Alguns apontamentos da história da Análise Numérica

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Alguns apontamentos da história da Análise Numérica"

Transcrição

1 Análise Numérica 1 Âmbito da Análise Numérica Determinar boas soluções aproximadas num tempo computacional razoável? Slide 1 Porquê? Porque em muitos problemas matemáticos e respectivas aplicações práticas as soluções exactas podem não ser obteníveis (por métodos analíticos) ou não se apresentarem de forma conveniente para a aplicação concreta. Alguns apontamentos da história da Análise Numérica Há mais de 3700 anos os Babilónios determinavam numericamente soluções de equações quadráticas e aproximações à raiz quadrada de um inteiro. Também usavam interpolação no cálculo de juros compostos (!) A aplicação da eliminação gaussiana na resolução de sistemas de equações lineares aparece num manuscrito chinês (os Nove Capítulos da dinastia Han (há aprox anos). Slide 2 O método das aproximações sucessivas é generalizado para a obtenção de soluções de equações de grau superior durante a dinastia Sung ( ). Numa carta de Arquimedes para Eratosthenes (250 a.c.) é descrito um método para determinar aproximadamente a área de uma dada região pela aproximação desta por várias regiões de áreas conhecidas (integração numérica). Esta carta foi descoberta em Os árabes são os herdeiros desta tradição para o primeiro milénio. Trabalhos importantes de Omar Khayyam e Jemshid Al-Kashi. Neste milénio matemáticos como Horner, Fibinacci, Napier, Kepler, Newton, Taylor (o da fórmula de Taylor), Runge, Kutta, Leibniz, etc. trabalharam na resolução aproximada de problemas matemáticos.

2 Análise Numérica 2 Métodos numéricos Directos Produzem uma resposta a um problema num número fixo de passos. Slide 3 Se os cálculos forem feitos com aritmética exacta, a solução é exacta. No entanto em implementações computacionais não há aritmética exacta. Substituição de funções por funções aproximantes (mais simples). A precisão depende da qualidade da função aproximante. Iterativos Produzem uma sequência de soluções aproximadas (delineados para convergirem para cada vez mais próximo da solução exacta, sob as condições apropriadas). Questões de convergência: estamos de facto a aproximarmo-nos da solução verdadeira (exacta)? Quando paramos o processo (critério de paragem)? Factores a considerar e a equilibrar: Esforço requerido para a resolução. Precisão da solução. Erros, precisão e estabilidade Computadores Número de dígitos finito para a representação das grandezas ( arredondamento, truncagem); Medidas experimentais Precisão finita nos aparelhos de medida. Slide 4 Erros na representação das grandezas diferenças entre a representação e o valor representado. Realização de cálculos envolvendo números não exactos (com erros). Acumulação de erros Instabilidade nos cálculos.

3 Análise Numérica 3 Erros de medida Erro absoluto Slide 5 x x x Valor aproximado Valor exacto x = x x Erro Valores aproximados: por defeito x > 0 Erro absoluto x = x x por excesso x < 0 x, x desconhecidos erro máximo absoluto epsilon : ε x isto é, x ]x ε, x + ε[ Quando se conhece o sentido da aproximação Slide 6 Aproximação por defeito x x x x + ε x + ε 2 é um novo valor aproximado de x com erro máximo absoluto ε 2.

4 Análise Numérica 4 Demonstração: x < ε ε < x x < ε Como x x > 0 (aproximação por defeito) vem: 0 < x x < ε Definindo x = x + ε 2 vem: 0 < x x + ε 2 < ε ε 2 < x x < ε 2 ou seja, x é um valor aproximado com erro máximo absoluto ε 2. Erro relativo Erro relativo = x x x x Slide 7 Erro máximo relativo = ε = ε x

5 Análise Numérica 5 Erros causados por aritmética não exacta Representações em vírgula flutuante A representação dos números reais num computador é feita num formato dito de vírgula flutuante: N = ±.d 1 d 2 d 3... d p B e Slide 8 onde B é a base, os d i são os dígitos que formam a mantissa e e o expoente. A mantissa tem um número fixo p de dígitos e cada um deles toma valores inteiros entre 0 e B 1. Por exemplo: Base 2: d i {0, 1} Base 10: d i {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Base 16: d i {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F } O expoente e também é um número inteiro e toma valores num intervalo [e min, e ]. Normalmente exige-se que d 1 0, dizendo-se nesse caso que o número está normalizado. Erros causados por aritmética não exacta O intervalo onde o expoente pode tomar valores determina o número maior e menor que se pode representar nesse sistema. Slide 9 Exemplo: Sistema em base 2 com 32 bits, sendo 23 usados para a mantissa, 8 para o expoente e 1 para o sinal. Os 8 bits do expoente permitem representar números com sinal no intervalo [ 128, 127], o que dá: Menor número representável Maior número representável Números menores underflow Números maiores overflow Como lidar com números com mais dígitos do que os que podem ser representados pelo sistema de vírgula flutuante?

6 Análise Numérica 6 Arredondamentos Quando não se devem usar todas as casas decimais que um número apresenta, este deve ser arredondado de acordo com as seguintes regras: Regras para arredondar um número para n casas decimais: Slide 10 Se a parte restante do número (da casa n + 1 para a frente) for superior a meia unidade da casa decimal n ( n ) arredonda-se a casa decimal n para cima. Se a parte restante do número (da casa n + 1 para a frente) for inferior a meia unidade da casa decimal n ( n ) arredonda-se a casa decimal n para baixo. Se a parte restante do número (da casa n + 1 para a frente) for exactamente igual a meia unidade da casa decimal n ( n ) arredonda-se a casa decimal n para o algarismo para mais próximo. Exemplos: 1. Arredondar às centésimas > Slide Arredondar às centésimas < Arredondar às centésimas = Arredondar às centésimas =

7 Análise Numérica 7 Erros de arredondamento de números representados por valores aproximados com n casas decimais Slide 12 Um número aproximado, que tenha sido obtido por arredondamento de um valor exacto, tem um erro máximo absoluto de 5 unidades da casa decimal seguinte (ou meia unidade da última casa decimal representada). Exemplo: 3.14 representará números compreendidos entre e 3.145, ou de outra forma: 3.14 ± Algarismos significativos Definição: São todos os algarismos da mantissa de um número com excepção dos zeros à esquerda. Teorema: Se um número tem n dígitos significativos então o erro relativo é inferior a 5 10 n. Demonstração: Seja x um número aproximado com n dígitos: x = d 1 d 2... d n 10 k, k Z Então o seu erro máximo absoluto será: Para o erro relativo teremos: ε x ε x x = Ora quanto à mantissa: ε x = 5 10 k k 1 d 1 d 2... d n 10 k = 10 n 1 d 1 d 2... d n < 10 n d 1 d 2... d n pois caso contrário o número teria n 1 ou n + 1 dígitos significativos, uma vez que os zeros à esquerda não contam. Então: ε x n 1 = 5 10 n

8 Análise Numérica 8 Efeito da ordem das operações Considere-se o seguinte problema de adição: Slide 13 Com aritmética exacta o seu resulatdo é , independentemente da ordem pela qual são efectuados os cálculos. No entanto se se usar uma aritmética de 3 dígitos e se fizerem os cálculos em vírgula flutuante normalizada da esquerda para a direita: ( ) = = Fazendo estes mesmo cálculos da direita para a esquerda: ( ) = = = Erro de cancelamento Slide 14 Ocorre quando se subtraem 2 números quase iguais. O resultado da subtracção será um valor muito pequeno, podendo o erro absoluto ser da sua ordem de grandeza e, consequentemente, apresentar erros relativos muito elevados. Exemplo: = O resultado apresenta um majorante para o erro absoluto se , o que dá um, erro relativo de 50%! Tomar precauções com a forma como se dispôem os cálculos. Exemplo: Resolução de uma equação do segundo grau do tipo x 2 bx + 1 = 0. Pela fórmula resolvente: x 1 = b + r 2 e x 2 = b r 2 com r = b 2 4 Quando b 4, r vem muito próximo de b. No cálculo de x 2 podem ocorrer erros de cancelamento elevados.

9 Análise Numérica 9 No entanto, se se racionalizar o numerador da fórmula de cálculo de x 2 : x 2 = b r 2 esse problema desaparece. (b + r) (b + r) = (b2 r 2 ) 2(b + r) = 4 2(b + r) = 2 (b + r) Slide 15 O que aconteceria se se fizesse mesmo à fórmula que calcula x 1? Erro no cálculo de funções do tipo y = f(x) Como estimar o erro do valor aproximado ȳ resultante do cálculo de f para o valor aproximado x com um erro absoluto x? Slide 16 Função bem condicionada no ponto x. Função mal condicionada no ponto x. Condição: sensibilidade do valor da função f(x) a variações (pequenas) no argumento x.

10 Análise Numérica 10 Estimativa de y Então: y = y ȳ = f(x) f( x) = f( x + x) f( x) = Slide 17 Vamos recordar o Teorema do Valor Médio: Seja g(x) uma função contínua e derivável em [a, b]. Então: c [a,b] : b a g(x)dx = g(c)(b a) Ou, fazendo g(x) = f (x): c [a,b] : f(b) f(a) = f (c)(b a) Retomando o cálculo de y e aplicando este resultado do Teorema do Valor Médio: f( x + x) f( x) = f ( x). x ȳ + y ȳ = f ( x). x y = f ( x). x, x [ x, x + x] Slide 18 Se tomarmos o erro máximo absoluto de x (que é o que conhecemos) em vez de x, vem: y f ( x).ε x Como x é desconhecido vamos majorar a expressão do lado direito considerando f (x) no intervalo x ± ε x, isto é: y f (x).ε x = ε y por definição de erro máximo absoluto. Então: ε y = f (x).ε x

11 Análise Numérica 11 Erro relativo no cálculo de y = f(x) Partindo da expressão do erro absoluto de y e dividindo ambos os membros da inequação por y, ao mesmo tempo que se multiplica e divide o 2 o membro por x, vem: Slide 19 Então, se y f (x).ε x y y f (x). x y ε x x ε y f (x). x y ε x f (x). x y < 1, o erro relativo diminui f (x). x y 1, o erro relativo mantém-se não há perda de dígitos significativos f (x). x > 1, o erro relativo aumenta y há perda de dígitos significativos Erro no cálculo de funções de várias variáveis y = f(x 1, x 2,..., x n ) Slide 20 Vamos supôr que como argumentos da função temos valores aproximados x i. Seguindo o mesmo racciocínio do caso y = f(x) e aplicando o teorema do valor médio para funções de R n R, temos: n ( ) δf y = y ȳ = f(x 1, x 2,..., x n ) f( x 1, x 2,..., x n ) =. x i δx i Então: n y δf δx i=1 i.ε xi Ou: n ε y = δf δx i.ε xi Para o erro relativo: ε y = i=1 n δf. x i δx i y.ε x i i=1 i=1 ( x 1, x 2,..., x n )

12 Análise Numérica 12 Exemplos: 1. Calcule um majorante para o erro absoluto de y no cálculo da função sin x+a y = 1.5, quando x = 2 (número exacto) e a = 2.37 ± y dy da. a = Quantos dígitos significativos se podem perder no cálculo da função f(x) = quando x toma valores em torno de 0.8. x 1 x 2 f(x) = x 1 x 2 f (x) = 1 + x 2 1 x 2 (1 x2 ) 3 f (x) x x x 3 y = 1 x 2 (1 x x + 2 ) 3 x = 1 x 2 1 x 1 + x2 1 x 2 2 f (x) x y \ x=0.8 = > 1 Logo, pode-se perder 1 dígito significativo. Fazendo os mesmo cálculos para x = 0.99 obteríamos f (x) x y 50, pelo que ε y é mais do que 10 vezes maior do que ε x, pelo que se podem perder até 2 dígitos significativos. 3. Calcule um majorante para o erro absoluto de z no cálculo da função z = ln(a+b) c, quando a = 3.52 ± , b = 2.1 (número exacto) e c = 1.1 ± z 1 c(a + b) b) ln(a c z 1 ln( ) ( )( ) ( ) Calcule um majorante para o erro absoluto de w no cálculo da função w = sin(x+y) z, quando x = 0.5 ± , y = 0.7 (número exacto) e z [1.7, 2.3]. w = δw δx. x + δw δz. z cos(x + y) z y) sin(x z cos( ) = sin( )

13 Análise Numérica 13

14 Análise Numérica 14 Erro de truncatura no cálculo de uma série de Taylor Considere-se um desenvolvimento de uma função f(x), em torno de x = x 0, numa série de Taylor convergente. Pretende-se estudar o erro que se comete quando não se toma um número infinito de termos erro de truncatura. Slide 21 f(x)\ x=x0 = f(x 0 ) + f (x 0 )(x x 0 ) + f (x 0 ) (x x 0) R n { }} { + f n 1 (x 0 ) (x x 0) n 1 + f n (x 0 + θ(x x 0 )) (x x 0) n, 0 θ 1 (n 1)! n! Exemplo: Considere uma máquina de calcular onde a função sin é calculada por um polinómio de Taylor. Para se obter o valor de sin x em x π com um 4 erro relativo devido à truncatura da série não superior a , quantos e quais os termos do respectivo desenvolvimento em série de Taylor que devem ser considerados? ( Sugestão: Uma vez que o intervalo sob consideração é x π 4, desenvolva a função em torno de x = 0 série de Maclaurin) Desenvolvimento em Série de Maclaurin de f(x): f(x) = f(0) + f (0)x + f (0) x f n 1 (0) xn 1 (n 1)! + R n Com R n = f n (θx) xn n!, 0 θ 1 Então, com f(x) = sin x: sin x = x x3 3! + x5 5! x7 7! +... ± xn 1 (n 1)! + sin(θx)xn n! (n par, 0 θ 1) O erro relativo, ao tomarmos apenas termos na série até à potência n 1 será dado por: ε trunc = R n sin x = sin(θx) x n sin x n!

15 Análise Numérica 15 Como na vizinhança de 0 a função sin x é estritamente crescente, pode-se dizer que o máximo de sin(θx) ocorrerá quando o argumento da função for máximo, i.e, quando θ = 1. Então a expressão acima pode ser majorada fazendo θ = 1: ε trunc x n n! ( π 4 )n n! uma vez que, por enunciado, x π 4. Para que este erro não exceda os determinados, dever-se-ão tomar 10 termos da série (i.e., desenvolver a série até à nona potência de x), uma vez que: n = 10 R 10 sin x ( π 4 )10 = ! Então: sin x x x3 3! + x5 5! x7 7! + x9 9!, para x π 4 com ε sin x =

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica Carlos Balsa Métodos Numéricos

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos?

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? &DStWXOR±5HSUHVHQWDomRGH1~PHURVH(UURV,QWURGXomR Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? 7LSRVGH(UURV Erros inerentes à matematização do fenómeno físico: os sistemas

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Apontamentos de Análise Numérica

Apontamentos de Análise Numérica Faculdade de Engenharia da Universidade do Porto Licenciatura em Engenharia Electrotécnica e de Computadores Apontamentos de Análise Numérica Aníbal Castilho Coimbra de Matos Setembro de 2005 Nota introdutória

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Para determinarmos um valor aproximado das raízes de uma equação não linear, convém notar inicialmente

Leia mais

Sistema de ponto flutuante

Sistema de ponto flutuante Exemplo: FP(,4,,A) e FP(,4,,T) Sistema de ponto flutuante FP( b, p, q,_) = FP(, 4,, _ ) base 4 dígitos na mantissa dígitos no expoente A=Arredondamento T=Truncatura x ± =± m b t x =± d 1d d d 4 dígitos

Leia mais

Representação de Dados

Representação de Dados Representação de Dados Introdução Todos sabemos que existem diferentes tipos de números: fraccionários, inteiros positivos e negativos, etc. Torna-se necessária a representação destes dados em sistema

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

Apontamentos de Matemática Computacional

Apontamentos de Matemática Computacional Apontamentos de Matemática Computacional Mário Meireles Graça e Pedro Trindade Lima Departamento de Matemática Instituto Superior Técnico Universidade de Lisboa Conteúdo 1 Elementos da teoria dos erros

Leia mais

Cálculo Numérico / Métodos Numéricos. Representação de números em computadores Mudança de base 14:05

Cálculo Numérico / Métodos Numéricos. Representação de números em computadores Mudança de base 14:05 Cálculo Numérico / Métodos Numéricos Representação de números em computadores Mudança de base 14:05 Computadores são "binários" Por que 0 ou 1? 0 ou 1 - "fácil" de obter um sistema físico Transistores

Leia mais

Séries de Potências de x

Séries de Potências de x Séries de Potências de x As séries de potências de x são uma generalização da noção de polinómio. Definição: Chama-se série de potências de x com coeficientes a 0, a 1,, a n,, a qualquer série da forma

Leia mais

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases...

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases... Índice de conteúdos Índice de conteúdos Capítulo 2. Representação de Números e Erros...1 1.Representação de números em diferentes bases...1 1.1.Representação de números inteiros e conversões de base...1

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Aritmética de Números Inteiros Representação de Números

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) I Representação dos números, aritmética de ponto flutuante e erros em máquinas

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação COMPUTAÇÕES NUMÉRICAS.0 Representação O sistema de numeração decimal é o mais usado pelo homem nos dias de hoje. O número 0 tem papel fundamental, é chamado de base do sistema. Os símbolos 0,,, 3, 4, 5,

Leia mais

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução O que é cálculo numérico? Corresponde a um conjunto

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Capítulo 1. Introdução. 1.1 Sistemas numéricos

Capítulo 1. Introdução. 1.1 Sistemas numéricos EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 1 Introdução O objetivo desta disciplina é discutir e aplicar técnicas e métodos numéricos para a resolução de problemas

Leia mais

CAPÍTULO 9. PROCESSAMENTO DOS DADOS 9.5. ALGARISMOS SIGNIFICATIVOS. =0.01 gcm 3 3.36 Logo o resultado experimental é: = 5.82 g 0.

CAPÍTULO 9. PROCESSAMENTO DOS DADOS 9.5. ALGARISMOS SIGNIFICATIVOS. =0.01 gcm 3 3.36 Logo o resultado experimental é: = 5.82 g 0. CAPÍTULO 9. PROCESSAMENTO DOS DADOS 9.5. ALGARISMOS SIGNIFICATIVOS Logo o resultado experimental é: =(1.732 ± 0.001) gcm 3 O erro relativo do volume (0.1%) é uma ordem de grandeza maior que o erro relativo

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,

Leia mais

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula Aritmética de Ponto Flutuante e Noções de Erro Sumário 1 Introdução 2 Sistemas de Numeração 3 Representação de Números Inteiros no Computador 4 Representação de Números Reais no Computador 5 Operações

Leia mais

Noções Básicas de Erros

Noções Básicas de Erros Noções Básicas de Erros PROF. ALIRIO SANTOS DE SÁ ALIRIOSA@UFBA.BR MATERIAL ADAPTADA DOS SLIDES DA DISCIPLINA DE CÁLCULO NUMÉRICO DOS PROFESSORES BRUNO QUEIROZ, JOSÉ QUEIROZ E MARCELO BARROS (UFCG). DISPONÍVEL

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

Erros. Cálculo Numérico

Erros. Cálculo Numérico Cálculo Numérico Erros Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Erros - Roteiro Eistência Tipos

Leia mais

Aproximações e Erros de Arredondamento. introdução. exactidão e precisão. Aula 2 Métodos Numéricos Aplicados à Engenharia

Aproximações e Erros de Arredondamento. introdução. exactidão e precisão. Aula 2 Métodos Numéricos Aplicados à Engenharia Aproximações e Erros de Arredondamento Aula 2 Métodos Numéricos Aplicados à Engenharia 23/02/07 João Noronha 1 introdução Em muitos problemas de engenharia não é possível a obtenção de soluções analíticas.

Leia mais

Aula 6 Aritmética Computacional

Aula 6 Aritmética Computacional Aula 6 Aritmética Computacional Introdução à Computação ADS - IFBA Representação de Números Inteiros Vírgula fixa (Fixed Point) Ponto Flutuante Para todos, a quantidade de valores possíveis depende do

Leia mais

Medidas e Incertezas

Medidas e Incertezas Medidas e Incertezas O que é medição? É o processo empírico e objetivo de designação de números a propriedades de objetos ou eventos do mundo real de forma a descreve-los. Outra forma de explicar este

Leia mais

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Representação de grandeza com sinal O bit mais significativo representa o sinal: 0 (indica um número

Leia mais

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional Matemática Computacional 2) Erros de arredondamento Carlos Alberto Alonso Sanches Erros de representação e de cálculo Tipos de erros Erro inerente: sempre presente na incerteza das medidas experimentais

Leia mais

Capítulo 1 Erros e representação numérica

Capítulo 1 Erros e representação numérica Capítulo 1 Erros e representação numérica Objetivos Esperamos que ao final desta aula, você seja capaz de: Pré-requisitos Identificar as fases de modelagem e os possíveis erros nelas cometidos; Compreender

Leia mais

Matemática Computacional

Matemática Computacional Matemática Computacional Maria Isabel Reis dos Santos Departamento de Matemática 2011/2012 Conteúdo 1 Cálculo em precisão finita 11 1.1 Números binários...................................... 12 1.1.1

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Representação Binária de Números

Representação Binária de Números Departamento de Informática Notas de estudo Alberto José Proença 01-Mar-04 Dep. Informática, Universidade do Minho Parte A: Sistemas de numeração e representação de inteiros A.1 Sistemas de numeração

Leia mais

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante.

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica

Leia mais

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos Aula 9 Introdução à Computação Ponto Flutuante Ponto Flutuante Precisamos de uma maneira para representar Números com frações, por exemplo, 3,1416 Números muito pequenos, por exemplo, 0,00000001 Números

Leia mais

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte III) Prof.a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante Capítulo SETE Números em Ponto Fixo e Ponto Flutuante 7.1 Números em ponto fixo Observação inicial: os termos ponto fixo e ponto flutuante são traduções diretas dos termos ingleses fixed point e floating

Leia mais

Sistemas de Numeração

Sistemas de Numeração Departamento de Informática Sistemas de Numeração Notas de estudo Alberto José Proença Luís Paulo Santos 18-Fev-05 1. Sistemas de numeração e representação de inteiros 1.1. Sistemas de numeração 1.2. Conversão

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

A FÓRMULA DE CONVERSÃO ENTRE AS UNIDADES É: F = 1.8 C + 32.0

A FÓRMULA DE CONVERSÃO ENTRE AS UNIDADES É: F = 1.8 C + 32.0 UTILIZANDO NOSSA MÁQUINA HIPOTÉTICA VAMOS CONSTRUIR UM PROGRAMA PARA CONVERTER VALORES DE UMA UNIDADE PARA OUTRA. O NOSSO PROGRAMA RECEBE UM VALOR NUMÉRICO QUE CORRESPONDE A UMA TEMPERATURA EM GRAUS CELSIUS

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

ARREDONDAMENTO DE NÚMEROS

ARREDONDAMENTO DE NÚMEROS ARREDONDAMENTO DE NÚMEROS Umas das maiores dificuldades, quando lidamos com números, é como devemos ou podemos apresentar esses números para quem vai utiliza-los. Quando a humanidade só conhecia os números

Leia mais

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Sumário Unidade Lógica Aritmetrica Registradores Unidade Lógica Operações da ULA Unidade de Ponto Flutuante Representação

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 3 (10/08/15) Aritmética de ponto flutuante Representação de ponto flutuante Normalização Binária Decimal Situações

Leia mais

20-10-2014. Sumário. Arquitetura do Universo

20-10-2014. Sumário. Arquitetura do Universo Sumário Das Estrelas ao átomo Unidade temática 1 Diferenças entre medir, medição e medida duma grandeza. Modos de exprimir uma medida. Algarismos significativos: Regras de contagem e operações. Esclarecimento

Leia mais

Trabalho Computacional. A(h) = V h + 2 V π h, (1)

Trabalho Computacional. A(h) = V h + 2 V π h, (1) Unidade de Ensino de Matemática Aplicada e Análise Numérica Departamento de Matemática/Instituto Superior Técnico Matemática Computacional (Mestrado em Engenharia Física Tecnológica) 2014/2015 Trabalho

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

José Álvaro Tadeu Ferreira

José Álvaro Tadeu Ferreira UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Departamento de Computação José Álvaro Tadeu Ferreira Cálculo Numérico Notas de aulas Resolução de Equações Não Lineares Ouro

Leia mais

VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA CÁLCULO NUMÉRICO. José Carlos Morais de Araújo

VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA CÁLCULO NUMÉRICO. José Carlos Morais de Araújo VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA CÁLCULO NUMÉRICO Conteudista José Carlos Morais de Araújo Rio de Janeiro / 2009 TODOS OS DIREITOS RESERVADOS À

Leia mais

CAPÍTULO 1 MEDIÇÃO E O ERRO DE MEDIÇÃO

CAPÍTULO 1 MEDIÇÃO E O ERRO DE MEDIÇÃO CAPÍTULO 1 MEDIÇÃO E O ERRO DE MEDIÇÃO 1.1. Definições do Vocabulário Internacional de Metrologia (VIM) Metrologia: Ciência das medições [VIM 2.2]. Medição: Conjunto de operações que têm por objectivo

Leia mais

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS 2 O que são e Por que se usam algarismos significativos? O valor 1,00 não é igual a 1? Do ponto de vista matemático, sim. Mas sempre que se façam medições

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de Escola Secundária c/3º CEB José Macedo Fragateiro Curso Profissional de Nível Secundário Componente Técnica Disciplina de Sistemas Digitais e Arquitectura de Computadores 29/21 Módulo 1: Sistemas de Numeração

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA ENSINO MÉDIO ÁREA CURRICULAR: CIÊNCIA DA NATUREZA, MATEMÁTICA E SUAS TECNOLOGIAS DISCIPLINA: MATEMÁTICA I SÉRIE 1.ª CH 68 ANO 2012 COMPETÊNCIAS:.

Leia mais

13 Números Reais - Tipo float

13 Números Reais - Tipo float 13 Números Reais - Tipo float Ronaldo F. Hashimoto e Carlos H. Morimoto Até omomentonoslimitamosaouso do tipo inteiro para variáveis e expressões aritméticas. Vamos introduzir agora o tipo real. Ao final

Leia mais

Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Disciplina de Lógica Computacional Aplicada. Prof. Dr.

Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Disciplina de Lógica Computacional Aplicada. Prof. Dr. Índice 1. SISTEMAS NUMÉRICOS 1.1 Caracterização dos Sistemas Numéricos 1.2 Sistemas Numéricos em uma Base B Qualquer 1.2.1 Sistema de Numeração Decimal 1.2.2. Sistema de Numeração Binário 1.2.3 Sistema

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE Os números são na verdade coeficientes de uma determinada base numérica e podem ser representados como números assinalados, não assinalados, em complemento

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Tópico 2. Conversão de Unidades e Notação Científica

Tópico 2. Conversão de Unidades e Notação Científica Tópico 2. Conversão de Unidades e Notação Científica Toda vez que você se refere a um valor ligado a uma unidade de medir, significa que, de algum modo, você realizou uma medição. O que você expressa é,

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Sistema de Numeração Prof Daves Martins Msc Computação de Alto Desempenho Email: daves.martins@ifsudestemg.edu.br Sistemas Numéricos Principais sistemas numéricos: Decimal 0,

Leia mais

Matemática Financeira RECORDANDO CONCEITOS

Matemática Financeira RECORDANDO CONCEITOS 1 Matemática Financeira RECORDANDO CONCEITOS Propriedades da matemática Prioridades: É importante relembrar e entender alguns conceitos da matemática, que serão muito úteis quando trabalharmos com taxas.

Leia mais

Universidade da Beira Interior. Mestrado em Engenharia de Sistemas de Produção e Conservação de Energia MÉTODOS NUMÉRICOS EM ENGENHARIA

Universidade da Beira Interior. Mestrado em Engenharia de Sistemas de Produção e Conservação de Energia MÉTODOS NUMÉRICOS EM ENGENHARIA Universidade da Beira Interior Mestrado em Engenharia de Sistemas de Produção e Conservação de Energia MÉTODOS NUMÉRICOS EM ENGENHARIA Paulo Jorge Pimentel de Oliveira 1999/2000-1- Conteúdo página 1. Análise

Leia mais

TUTORIAL MATLAB MATEMÁTICA COMPUTACIONAL Aula 20-Novembro-2013

TUTORIAL MATLAB MATEMÁTICA COMPUTACIONAL Aula 20-Novembro-2013 TUTORIAL MATLAB MATEMÁTICA COMPUTACIONAL Aula 20-Novembro-2013 MATLAB (MATrix LABoratory) é um software de alta performance direccionado para o cálculo numérico. O MATLAB integra áreas como análise numérica,

Leia mais

Um Pequeno Manual. Adelmo Ribeiro de Jesus

Um Pequeno Manual. Adelmo Ribeiro de Jesus Um Pequeno Manual do Winplot Adelmo Ribeiro de Jesus O WINPLOT é um programa de domínio público, produzido por Richard Parris, da Phillips Exeter Academy, em New Hampshire. Recentemente traduzido para

Leia mais

Processamento dos dados

Processamento dos dados Capítulo 9 Processamento dos dados 9.1 Propagação não estatística de erros Suponhamos que é possível estabelecer uma relação de proporcionalidade directa (ver secção3.2) entre duas variáveis. Por exemplo,

Leia mais

CÁLCULO NUMÉRICO COM. i=1. Flaulles B.Bergamaschi

CÁLCULO NUMÉRICO COM. i=1. Flaulles B.Bergamaschi n CÁLCULO NUMÉRICO COM 0 1 2 3 4 5 6 7 8 50 40 30 20 10 0 0 10 20 30 40 50 i=1 Flaulles B.Bergamaschi PARA ELIANE... Sumário 1 Sistemas Lineares 1 1.1 Introdução......................... 1 1.1.1 Solução

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

Cálculo Numérico. ECA / 4 créditos / 60 h Introdução, Erros e Matlab. Ricardo Antonello. www.antonello.com.br

Cálculo Numérico. ECA / 4 créditos / 60 h Introdução, Erros e Matlab. Ricardo Antonello. www.antonello.com.br Cálculo Numérico ECA / 4 créditos / 60 h Introdução, Erros e Matlab Ricardo Antonello www.antonello.com.br Conteúdo Erros na fase de modelagem Erros na fase de resolução Erros de arredondamento Erros de

Leia mais