e 1 +1)+1 16/48

17 Sistema de Ponto Flutuante: Propriedades Para qualquer mantissa m, vale b 1 m < 1, pois: m < 1, pois toda a mantissa tem como primeiro dígito o ZERO m b 1, pois se m < b 1, não teríamos um número normalizado, pois o primeiro dígito após o ponto não é nulo. 17/48

18 Sistema de Ponto Flutuante: Exemplo Exemplo Seja F = F(2,3, 1,2). Para este sistema, as mantissas são: 0.100, 0.101, 0.110, e Por outro lado, os expoentes admissíveis são -1, 0, 1 e 2. Assim temos os seguintes números positivos: ( ) 2 = (0.01) 2 = = 1/4 ( ) 2 = (0.1) 2 = = 1/2 ( ) 2 = (1) 2 = 1 ( ) 2 = (10) 2 = 2 1 = 2 e assim sucessivamente 18/48

19 Sistema de Ponto Flutuante: Exemplo Elementos Tabela: Elementos do sistema de ponto flutuante F(2,3, 1,2) mantissa m e b e /2 1/4 5/16 3/8 7/ /2 5/8 3/4 7/ /4 3/2 7/ /2 3 7/2 19/48

20 Overflow e Underflow Regiões de Overflow e Underflow Outras noções importantes se referem aos limites de representação de um sistema de ponto flutuante. Região de Underflow: região situada entre o maior número de ponto flutuante negativo e o ZERO e, simetricamente, entre o menor número de ponto flutuante positivo e o ZERO. Região de Overflow: regiões situadas aquém do menor número de ponto flutuante negativo e além do maior número de ponto flutuante positivo. 20/48

21 Representação e Erros Representação de Números Seja F = F(2,3, 1,2) um sistema de ponto flutuante. Tomemos em F, x = 5 4 e y = 3 8. Note que z = x +y = = 13 8 é tal que z / F, pois 13 8 = ( ) 2 que possui um dígito a mais na mantissa do que o permitido. 21/48

22 Representação e Erros Representação de Números Na realidade, podemos escolher entre 3 2 = ( ) 2 ou 7 4 = ( ) 2 o que dá origem a diferentes tipos de arredondamentos Erros são cometidos ao se aproximar z = x +y com um elemento de F. 22/48

23 Notação Notação Seja {,,, } o conjunto de operações executados por um algoritmo de ponto flutuante equivalentes às operações do conjunto {+,,/, }. Podemos verificar facilmente que: x y x +y e x y x y 23/48

24 Notação Notação Considere o sistema F = F(2,5, 98,100) e os números: (0.1) 10 = ( ) 2 / F (0.1) 10 ( ) 2 F. Somando ( ) sucessivamente dez vezes, teremos: ( ) 2 = ( ) 10 (1.0) 10 24/48

25 Exemplo Para um sistema de ponto flutuante F = F(2,3, 1,2), seja: x = 5 8, y = 3 8, e z = 3 4, então: (x y) z = (( ) ( )) ( ) = ( ) = = /48

26 Exemplo Então: (x y) z = (( ) ( )) ( ) = ( ) = = 1.11 x (y z) = ( ) = = = 1.10 Logo: (x y) z x (y z) 26/48

27 Exemplo Para o sistema de ponto flutuante F = F(2,3, 1,2), seja x = 7 8, y = 5 4, e z = 3 8, então, podemos verificar que: x (y z) = ( ) = = = = = /48

28 Exemplo Podemos verificar que: x (y z) = ( ) = = = = = 1.01 (x y) (x z) = ( ) ( ) = = = = = 1.01 Neste caso x (y z) = (x y) (x z) 28/48

29 Arredondamentos Sumário Arredondamentos Erros 29/48

30 Arredondamentos Arredondamentos Conforme visto na discussão acima, há diferentes maneiras de se aproximar um número real para um número de ponto flutuante. Surge a questão de como se realizar tal aproximação. Definition Seja F(b,n,e 1,e 2 ) um sistema de ponto flutuante. Uma função : R F é considerada um arredondamento se valer: x F, (x) = x 30/48

31 Arredondamentos Tipos de Arredondamento Arredondamentos Tipos de arredondamento Arredondamento para cima ou por excesso: x Arredondamento para baixo ou por falta: x Arredondamento para o número de máquina mais próximo: ox 31/48

32 Arredondamentos Arredondamento: Exemplo Seja F = F(2,3, 1,2) o sistema de ponto flutuante. O número 9 8 / F, pois: 9 8 = (1.125) 10 = ( ) 2. Podemos arredondar 9 8 para ( ) 2 = (1.0) 10 ou para ( ) 2 = ( 5 4 ) 10 = (1.25) 10. No primeiro caso, temos ( 9 8 ) = ( ), já no segundo caso temos ( 9 8 ) = ( ) 32/48

33 Arredondamentos Arredondamento: Exemplo Exemplos Seja F = F(10,4, 98,10) o sistema de ponto flutuante, e sejam: x = y = z = Então obtemos os seguintes números para os diferentes arredondamento: (x) = (y) = (z) = (x) = (y) = (z) = ox = oy = oz = /48

34 Arredondamentos Arredondamento: Definições Definição Um arredondamento : R F é dito por falta se valer: x R, (x) x. Definição Um arredondamento : R F é dito por excesso se valer: x R, (x) x. Definição Um arredondamento é dito monotônico se valer: x,y R,x y (x) (y). Note que (x) é um arredondamento monotônico por falta, enquanto (x) é um arredondamento monotônico por excesso. 34/48

35 Erros Sumário Arredondamentos Erros 35/48

36 Erros Tipos de Erros Conceitos Toda vez que executamos um arredondamento que não admite uma representação exata em F, cometemos um erro. Há várias causas de erro. Aqui vamos estudar três tipos de erro: Erros Inerentes: Erros de Discretização: Erros de Arredondamento: 36/48

37 Erros Tipos de Erros Tipos de Erros Erros Inerentes: aparecem na criação ou simplificação de um modelo matemático de determinado sistema (erros na medição, identificação). 37/48

38 Erros Tipos de Erros Tipos de Erros Erros de Discretização: erros cometidos quando se substitui qualquer processo infinito por um processo finito ou discreto como, por exemplo: e = i=0 1 i! é aproximado com a série finita e = T i=0 1 i! 38/48

39 Erros Tipos de Erros Tipos de Erros Erros de Arredondamento: surgem quando trabalhamos com máquinas digitais para representar os números reais. Em geral trabalhamos com arredondamento para o número de ponto flutuante mais próximo ou com o arredondamento por falta. 39/48

40 Erros Definição de Erros A diferença entre o valor arredondado e o valor exato pode ser medida pelo erro absoluto ou pelo erro relativo, cujas definições são dadas a seguir. Definição O erro absoluto E A é dado por: E A = (x) x. Definição O erro relativo E R é dado por E R = (x) x x ou E R = (x) x (x) 40/48

41 Erros Erros Relativo Erro Absoluto Preferência de Métrica de Erros Erros relativos são mais usados que os erros absolutos. Um exemplo de erro absoluto e erro relativo é dado abaixo: x = (x) = E A = E R = = 0.2 Alguns resultados teóricos podem ser estabelecidos sobre limites de erros levando em consideração propriedades do sistema de ponto flutuante. 41/48

42 Erros Um Primeiro Teorema Teorema Seja F = F(b,n,e 1,e 2 ) um sistema de ponto flutuante. Então vale: x R,b e 1 1 x B (x) x (x) µ, onde: B é o maior número em módulo do sistema de ponto flutuante F, e { 1 µ = 2 b1 n, no caso de x = ox b 1 n, no caso de x = x O teorema acima só é válido quando x está dentro do espectro de representação de F, ou seja, b e 1 1 x B. No caso de underflow x < b e 1 1 ou overflow x > B, não é 42/48

43 Erros Dígitos Significativos Na prática, quando obtemos um resultado de uma expressão numérica avaliada numa máquina e não podemos saber o valor exato, torna-se impossível calcular o erro relativo ou absoluto. Definição Em um sistema decimal, um dígito é significativo se for 1,2,...,9. O dígito 0 é significante, exceto quando for usado para fixar a vírgula, ou o ponto decimal, ou preencher o lugar de dígitos descartados. Exemplo dígitos significativos dígitos significativos dígitos significativos 43/48

44 Erros Dígitos Significativos Exatos Definição Um dígito significativo é exato se, arredondando-se o número aproximado para uma posição imediatamente após aquela posição do dígito, isso fizer com que o erro absoluto não seja maior do que a meia unidade naquela posição do dígito. Abreviamos o digito significativo exato por DIGSE. Exemplo Os números e são aproximações para 2 3. No entanto, todos os dígitos significativos do primeiro são exatos, enquanto no segundo só os três primeiros. 44/48

45 Erros Dígitos Significativos Exatos: Exemplo Primeiro Caso: o dig) = < o dig) = < o dig) = < o dig) = < Logo todos os dígitos são significativos exatos. 45/48

46 Erros Dígitos Significativos Exatos: Exemplo Segundo Caso: Para o primeiro dígito 9 temos = logo, o primeiro dígito 9 já não é exato. 46/48

47 Erros Outro Teorema Teorema Se E R 1 2 b m, então o número é correto em m dígitos significativos exatos. 47/48

48 Erros Comentários Finais Fim! Obrigado pela presença 48/48

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional Matemática Computacional 2) Erros de arredondamento Carlos Alberto Alonso Sanches Erros de representação e de cálculo Tipos de erros Erro inerente: sempre presente na incerteza das medidas experimentais

Leia mais

Eduardo Camponogara Eugênio de Bona Castelan Neto

Eduardo Camponogara Eugênio de Bona Castelan Neto UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE AUTOMAÇÃO E SISTEMAS CÁLCULO NUMÉRICO PARA CONTROLE E AUTOMAÇÃO Versão preliminar Eduardo Camponogara Eugênio de Bona Castelan Neto Florianópolis,

Leia mais

Cálculo Numérico / Métodos Numéricos. Representação de números em computadores Mudança de base 14:05

Cálculo Numérico / Métodos Numéricos. Representação de números em computadores Mudança de base 14:05 Cálculo Numérico / Métodos Numéricos Representação de números em computadores Mudança de base 14:05 Computadores são "binários" Por que 0 ou 1? 0 ou 1 - "fácil" de obter um sistema físico Transistores

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 3 (10/08/15) Aritmética de ponto flutuante Representação de ponto flutuante Normalização Binária Decimal Situações

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula Aritmética de Ponto Flutuante e Noções de Erro Sumário 1 Introdução 2 Sistemas de Numeração 3 Representação de Números Inteiros no Computador 4 Representação de Números Reais no Computador 5 Operações

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica Carlos Balsa Métodos Numéricos

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante Capítulo SETE Números em Ponto Fixo e Ponto Flutuante 7.1 Números em ponto fixo Observação inicial: os termos ponto fixo e ponto flutuante são traduções diretas dos termos ingleses fixed point e floating

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Sistema de ponto flutuante

Sistema de ponto flutuante Exemplo: FP(,4,,A) e FP(,4,,T) Sistema de ponto flutuante FP( b, p, q,_) = FP(, 4,, _ ) base 4 dígitos na mantissa dígitos no expoente A=Arredondamento T=Truncatura x ± =± m b t x =± d 1d d d 4 dígitos

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Representando Instruções no Computador

Representando Instruções no Computador Representando Instruções no Computador Humanos aprenderam a pensar na base 10 Números podem ser representados em qualquer base Números mantidos no hardware como série de sinais eletrônicos altos e baixos

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante.

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica

Leia mais

Aritmética de Ponto Flutuante

Aritmética de Ponto Flutuante Aritmética de Ponto Flutuante Entre 1970 e 1980 um grupo formado por cientistas e engenheiros de diferentes empresas de computação realizou um trabalho intenso na tentativa de encontrar um padrão de representação

Leia mais

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 2) Erros de arredondamento Erros de representação e de cálculo CCI-22 Tipos de erros Sistemas de ponto flutuante

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

A declaração de uma variável vel define o seu tipo. O tipo do dado define como ele será: Armazenado na memória. Manipulado pela ULA.

A declaração de uma variável vel define o seu tipo. O tipo do dado define como ele será: Armazenado na memória. Manipulado pela ULA. Representação de Dados Tipos de dados: Caracteres (letras, números n e símbolos). s Lógicos. Inteiros. Ponto flutuante: Notações decimais: BCD. A declaração de uma variável vel define o seu tipo. O tipo

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

Noções Básicas de Erros

Noções Básicas de Erros Noções Básicas de Erros PROF. ALIRIO SANTOS DE SÁ ALIRIOSA@UFBA.BR MATERIAL ADAPTADA DOS SLIDES DA DISCIPLINA DE CÁLCULO NUMÉRICO DOS PROFESSORES BRUNO QUEIROZ, JOSÉ QUEIROZ E MARCELO BARROS (UFCG). DISPONÍVEL

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos Aula 9 Introdução à Computação Ponto Flutuante Ponto Flutuante Precisamos de uma maneira para representar Números com frações, por exemplo, 3,1416 Números muito pequenos, por exemplo, 0,00000001 Números

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Aritmética de Números Inteiros Representação de Números

Leia mais

Notas da disciplina Cálculo Numérico

Notas da disciplina Cálculo Numérico Notas da disciplina Cálculo Numérico Leonardo F. Guidi 7 de outubro de 2015 Instituto de Matemática Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves, 9500 Porto Alegre - RS 2 Sumário 1 Representação

Leia mais

Capítulo 1. Introdução. 1.1 Sistemas numéricos

Capítulo 1. Introdução. 1.1 Sistemas numéricos EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 1 Introdução O objetivo desta disciplina é discutir e aplicar técnicas e métodos numéricos para a resolução de problemas

Leia mais

Alguns apontamentos da história da Análise Numérica

Alguns apontamentos da história da Análise Numérica Análise Numérica 1 Âmbito da Análise Numérica Determinar boas soluções aproximadas num tempo computacional razoável? Slide 1 Porquê? Porque em muitos problemas matemáticos e respectivas aplicações práticas

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) I Representação dos números, aritmética de ponto flutuante e erros em máquinas

Leia mais

Sistemas de Computação

Sistemas de Computação Sistemas de Computação Ponto Flutuante Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 26 de abril de 2010 Haroldo Gambini Santos Sistemas de Computação 1/18 Seção 1 Introdução 2 O Padrão

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

A FÓRMULA DE CONVERSÃO ENTRE AS UNIDADES É: F = 1.8 C + 32.0

A FÓRMULA DE CONVERSÃO ENTRE AS UNIDADES É: F = 1.8 C + 32.0 UTILIZANDO NOSSA MÁQUINA HIPOTÉTICA VAMOS CONSTRUIR UM PROGRAMA PARA CONVERTER VALORES DE UMA UNIDADE PARA OUTRA. O NOSSO PROGRAMA RECEBE UM VALOR NUMÉRICO QUE CORRESPONDE A UMA TEMPERATURA EM GRAUS CELSIUS

Leia mais

Primeiro roteiro de exercícios no Scilab Cálculo Numérico

Primeiro roteiro de exercícios no Scilab Cálculo Numérico Primeiro roteiro de exercícios no Scilab Cálculo Numérico Rodrigo Fresneda 13 de fevereiro de 2012 Guia para respostas: Responda a todas as questões que estão em negrito ao longo do roteiro. Inclua sempre

Leia mais

Introdução aos Sistemas Computacionais

Introdução aos Sistemas Computacionais GUIÃO DE Introdução aos Sistemas Computacionais de Dulce Domingos e Teresa Chambel DI-FCUL GU ISC 01 11 Outubro 001 Departamento de Informática Faculdade de Ciências da Universidade de Lisboa Campo Grande,

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE. Prof. Dr. Daniel Caetano 2012-1

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE. Prof. Dr. Daniel Caetano 2012-1 ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE Prof. Dr. Daniel Caetano 2012-1 Objetivos Compreender o que é notação em ponto flutuante Compreender a

Leia mais

Gráficos de funções em calculadoras e com lápis e papel (*)

Gráficos de funções em calculadoras e com lápis e papel (*) Rafael Domingos G Luís Universidade da Madeira/Escola Básica /3 São Roque Departamento de Matemática Gráficos de funções em calculadoras e com lápis e papel (*) A difusão de calculadoras gráficas tem levado

Leia mais

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Representação de grandeza com sinal O bit mais significativo representa o sinal: 0 (indica um número

Leia mais

Sistemas de Numeração (Aula Extra)

Sistemas de Numeração (Aula Extra) Sistemas de Numeração (Aula Extra) Sistemas de diferentes bases Álgebra Booleana Roberta Lima Gomes - LPRM/DI/UFES Sistemas de Programação I Eng. Elétrica 27/2 Sistemas de Numeração Um sistema de numeração

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte III) Prof.a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Noções Básicas Sobre Erros

Noções Básicas Sobre Erros Noções Básicas Sobre Erros Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero

Leia mais

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0 1 - FUNÇÃO QUADRÁTICA UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 01 É toda função do tipo f(x)=ax 2 +bx+c, onde a, b e c são constantes reais com a 0. Ou, simplesmente, uma função polinomial de grau

Leia mais

Linguagem C: variáveis, operadores, entrada/saída. Prof. Críston Algoritmos e Programação

Linguagem C: variáveis, operadores, entrada/saída. Prof. Críston Algoritmos e Programação Linguagem C: variáveis, operadores, entrada/saída Prof. Críston Algoritmos e Programação Linguagem C Linguagem de uso geral (qualquer tipo de aplicação) Uma das linguagens mais utilizadas Foi utilizada

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra Aparecida de Amo Lista de Exercícios n o 2 Exercícios sobre Modelos de Máquinas de Turing

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA

UNIVERSIDADE ESTADUAL PAULISTA Número de ponto flutuante com precisão estendida 1 unesp UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA MECÂNICA CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE Os números são na verdade coeficientes de uma determinada base numérica e podem ser representados como números assinalados, não assinalados, em complemento

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

13 a Aula 2004.10.13 AMIV LEAN, LEC Apontamentos

13 a Aula 2004.10.13 AMIV LEAN, LEC Apontamentos 3 a Aula 2004.0.3 AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 3. Singularidades isoladas Para na prática podermos aplicar o teorema dos resíduos com eficiência, precisamos de conhecer

Leia mais

Computador HIPO. Inicialmente vamos apresentar as unidades fundamentais de um computador:

Computador HIPO. Inicialmente vamos apresentar as unidades fundamentais de um computador: Computador HIPO Para introduzirmos as noções básicas de como funciona um computador, empregaremos um modelo imaginário (hipotético) que denominaremos de computador hipo. O funcionamento desse modelo tem

Leia mais

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução O que é cálculo numérico? Corresponde a um conjunto

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Representação de Dados

Representação de Dados Representação de Dados Introdução Todos sabemos que existem diferentes tipos de números: fraccionários, inteiros positivos e negativos, etc. Torna-se necessária a representação destes dados em sistema

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Sistemas de Vírgula Flutuante

Sistemas de Vírgula Flutuante Luiz C. G. Lopes Departamento de Matemática e Engenharias Universidade da Madeira MAT 2 05 2007/08 Definição. Diz-se que um número real x R\{0} é um número de vírgula flutuante normalizado se forem verificadas

Leia mais

Aula 6 Aritmética Computacional

Aula 6 Aritmética Computacional Aula 6 Aritmética Computacional Introdução à Computação ADS - IFBA Representação de Números Inteiros Vírgula fixa (Fixed Point) Ponto Flutuante Para todos, a quantidade de valores possíveis depende do

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos?

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? &DStWXOR±5HSUHVHQWDomRGH1~PHURVH(UURV,QWURGXomR Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? 7LSRVGH(UURV Erros inerentes à matematização do fenómeno físico: os sistemas

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

Unidade 5: Sistemas de Representação

Unidade 5: Sistemas de Representação Arquitetura e Organização de Computadores Atualização: 9/8/ Unidade 5: Sistemas de Representação Números de Ponto Flutuante IEEE 754/8 e Caracteres ASCII Prof. Daniel Caetano Objetivo: Compreender a representação

Leia mais

Elementos de Matemática Discreta

Elementos de Matemática Discreta Elementos de Matemática Discreta Prof. Marcus Vinícius Midena Ramos Universidade Federal do Vale do São Francisco 9 de junho de 2013 marcus.ramos@univasf.edu.br www.univasf.edu.br/~marcus.ramos Marcus

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

LISTA BÁSICA MATEMÁTICA

LISTA BÁSICA MATEMÁTICA LISTA BÁSICA Professor: ARGENTINO FÉRIAS: O ANO DATA: 0 / 06 / 0 MATEMÁTICA 6 0 6 +, + 4 é:. O valor de ( ) ( ) ( ) a) b) c) 7 d) 9 e). Considere a epressão numérica a) 9 b) 0 c) 8,00 d) 69 e) 9,00000

Leia mais

Capítulo 1 Erros e representação numérica

Capítulo 1 Erros e representação numérica Capítulo 1 Erros e representação numérica Objetivos Esperamos que ao final desta aula, você seja capaz de: Pré-requisitos Identificar as fases de modelagem e os possíveis erros nelas cometidos; Compreender

Leia mais

Critérios de Avaliação. Sobre a Disciplina. Por que estudar Arquitetura? SIM NÃO 20/04/2011. 02 provas. 01 trabalho

Critérios de Avaliação. Sobre a Disciplina. Por que estudar Arquitetura? SIM NÃO 20/04/2011. 02 provas. 01 trabalho Profa. Mariana Monteiro Universidade Estadual do Norte do Paraná Campus Luiz Meneghel Curso: Sistemas de Informação 3º Semestre mariana@uenp.edu.br Ementa Introdução à matéria Sistemas Numéricos Histórico/Gerações

Leia mais

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM. Conceitos Básicos ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM. Conceitos Básicos ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM Conceitos Básicos 1-1 BITs e BYTEs Bit = BInary digit = vale sempre 0 ou elemento básico de informação Byte = 8 bits processados em paralelo (ao mesmo tempo) Word = n bytes (depende do processador em questão)

Leia mais

CURSO E COLÉGIO APOIO. Professor: Ronaldo Correa

CURSO E COLÉGIO APOIO. Professor: Ronaldo Correa CURSO E COLÉGIO APOIO Professor: Ronaldo Correa Holiday - Christmas.mpg medidas 1-Medidas Grandeza tudo aquilo que pode ser medido. Medir comparar com um padrão. No Brasil e na maioria dos países as unidades

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases...

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases... Índice de conteúdos Índice de conteúdos Capítulo 2. Representação de Números e Erros...1 1.Representação de números em diferentes bases...1 1.1.Representação de números inteiros e conversões de base...1

Leia mais

ARITMÉTICA. 1. Constantes Operadores e Funções

ARITMÉTICA. 1. Constantes Operadores e Funções ARITMÉTICA Neste capítulo, estudamos os tipos de dados numéricos disponíveis no Maple, assim como as operações aritméticas. Paralelamente apresentamos as funções de uso mais freqüente. 1. Constantes Operadores

Leia mais

Cálculo Numérico - Mat 215. Prof. Dirceu Melo. Prof. Dirceu Melo - MAT215

Cálculo Numérico - Mat 215. Prof. Dirceu Melo. Prof. Dirceu Melo - MAT215 Cálculo Numérico - Mat 215 Prof. Dirceu Melo Prof. Dirceu Melo - MAT215 1 1ª AULA Introdução Sistemas Decimal e Binário Conversão de Sistemas de base Sistema Aritmético de Ponto Flutuante INTRODUÇÃO 3

Leia mais

Onde usar os conhecimentos os sobre função?

Onde usar os conhecimentos os sobre função? II FUNÇÃO E LOGARITMO Por que aprender função?... As funções exponenciais e logarítmicas estão presentes no estudo de fenômenos que envolvem taxas de crescimento e de decrescimento. Onde usar os conhecimentos

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

FUNDAÇÃO EDUCACIONAL UNIFICADA CAMPOGRANDENSE (FEUC) FACULDADES INTEGRADAS CAMPO-GRANDENSES (FIC) COORDENAÇÃO DE MATEMÁTICA

FUNDAÇÃO EDUCACIONAL UNIFICADA CAMPOGRANDENSE (FEUC) FACULDADES INTEGRADAS CAMPO-GRANDENSES (FIC) COORDENAÇÃO DE MATEMÁTICA E N A D E 005 LICENCIATURA MATEMÁTICA QUESTÕES RESOLVIDAS I N T R O D U Ç Ã O Estamos apresentando a prova do ENADE aplicada em 005 para os cursos de Licenciatura em Matemática. Este trabalho tem o objetivo

Leia mais

A aplicação CellSheet. Tecnologia Flash para a TI-83 Plus e TI-83 Plus Silver Edition

A aplicação CellSheet. Tecnologia Flash para a TI-83 Plus e TI-83 Plus Silver Edition A aplicação CellSheet Tecnologia Flash para a TI-83 Plus e TI-83 Plus Silver Edition Porto, Outubro de 2002 Albino Martins Nogueira Pereira P 1 de 33 A aplicação CellSheet combina a funcionalidade de uma

Leia mais

Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Controle de Sistemas O Método do Lugar das Raízes Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Introdução No projeto de um sistema de controle, é fundamental se determinar

Leia mais

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Prof. José Roberto Marques (direitos reservados) A ENERGIA DAS REDES ELÉTRICAS A transformação da energia de um sistema de uma forma para outra, dificilmente

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização

Leia mais