Faculdade de Computação

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Faculdade de Computação"

Transcrição

1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra Aparecida de Amo Lista de Exercícios n o 2 Exercícios sobre Modelos de Máquinas de Turing 1. Uma máquina de Turing com fita duplamente infinita é similar ao nosso modelo simples exceto que sua fita é infinita à esquerda e à direita. A fita é inicialmente preenchida com brancos, exceto para a porção que contém o input. A computação é definida como de costume, exceto pelo fato de que o ponteiro de controle nunca encontra o fim da fita a medida que se move para a esquerda (como é o caso da fita comum). Mostre que este tipo de modelo de Máquina de Turing pode ser simulado pelo modelo simples de uma fita limitada à esquerda e vice-versa. Portanto, os dois modelos são equivalentes. 2. Uma máquina de Turing com reset à esquerda é é similar ao nosso modelo simples exceto que a função de transição δ tem a forma : δ : Q Γ Q Γ {R, RESET } Se δ(q, a) = (r, b, RESET ) quando a máquina está no estado q lendo o símbolo a na fita, então escreve b no lugar do a, entra no estado r e o ponteiro do controle pula para a posição mais à esquerda na fita. Repare que este tipo de máquina não tem a habilidade de mover uma casa para a esquerda. Só tem a habilidade de mover uma casa para a direita e de voltar para trás até a posição inicial. Mostre que este tipo de modelo de Máquina de Turing pode ser simulado pelo modelo simples de uma fita limitada à esquerda e vice-versa. Portanto, os dois modelos são equivalentes. Exercícios sobre Problemas e Linguagens Decidíveis e Turing-reconhíveis Modelo : como provar que um problema é decidível (a) Primeiramente, é preciso verificar se todos os elementos envolvidos na descrição do problema estão bem definidos. (b) Deixar bem claro : (1) qual é o input do problema, (2) qual a pergunta do problema, (3) a resposta é do tipo sim ou não? 1

2 (c) Dar uma codificação do input do problema em forma de string. A codificação deve ser tal que : (1) a todo input I está associado um único string denotado por < I >, (2) a todo string na imagem da função codificação existe um input I (único) correspondente (é possível decodificar de forma única um string). (d) Dar a descrição em alto nível e se for pedido, dar também a descrição de implementação da Máquina de Turing que resolve o problema. EXEMPLO - Considere o seguinte problema : Dado um grafo não dirigido, o grafo é conexo? (a) Todos os elementos envolvidos no enunciado estão bem definidos? Grafo : Um grafo G é um par (V,E) onde V é um conjunto de vértices e E é um conjunto de conjuntos de dois elementos {A,B}, onde A e B são vértices. Grafo Conexo : Um grafo (V,E) é dito conexo se para quaisquer v, u V existem arestas a 1,..., a n E tais que a 1 = (v, x 1 ), a 2 = (x 1, x 2 ),..., a n = (x n 1, u) (as arestas formam um caminho ligando v e u). (b) (1) Input do Problema = um grafo, (2) Pergunta do Problema : o grafo é conexo? (3) A resposta é do tipo sim ou não. (c) Codificação do input em forma de string : Seja G = (V,E) onde V = {v 1,..., v n }, E = {e 1,..., e m }. O string que codifica G é dado por : onde (e i ) = (a, b) se a aresta e i = {a, b}. (v 1,..., v n )((e 1 )(e 2 )...(e m )) Exemplo : se V = {1,2,3,4} e E = { {1,2}, {1,3}, {2,4} } então a codificação do grafo é dada pelo string : (1, 2, 3, 4)((1, 2)(1, 3)(2, 4)) (d) Descrição em alto nível do algoritmo que decide se um grafo é ou não conexo : M = No input < G >, faça : i. Selecione o primeiro vértice de G e marque-o. ii. Repita o seguinte passo até que não existam novos vértices marcados : iii. Para cada vértice de G, marque-o se ele estiver ligado a um vértice que já foi marcado. iv. Varra os vértices de G para determinar se todos estão marcados. Se estiverem, responda Sim. Caso contrário, responda Não. (e) Descrição da implementação de uma Máquina de Turing que aceita somente strings que correspondem a grafos conexos e rejeita todos os strings que correspondem a grafos não conexos. M = No input < G >, faça : 2

3 i. M testa se o string do input é a codificação de um grafo G. Se for, continue. Se não for, páre no estado q r. ii. M marca com um ponto o primeiro vértice da parte do input correspondente aos vértices. iii. M escaneia os vértices até encontrar o primeiro vértice n 1 não marcado com um ponto. M marca este vértice com um traço. M escaneia novamente a lista dos vértices e seleciona o primeiro que tem um ponto. Vamos chamá-lo de n 2. Marca este vértice com um um traço também. iv. M escaneia a parte do string correspondente às arestas e testa se existe uma aresta contendo n 1 e n 2. Se existir, M marca n 1 com um ponto, retira os traços de n 1 e n 2 e recomeça do passo 3. Se não existir, M retira o traço de n 2 e procura o próximo vértice (diferente do n 2 ) marcado com um ponto. Chamo este novo vértice de n 2 e repete o passo 4. v. Se não existir mais nenhum vértice marcado com ponto para ser testado junto com n 1, então n 1 não está ligado a nenhum vértice marcados com pontos. Neste caso, M vai para o passo 3 (neste passo, o primeiro vértice que M vai encontrar sem ponto será o primeiro depois do atual n 1 ). vi. M escaneia a lista dos vértices para determinar se todos estão marcados com um ponto. Se for o caso, M entra no estado q a e portanto aceita o string de input. Caso contrário, M entra no estado q r e para o qual não existem mais movimentos futuros (logo, M pára no estado q r e portanto rejeita o string de input). 3. Considere a Máquina de Turing M descrita no modelo acima. Considere o seguinte grafo G = (V,E), onde V = {1,2,3,4,5} e E = { {1,3}, {3,5}, {4,5}, {2,5} }. Descreva o funcionamento da máquina de Turing M no input G. 4. Considere o seguinte problema : Dado um grafo não-dirigido etiquetado (com labels) e um número B, determinar se existe um circuito no grafo com comprimento B. Definições dos termos que aparecem no problema : Grafo dirigido etiquetado : G = (V,E) onde V = {v 1,..., v n } e E = {({a, b}, d) a, b V e d é um inteiro positivo }. Isto é E é um conjunto formado por pares de arestas junto com um número indicando o comprimento da aresta. Um circuito de G é uma sequência de arestas (a 1, a 2 ), (a 2, a 3 ), (a 3, a 4 ),..., (a k, a 1 ) tais que o conjunto dos vértices que aparecem nestas arestas {a 1,..., a k } é igual a V (todos os vértices são visitados). Comprimento de um circuito : soma de todos os labels correspondentes às arestas que aparecem no circuito. Pede-se : (a) Identifique o problema e diga se se trata de um problema de decisão. (b) Dê uma codificação do input do problema. 3

4 (c) Diga se o problema é decidível. Em caso afirmativo, dê a descrição em alto nível e a descrição de implementação da Máquina de Turing que resolve o problema (sempre pára para qualquer input). Não é necessário dar a descrição formal da Máquina de Turing. 5. Seja P um problema. Sejam c 1 e c 2 duas codificações dos inputs de P. Suponha que exista uma Máquina de Turing M 1 que transforma um string c 1 (I) num string c 2 (I), isto é, o código do input I segundo a primeira codificação pode ser transformado no código do input I segundo a segunda codificação, via uma Máquina de Turing M. Mostre que se existir uma máquina de Turing M 2 que resolve o problema P, onde o input é codificado segundo a segunda codificação então existe uma máquina de Turing M 1 que resolve o problema P, onde o input é codificado segundo a primeira codificação. Isto é : o fato de um problema ser ou não decidível não depende da maneira como seu input é codificado! 6. Dê descrições em nível de implementação de máquinas de Turing que decidem as seguintes linguagens sobre o alfabeto {0,1}. (a) {w w contém o mesmo número de 0 s e 1 s } (b) {w o número de 0 s em w é o dobro do número de 1 s} (c) {w w o número de 0 s em w não é igual ao dobro do número de 1 s} 7. Mostre que o conjunto das linguagens decidíveis (ou recursivas) é fechado com relação às seguintes operações : (a) união (b) concatenação (c) star (d) complementação (e) intersecção 8. Mostre que toda linguagem finita é decidível. 9. Seja A a linguagem contendo um único string s, onde : s = 0 se Deus existe s = 1 se Deus não existe Esta linguagem é decidível? Por que? Note que a resposta não depende de suas convicções religiosas! 10. Explique por que o seguinte texto não corresponde a nenhum tipo de descrição de uma máquina de Turing. O input é um polinômio p com as variáveis x 1,..., x n. Suponha que < p > é uma codificação de p : M = No input < p > : 4

5 1. Teste se < p > corresponde ao código de um polinômio com as variáveis x 1,..., x n. 2. Tente todas as possibilidades de associar valores inteiros a x 1,..., x n. 3. Teste p para cada uma destas possibilidades. 4. Se para uma das possibilidades, o teste em p der zero, entre no estado q a. 5. Se para nenhuma destas possibilidades, o teste em p der zero, entre no estado q r e páre. 11. Seja L uma linguagem e suponha que exista uma função parcial recursiva F é crescente e Imagem(F) = L. Mostre que L é decidível. Uma função f : N X é dita parcial recursiva se existe uma máquina de Turing M tal que, após executar M no input n, caso M parar num estado de aceitação, o resultado na fita é f(n). Veja que função parciais recursivas podem não estar definidas para todo N. Em alguns pontos ela pode entrar em loop. Repare que o fato de existir uma função parcial recursiva tal que Imagem(F) = L, significa que é possível enumerar os elementos de L por uma Máquina de Turing. O que o exercício está pedindo é o seguinte : se existir uma maneira de enumerar os elementos de uma linguagem de forma crescente através de uma máquina de Turing, então é possível decidir se um string pertence ou não a linguagem L. 5

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra de Amo Solução da Lista de Exercícios n o 6 - Problemas Indecidiveis Exercicio 7-5.5 do

Leia mais

Máquinas de Turing 1

Máquinas de Turing 1 Máquinas de Turing 1 Agenda Máquinas de Turing (TM) Alan Turing Motivação Tese de Church-Turing Definições Computação Configuração de TM Reconhecedores vs. Decisores 2 Alan Turing Alan Turing é um dos

Leia mais

Lista n 0 1 de Exercícios de Teoria da Computação

Lista n 0 1 de Exercícios de Teoria da Computação Lista n 0 1 de Exercícios de Teoria da Computação UFU-Curso de Bacharelado em Ciência da Computação - 7 0 período Profa. Sandra de Amo Exercícios de Revisão : Autômatos e Gramáticas 1. Mostre que a linguagem

Leia mais

Máquinas de Turing. Juliana Kaizer Vizzotto. Disciplina de Teoria da Computação. Universidade Federal de Santa Maria

Máquinas de Turing. Juliana Kaizer Vizzotto. Disciplina de Teoria da Computação. Universidade Federal de Santa Maria Universidade Federal de Santa Maria Disciplina de Teoria da Computação Roteiro Definição Formal de Máquina de Turing Mais exemplos Definição Formal de Máquina de Turing Uma máquina de Turing é uma 7-upla,

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Introdução às Máquinas de Turing (TM)

Introdução às Máquinas de Turing (TM) Comparação com computadores: Introdução às Máquinas de Turing (TM) um modelo matemático simples de um computador Semelhanças: lê e escreve em posições arbitrarias de memoria Diferenças: sem limite no tamanho

Leia mais

Bacharelado em Ciência da Computação Matemática Discreta

Bacharelado em Ciência da Computação Matemática Discreta Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 19 de fevereiro de 2013 diego.silva@ifmg.edu.br (IFMG) Matemática

Leia mais

Sistemas de Apoio à Decisão

Sistemas de Apoio à Decisão Sistemas de Apoio à Decisão Processo de tomada de decisões baseia-se em informação toma em consideração objectivos toma em consideração conhecimento sobre o domínio. Modelar o processo de tomada de decisões

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11.

O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11. EXERCÍCIOS DE RECUPERAÇÃO 7º ANO º BIMESTRE MATEMÁTICA PROFº PAULO 1. Dois números de sinais contrários são opostos? Justifique. O sinal de menos ( ) colocado antes de um número indica o oposto desse número.

Leia mais

PESQUISA OPERACIONAL TEORIA DOS GRAFOS

PESQUISA OPERACIONAL TEORIA DOS GRAFOS PESQUISA OPERACIONAL TEORIA DOS GRAFOS Um grafo G(V,A) pode ser conceituado como um par de conjuntos V e A, onde: V - conjunto não vazio cujos elementos são de denominados vértices ou nodos do grafo; A

Leia mais

CAPÍTULO 2. Grafos e Redes

CAPÍTULO 2. Grafos e Redes CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que

Leia mais

Programação em papel quadriculado

Programação em papel quadriculado 4 NOME DA AULA: Programação em papel quadriculado Tempo de aula: 45 60 minutos Tempo de preparação: 10 minutos Objetivo principal: ajudar os alunos a entender como a codificação funciona. RESUMO Ao "programar"

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números

Leia mais

Usando um Simulador da Máquina de Turing Claudio Kirner 2010

Usando um Simulador da Máquina de Turing Claudio Kirner 2010 1. Introdução Usando um Simulador da Máquina de Turing Claudio Kirner 2010 A Máquina de Turing, idealizada por Alan Turing, em 1936, é uma máquina teórica simples capaz de calcular qualquer função matemática.

Leia mais

Prof. Bruno Holanda - Semana Oĺımpica 2011 - Nível 1. Teoria dos Grafos

Prof. Bruno Holanda - Semana Oĺımpica 2011 - Nível 1. Teoria dos Grafos Prof. Bruno Holanda - Semana Oĺımpica 0 - Nível Teoria dos Grafos O que é um grafo? Se você nunca ouviu falar nisso antes, esta é certamente uma pergunta que você deve estar se fazendo. Vamos tentar matar

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

PROGRAMAÇÃO BÁSICA DE CLP

PROGRAMAÇÃO BÁSICA DE CLP PROGRAMAÇÃO BÁSICA DE CLP Partindo de um conhecimento de comandos elétricos e lógica de diagramas, faremos abaixo uma revisão para introdução à CLP. Como saber se devemos usar contatos abertos ou fechados

Leia mais

Casamento de Cadeias. Introdução. Introdução. Estrutura de Dados. Cadeia de caracteres: sequência de elementos denominados caracteres.

Casamento de Cadeias. Introdução. Introdução. Estrutura de Dados. Cadeia de caracteres: sequência de elementos denominados caracteres. Introdução de Cadeias Estrutura de Dados II Prof. Guilherme Tavares de Assis Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM 1 Cadeia

Leia mais

http://www.matematica.br/programas/icg. 5. Uma lousa denominada EPI (registrador de endereço de próxima instrução).

http://www.matematica.br/programas/icg. 5. Uma lousa denominada EPI (registrador de endereço de próxima instrução). Universidade de São Paulo Instituto de Matemática e Estatística DCC Leônidas O. Brandão 1 Computador à Gaveta O objetivo deste texto é introduzir os primeiros conceitos de algoritmos a partir de um modelo

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

A B C F G H I. Apresente todas as soluções possíveis. Solução

A B C F G H I. Apresente todas as soluções possíveis. Solução 19a Olimpíada de Matemática do Estado do Rio Grande do Norte - 008 Segunda Etapa Em 7/09/008 Prova do Nível I (6 o ou 7 o Séries) (antigas 5ª ou 6ª séries) 1 a Questão: Substitua as nove letras da figura

Leia mais

Unidade: Unidade Lógica e Aritmética e Registradores. Unidade I:

Unidade: Unidade Lógica e Aritmética e Registradores. Unidade I: Unidade: Unidade Lógica e Aritmética e Registradores Unidade I: 0 Unidade: Unidade Lógica e Aritmética e Registradores UNIDADE LÓGICA E ARITMÉTICA E REGISTRADORES O Processador é um chip com milhares de

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Algoritmos e Estruturas de Dados I 01/2013. Estruturas Condicionais e de Repetição (parte 2) Pedro O.S. Vaz de Melo

Algoritmos e Estruturas de Dados I 01/2013. Estruturas Condicionais e de Repetição (parte 2) Pedro O.S. Vaz de Melo Algoritmos e Estruturas de Dados I 01/2013 Estruturas Condicionais e de Repetição (parte 2) Pedro O.S. Vaz de Melo Problema 1 Suponha que soma (+) e subtração (-) são as únicas operações disponíveis em

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Estruturas de Repetição

Estruturas de Repetição Estruturas de Repetição Lista de Exercícios - 04 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior Estruturas de Repetição O que são e para que servem? São comandos que são utilizados

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

Um jogo de preencher casas

Um jogo de preencher casas Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

Desmistificando o Programa de Computador

Desmistificando o Programa de Computador Desmistificando o Programa de Computador Hoje vou explicar, da maneira mais simples possível, como funciona um programa de computador. Na sua essência um programa de computador nada mais é que uma coletânea

Leia mais

Estrutura Condicional em Java

Estrutura Condicional em Java Estrutura Condicional em Java Linguagem de Programação 1 O Java contém três tipos de instruções de seleção. A instrução if realiza uma ação se uma condição for verdadeira ou pula a ação se a condição for

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos Classes de Complexidades de Problemas Prof. Osvaldo Luiz de Oliveira Estas anotações devem ser complementadas por apontamentos em aula. Tempo polinomial Um algoritmo A, com entrada

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel

0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel Nível Intermediário 0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel Quando um jovem estudante de matemática começa a estudar os números reais, é difícil não sentir certo desconforto

Leia mais

01/05/2016. Danillo Tourinho Sancho da Silva, MSc ROTEIRIZAÇÃO TEORIA DOS GRAFOS MOTIVAÇÃO

01/05/2016. Danillo Tourinho Sancho da Silva, MSc ROTEIRIZAÇÃO TEORIA DOS GRAFOS MOTIVAÇÃO ROTEIRIZAÇÃO Danillo Tourinho Sancho da Silva, MSc TEORIA DOS GRAFOS MOTIVAÇÃO 1 MOTIVAÇÃO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas do conhecimento Utilizados

Leia mais

Especificação Operacional.

Especificação Operacional. Especificação Operacional. Para muitos sistemas, a incerteza acerca dos requisitos leva a mudanças e problemas mais tarde no desenvolvimento de software. Zave (1984) sugere um modelo de processo que permite

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

Aula 9 Plano tangente, diferencial e gradiente

Aula 9 Plano tangente, diferencial e gradiente MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Sistemas Operacionais. Curso Técnico Integrado Profa: Michelle Nery

Sistemas Operacionais. Curso Técnico Integrado Profa: Michelle Nery Sistemas Operacionais Curso Técnico Integrado Profa: Michelle Nery Conteúdo Programático CONTAS DE E GRUPOS DE O Microsoft Management Console - MMC Permissões de Segurança de um Console Contas de Usuários

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Trabalho Computacional

Trabalho Computacional Universidade Federal do Espírito Santo Departamento de Informática Profª Claudia Boeres Teoria dos Grafos - 2014/2 Trabalho Computacional 1. Objetivo Estudo e implementação de algoritmos para resolução

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

V MARATONA DE PROGRAMAÇÃO INTERNA UERJ 03/12/2011. Este caderno contém 11 páginas com a descrição de 10 problemas 1 definidos a seguir:

V MARATONA DE PROGRAMAÇÃO INTERNA UERJ 03/12/2011. Este caderno contém 11 páginas com a descrição de 10 problemas 1 definidos a seguir: V MARATONA DE PROGRAMAÇÃO INTERNA UERJ 0/1/011 Este caderno contém 11 páginas com a descrição de 10 problemas 1 definidos a seguir: A - Campanhas Publicitárias B Prefixando os Sufixos C Jogo na TV D Senhas

Leia mais

TRABALHO DE RECUPERAÇÃO Menção máxima = MM

TRABALHO DE RECUPERAÇÃO Menção máxima = MM Nome Completo TRABALHO DE RECUPERAÇÃO Menção máxima = MM Rubrica INSTRUÇÕES 1) ATENÇÃO!!! Entregar o trabalho com a resolução das questões totalmente escrita à mão!!! Não será aceita em hipótese alguma

Leia mais

Sessão 2 UFCD 0804 Algoritmos

Sessão 2 UFCD 0804 Algoritmos Sessão 2 UFCD 0804 Algoritmos Revisões Sessão 1 Algoritmo - Definição Um algoritmo é formalmente uma sequência finita de passos que levam a execução de uma tarefa, é uma sequência de instruções para atingir

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Avaliação 1 - MA12-2015.1 - Gabarito

Avaliação 1 - MA12-2015.1 - Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA1-015.1 - Gabarito Questão 01 [,00 pts ] Uma escola pretende formar uma comissão de 6 pessoas para organizar uma festa junina. Sabe-se

Leia mais

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard O mercado de bens Olivier Blanchard Pearson Education CAPÍTULO 3 3.1 A composição do PIB A composição do PIB Consumo (C) são os bens e serviços adquiridos pelos consumidores. Investimento (I), às vezes

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

UNIVERSIDADE FEDERAL DE. Programa de Mestrado em Ciência da

UNIVERSIDADE FEDERAL DE. Programa de Mestrado em Ciência da UNIVERSIDADE FEDERAL DE UBERLÂNDIA Programa de Mestrado em Ciência da Computação Álgebra Relacional Disciplina : Sistema de Bancos de Dados - 1 0 Semestre 2009 Professora : Sandra Aparecida de Amo Lista

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

Instalação licença Network SOLIDWORKS 2016

Instalação licença Network SOLIDWORKS 2016 Instalação licença Network SOLIDWORKS 2016 Como funciona a Versão NetWork: A instalação Network segue um padrão um pouco diferenciado da Licença Standalone, para esta instalação precisamos primeiramente

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

Singularidades de Funções de Variáveis Complexas

Singularidades de Funções de Variáveis Complexas Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir

Leia mais

Algumas Aplicações da Teoria dos Grafos

Algumas Aplicações da Teoria dos Grafos UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA Giselle Moraes Resende Pereira (PET Matemática SESu-MEC) giselle_mrp@yahoo.com.br Marcos Antônio da Câmara (Tutor do PET Matemática) camara@ufu.br

Leia mais

INTRODUÇÃO À ENGENHARIA

INTRODUÇÃO À ENGENHARIA INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação

Leia mais

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Fractais com o Mathematica

Fractais com o Mathematica Fractais com o Mathematica E. Marques de Sá DMUC, 2009 Dou alguns exemplos de fractais e respectivas imagens que podem facilmente obter-se usando o programa Mathematica. O texto explica brevemente a parte

Leia mais

Programação Dinâmica. Programa do PA. Técnicas Avançadas de Projeto. Aulas Anteriores. Introdução. Plano de Aula. Técnicas de Projeto de Algoritmos

Programação Dinâmica. Programa do PA. Técnicas Avançadas de Projeto. Aulas Anteriores. Introdução. Plano de Aula. Técnicas de Projeto de Algoritmos Programação Dinâmica Técnicas de Projeto de Algoritmos Aula 13 Alessandro L. Koerich Pontifícia Universidade Católica do Paraná (PUCPR) Ciência da Computação 7 o Período Engenharia de Computação 5 o Período

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss.

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss. Matemática Jacob Palis Álgebra 1 Euclides Roxo David Hilbert George F. B. Riemann George Boole Niels Henrik Abel Karl Friedrich Gauss René Descartes Gottfried Wilhelm von Leibniz Nicolaus Bernoulli II

Leia mais

Recursividade. Aula 9

Recursividade. Aula 9 Recursividade Aula 9 Em matemática vários objetos são definidos apresentando-se um processo que os produz. Ex PI (circunferência/diâmetro) Outra definição de um objeto por um processo é o fatorial de um

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Definição. de solução de um problema passo-a-passo. Representa a lógica l. passo.

Definição. de solução de um problema passo-a-passo. Representa a lógica l. passo. ALGORITMO Definição Representa a lógica l de solução de um problema passo-a-passo passo. Um algoritmo pode ser Na forma textual: Uma descrição tal como uma receita de bolo; Um manual de montagem; Um relato

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

UnP. fazendo e compartilhando a gente aprende mais

UnP. fazendo e compartilhando a gente aprende mais DIRETRIZES DO ALUNO Olá, você está fazendo parte de um projeto de melhoria acadêmicoaction! Neste material você encontrará todas as pedagógica: o Edu Action informações necessárias para entender como esse

Leia mais

O PROCESSO DE AQUISIÇÃO DA LINGUA ESCRITA: FUNDAMENTADO EM EMILIA FERREIRO E ANA TEBEROSKY.

O PROCESSO DE AQUISIÇÃO DA LINGUA ESCRITA: FUNDAMENTADO EM EMILIA FERREIRO E ANA TEBEROSKY. O PROCESSO DE AQUISIÇÃO DA LINGUA ESCRITA: FUNDAMENTADO EM EMILIA FERREIRO E ANA TEBEROSKY. Silvana da Silva Nogueira (FECLESC/UECE) Priscila Cavalcante Silva (FECLESC/UECE) Resumo O processo de aquisição

Leia mais

5 - Vetores e Matrizes Linguagem C CAPÍTULO 5 VETORES E MATRIZES

5 - Vetores e Matrizes Linguagem C CAPÍTULO 5 VETORES E MATRIZES CAPÍTULO 5 5 VETORES E MATRIZES 5.1 Vetores Um vetor armazena uma determinada quantidade de dados de mesmo tipo. Vamos supor o problema de encontrar a média de idade de 4 pessoas. O programa poderia ser:

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

Nome Número: Série. Relacionamentos

Nome Número: Série. Relacionamentos Nome Número: Série Relacionamentos Competências: Organizar dados coletadas de acordo com as ferramentas de gerenciamento e Selecionar ferramentas para manipulação de dados; Habilidades: Utilizar um ambiente

Leia mais

OBJETIVO VISÃO GERAL SUAS ANOTAÇÕES

OBJETIVO VISÃO GERAL SUAS ANOTAÇÕES OBJETIVO Assegurar a satisfação do cliente no pós-venda, desenvolvendo um relacionamento duradouro entre o vendedor e o cliente, além de conseguir indicações através de um sistema de follow-up (acompanhamento).

Leia mais

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Eemplo 1: Determinação

Leia mais

Aula 5 - Parte 1: Funções. Exercícios Propostos

Aula 5 - Parte 1: Funções. Exercícios Propostos Aula 5 - Parte 1: Funções Exercícios Propostos 1 Construção de Funções: a) Um grupo de amigos deseja alugar uma van, por um dia, para um passeio, ao custo de R$300,00. Um levantamento preliminar indicou

Leia mais

Usando o do-file editor Automatizando o Stata

Usando o do-file editor Automatizando o Stata Usando o do-file editor Automatizando o Stata 1 O QUE É O EDITOR DE DO-FILE O Stata vem com um editor de texto integrado, o do-file editor (editor de do-files, em português), que pode ser usado para executar

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

(73) Titular(es): (72) Inventor(es): (74) Mandatário:

(73) Titular(es): (72) Inventor(es): (74) Mandatário: (11) Número de Publicação: PT 105304 (51) Classificação Internacional: F24D 17/00 (2006) (12) FASCÍCULO DE PATENTE DE INVENÇÃO (22) Data de pedido: 2010.09.23 (30) Prioridade(s): (43) Data de publicação

Leia mais

Problemas insolúveis. Um exemplo simples e concreto

Problemas insolúveis. Um exemplo simples e concreto Surge agora uma outra questão. Viemos buscando algoritmos para resolver problemas. No entanto, será que sempre seria possível achar esses algoritmos? Colocando de outra forma: será que, para todo problema,

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

Capítulo 8. CICLOS. Tabela 8.1 Programa8a.f90.

Capítulo 8. CICLOS. Tabela 8.1 Programa8a.f90. Capítulo 8. CICLOS OBJETIVOS DO CAPÍTULO Conceito de ciclo Comandos do FORTRAN: DO END DO, EXIT 8.1 programa8a.f90 Para inicializar as atividades deste capítulo, deve-se executar: 1) Para acessar o programa

Leia mais

Para entender como funciona um perceptron, vamos continuar considerando um perceptron com somente duas entradas, x 1 e x 2, e uma saída s.

Para entender como funciona um perceptron, vamos continuar considerando um perceptron com somente duas entradas, x 1 e x 2, e uma saída s. Análise do Perceptron Para entender como funciona um perceptron, vamos continuar considerando um perceptron com somente duas entradas, x 1 e x 2, e uma saída s. O neurônio de saída tem limiar b, de maneira

Leia mais

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Introdução ao Laboratório Eletrônico: 6.071 Laboratório 2: Componentes Passivos. 3º Trimestre de 2002

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Introdução ao Laboratório Eletrônico: 6.071 Laboratório 2: Componentes Passivos. 3º Trimestre de 2002 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Introdução ao Laboratório Eletrônico: 6.071 Laboratório 2: Componentes Passivos 1 Exercícios Pré-Laboratório Semana 1 1.1 Filtro RC 3º Trimestre de 2002 Figura 1:

Leia mais

TUTORIAL PARA UTILIZAÇÃO DA PLATAFORMA LMS

TUTORIAL PARA UTILIZAÇÃO DA PLATAFORMA LMS TUTORIAL PARA UTILIZAÇÃO DA PLATAFORMA LMS Neste documento você encontrará um conjunto de orientações de como navegar na plataforma do MBA Gestão Empreendedora. Siga as instruções com atenção e salve este

Leia mais

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF NOME: TURMA: DATA: / / OBJETIVOS: Ler o valor nominal de cada resistor através do código de cores. Conhecer os tipos de

Leia mais

LÓGICA DE PROGRAMAÇÃO. Professor Celso Masotti http://ead.celsomasotti.com.br

LÓGICA DE PROGRAMAÇÃO. Professor Celso Masotti http://ead.celsomasotti.com.br LÓGICA DE PROGRAMAÇÃO Professor Celso Masotti http://ead.celsomasotti.com.br Ano: 2015 1 HTML & PHP em Ambiente Web PARTE II Sumário I Decisão... 4 Operadores de Comparação... 6 II IF ELSEIF ELSE... 7

Leia mais

Como enviar e receber correio eletrónico utilizando o Gmail

Como enviar e receber correio eletrónico utilizando o Gmail Como enviar e receber correio eletrónico utilizando o Gmail Este módulo pressupõe que que já tenha criado uma conta de correio eletrónico no Gmail (caso já não se recorde como deve fazer, consulte o nosso

Leia mais

Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda

Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra de Amo Solução da Lista de Exercícios n o 8 - Indecidibilidade Exercicio 1-5.5 do Livro

Leia mais

Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching"

Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching" 1 Com suas palavras explique o que é Reconhecimento de Padrões- RP. Quais são os fases clássicas que compõem

Leia mais