Medidas e Incertezas

Tamanho: px
Começar a partir da página:

Download "Medidas e Incertezas"

Transcrição

1 Medidas e Incertezas O que é medição? É o processo empírico e objetivo de designação de números a propriedades de objetos ou eventos do mundo real de forma a descreve-los. Outra forma de explicar este processo é comparando a quantidade ou variável desconhecida com um padrão definido para este tipo de quantidade, implicando então num certo tipo de escala, CKS 1

2 Tipos de medidas Medida Nominal Quando duas quantidades do mesmo tipo são comparadas para saber se são iguais (Ex. duas cores, acidez de dois líquidos) Medida Ordinal Quando é necessário ter informação a tamanhos relativos (Ex. Classificação por peso e altura de uma turma)) Medida em Intervalos Quando deseja-se uma informação mais especifica, envolve-se então uma certa escala, sem incluir pontos de referência ou zero. (Ex. no caso anterior usar a escala de metros e quilogramas) Medidas Normalizadas Define-se um ponto de referência e realiza-se a razão, dividindo cada medida pelo valor de referência, determinando as magnitudes relativas. (Ex. O maior valor obtido será 1, quando foi escolhido como referência o valor máximo medido). Medidas Cardinais O ponto de referência é comparado com um padrão definido. Assim todo parâmetro físico pode ser medido contra uma referência padrão, como o Sistema Internacional de medidas SI. CKS 3 CKS 4

3 O Processo de Medida Operador Conhecimento do processo de medida Domínio do instrumento de medida Escolha adequada do instrumento Instrumento de Medida Exemplo 1 Objeto a ser medido Valor medido: 0 m 5 A medida é um intervalo e não um número O intervalo [0:5] é conhecido como: Intervalo de Confiança O Intervalo de Confiança é no mínimo igual à precisão do equipamento. Neste caso = 5 CKS 5 INCERTEZA DA MEDIDA Representação da Medida Intervalo de Confiança Incerteza = δ = m Min δ = ( m m ) Max ( 5 0) CKS 6 Min δ = =,5 = 0 m = 5 m = m ± δ m mas ( m + m ) Max Min m = ± δ m ( 5 + 0) 45 m = ±,5 = ±,5 =,5 ±,5 então m =,5 ±,5 Max 3

4 Exemplo Objeto a ser medido Valor medido: 1 m ( m m ) Max Min δ = ( 1) 1 δ = = = 0,5 CKS 7 Representação da Medida m Min = 1 m = m = m ± δ m mas ( m + m ) Max Min m = ± δ m ( + 1) 43 m = ± 0,5 = ± 0,5 = 1,5 ± 0,5 então m = 1,5 ± 0,5 Max CKS 8 4

5 Resumindo Medida É um Intervalo e não um valor Intervalo de Confiança Depende do processo de medida (instrumento / operador) Intervalo entre o valor Máximo e Mínimo da Medida» Intervalo de Confiança = [m Max m Min ] Seu valor mínimo é igual a precisão da escala do equipamento de medida. Freqüentemente é maior. Incerteza Depende o processo de medida Seu valor é estimado a partir do intervalo de confiança É a metade do intervalo de confiança Incerteza Explícita 13,05 + 0,01 Incerteza Implícita (a incerteza esta na primeira casa decimal) 13,1 CKS 9 Conclusão Precisão de uma escala é sua menor divisão Ex.: Uma régua com divisão em milímetros Sua precisão é 1 mm = Intervalo de Confiança Como a incerteza corresponde à (Intervalo de Confiança)/ Então a Incerteza de um equipamento é Incerteza do Equip. = (Precisão do Equip.) / CKS 10 5

6 Incerteza de um Conjunto de Medidas Vamos supor um voltímetro com precisão de 1 microvolt De saída é possível definir a incerteza do equipamento Incerteza = Precisão / = 1µV / = 0,5 µv = 0, V Os valores medidos foram Medida Valor (V) 0,1681 0,1598 0, ,1587 0,16598 Valor médio do conjunto de dados: 0,16446 V Desvio padrão do conj. de medidas: 0, V Valor Máximo medido: Max = 0,17003 V Valor Mínimo medido: Min = 0,1587 V Representação da Incerteza do Conjunto de Medidas CKS 11 Representação Opção 1 A mais correta Incerteza = Desvio Padrão + Incerteza do Equipamento δ = 0, , = 0, V Opção A mais simples (a que nós empregamos) Incerteza = (Max Min)/ + Incerteza do Equipamento δ = 0, , = 0, V CKS 1 6

7 Algarismos Significativos São todos os algarismos obtidos no processo de medida. Os zeros incluidos para localizar o ponto decimal não contam (zeros à esquerda) Ex.: 1945,1 (5 algarismos significativos) 0,00034 ( algarismos significativos) 1000 (4 algarismos significativos) x 10 5 (5 algarismos significativos) 4,189 x 10-7 (4 algarismos significativos) A Incerteza só deve conter UM (1) algarismo significativo LOGO:» A incerteza deve ser arredondada após sua determinação CKS 13 Mudanças de Unidade Ao mudar a unidade de uma medida é importante não alterar o número de algarismos significativos Ex.: 46 cm 0,46 m (Está correto) 46 cm 460 mm (está errado pois aumentou a incerteza) A notação de potencia de dez evita este problema 46 cm 46 x 10 1 mm Por convenção apenas a mantissa tem algarismos significativos CKS 14 7

8 Critérios de Arredondamento O critério de arredondamento a ser utilizado será igual ao empregado por calculadoras científicas e programas afins. Se o número à direita do ponto de arredondamento é: 0, 1,, 3, 4 Simplesmente elimina-se a parte a direita Ex.: dado o número 0, » Arredondando para 8 casas depois da vírgula» = 0, » Arredondando para 4 casas depois da vírgula» = 0,5637» Arredondando para casas depois da vírgula» = 0,56 5, 6, 7, 8, 9 Incrementa o algarismo à esquerda e elimina a parte à direita. Ex.: dado o número 0, » Arredondando para 7 casas depois da vírgula» = 0,563795» Arredondando para 5 casas depois da vírgula» = 0,56373» Arredondando para 1 casa depois da vírgula» = 0,6 CKS 15 Usando o Arredondamento para Representar Medidas Como a Incerteza de uma medida só deve ter um algarismo significativo então a medida anterior fica: Medida Anterior Opção A mais simples (a que nós empregamos) Tensão = 0, , V Ajustando a Incerteza para 1 algarismo significativo Tensão = 0, ,0006 V Para ajustar o valor médio da medida basta ver quantas casas decimais depois da vírgula existem na incerteza (4 neste caso) Logo o valor da medida deve ser ajustado para 4 casas decimais com o arredondamento necessário Então: Tensão = 0, ,0006 V (Resultado Final) OBSERVAÇÃO MUITO IMPORTANTE Os arredondamentos somente devem ser efetuados no final de todas as contas. Razão: cada arredondamento intruduz erro (pequeno) mas que ao longo de diversas contas pode resultar em um número sem significado físico. CKS 16 8

9 Operações Matemáticas com Medidas Sempre que uma operação matemática é efetuada com duas medidas o resultado deve considerar as incertezas de cada medida a fim de determinar a incerteza do resultado da operação. Existe uma formulação genérica que permite determinar a incerteza em qualquer operação matemática efetuada com uma ou mais medidas. Esta formulação leva em consideração os valores máximo e mínimo da medida. Ex.: Supondo duas medidas com suas respectivas incertezas conforme: A = a + δa B = b + δb CKS 17 Soma das Medidas A + B = a ± a + b ± b = ( a + b) ± Max = a + a + b + b Min = a a + b b Exemplo A + B = 14, ± 0, + 5,3 ± 0,1 = (14, + 5,3) ± Max = 14, + 0, + 5,3 + 0,1 = 14,4 + 5,4 = 19,8 Min = 14, 0, + 5,3 0,1 = 14,0 + 5, = 19, 19,8 A + B = 19,5 ± [ 19,] = 19,5 ± 0,3 CKS 18 9

10 Subtração das Medidas Exemplo A B = a ± a b ± b = ( a b) ± Max = a + a b b (cuidado com os sinais) Min = a a b + b [ 9, 8,6] (cuidado com os sinais) A B = 14, ± 0, 5,3 ± 0,1 = (14, 5, 3) ± Max = 14, + 0, 5,3 0,1 = 14,4 5, = 9, Min = 14, 0, 5,3 + 0,1 = 14,0 5,4 = 8,6 A B = 8,9 ± = 8,9 ± 0, 3 CKS 19 Multiplicação das Medidas Exemplo A B = a ± a b ± b = ( a b) ± Max = a + a b + b Min = a a b b A B = 14, ± 0, 5,3 ± 0,1 = (14, 5,3) ± Max = 14, + 0, 5,3 + 0,1 = 14,4 5,4 = 77,76 Min = 14, 0, 5,3 0,1 = 14,0 5, = 7,8 77, A B 75,6 76 7,8 = 75,6 ±,48 = 75 ± CKS 0 = ± [ ] 10

11 Divisão das Medidas Exemplo ( δ ) ( δ ) ( a + δ a) ( b δ b) ( a δ a) ( b + δ b) [ ] A a ± a a Max Min = = ± B b ± b b Max = (cuidado com os sinais) Min = ( ) ( ) ( + ) ( ) (cuidado com os sinais) [ Max Min] A 14, ± 0, 14, = = ± B 5,3 ± 0,1 5,3 14, 0, 14,4 Max = = =,7693 5,3 0,1 5, 14, Min = ( 0, ) 14,0 = =,5959 5,3 + 0,1 5,4 ( ) [ ] (apenas as 5 primeiras casas decimais) (apenas as 5 primeiras casas decimais) A,7693,5959 =,6794 ± =,6794 ± 0,0883=,68 ± 0,09 CKS B 1 Exponenciação de uma Medida Exemplo ( δ ) ( δ ) ( δ ) 3 3 B = b ± b = b ± Max = b + b Min = b b ( 5,3 0,1) ( 5,3) B = ± = ± Max = 5, 3 + 0,1 = 5, 4 = 157,464 Min = 5, 3 0,1 = 5, = 140,608 [ 157, ,608] B = 148,877 ± = 148,877 ± 8,48=149 ± 8 CKS 11

12 Erros Erros Sistemáticos São erros constantes e geralmente conhecidos Causas Instrumento Método Operador Outros fatores (climáticos, mecânicos,...) Detecção Medir com outro equipamento Medir empregando outro método Medida por outro operador Erro Grosseiro Técnica Inadequada Imperícia do Operador Ex.: Erro na leitura da escala / digitação Podem ser completamente eliminados CKS 3 Erros Randômicos Permanecem após a eliminação dos erros sistemáticos Propriedades: Erros randômicos positivos e negativos tem a mesma probabilidade de ocorrência. São menos prováveis quando o valor absoluto medido aumenta. Quando o número de medidas aumenta a média aritmética dos erros randômicos em uma amostra tende a zero. Para um determinado método de medida os erros randômicos não excedem um determinado valor. Medidas excedendo este valor devem ser refeitas e, se necessário, estudadas separadamente. Erros randômicos também são chamados de Acidentais ou Fortuitos CKS 4 1

13 Preciso Impreciso Exato δa δa Inexato δs δs δa Erro Aleatório δs Erro Sistemático CKS 5 FIM 13

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a designação de números a propriedades de objetos ou a eventos do mundo real de forma a descrevêlos quantitativamente. Outra forma

Leia mais

Algarismos Significativos

Algarismos Significativos UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE QUÍMICA DEPARTAMENTO DE QUÍMICA INORGÂNICA QUÍMICA FUNDAMENTAL A - QUI-01-009 Algarismos Significativos ALGARISMOS SIGNIFICATIVOS Os algarismos significativos

Leia mais

1. Tipos de variáveis e organização dos dados

1. Tipos de variáveis e organização dos dados 1. Tipos de variáveis e organização dos dados 2012 1.1 ARREDONDAMENTO Algarismo significativo é qualquer algarismo sobre o qual temos certeza na sua determinação. Em inglês: significant digit ou significant

Leia mais

Tópico 2. Conversão de Unidades e Notação Científica

Tópico 2. Conversão de Unidades e Notação Científica Tópico 2. Conversão de Unidades e Notação Científica Toda vez que você se refere a um valor ligado a uma unidade de medir, significa que, de algum modo, você realizou uma medição. O que você expressa é,

Leia mais

Aula 1: Medidas Físicas

Aula 1: Medidas Físicas Aula 1: Medidas Físicas 1 Introdução A Física é uma ciência cujo objeto de estudo é a Natureza. Assim, ocupa-se das ações fundamentais entre os constituíntes elementares da matéria, ou seja, entre os átomos

Leia mais

20-10-2014. Sumário. Arquitetura do Universo

20-10-2014. Sumário. Arquitetura do Universo Sumário Das Estrelas ao átomo Unidade temática 1 Diferenças entre medir, medição e medida duma grandeza. Modos de exprimir uma medida. Algarismos significativos: Regras de contagem e operações. Esclarecimento

Leia mais

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Representação de grandeza com sinal O bit mais significativo representa o sinal: 0 (indica um número

Leia mais

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados 2aula Janeiro de 2012 TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS Objetivos: Familiarizar o aluno com os algarismos significativos, com as regras de arredondamento e as incertezas

Leia mais

15-11-2013. Sumário. Teoria de erros

15-11-2013. Sumário. Teoria de erros Sumário Erros que afetam as medições. Média, desvios e incertezas. As operações com os algarismos significativos exigem o conhecimento da teoria de erros. Mas, algumas regras simples podem ajudar a evitar

Leia mais

Exemplo de Subtração Binária

Exemplo de Subtração Binária Exemplo de Subtração Binária Exercícios Converta para binário e efetue as seguintes operações: a) 37 10 30 10 b) 83 10 82 10 c) 63 8 34 8 d) 77 8 11 8 e) BB 16 AA 16 f) C43 16 195 16 3.5.3 Divisão binária:

Leia mais

utilizados para os relatórios estão em: http://www.fisica.ufs.br/scaranojr/labfisicaa/

utilizados para os relatórios estão em: http://www.fisica.ufs.br/scaranojr/labfisicaa/ Paquímetro, Micrômetro e Propagação de Incertezas Sergio Scarano Jr 19/12/2012 Links para as Apresentações e Modelos Para o Laboratório de Física A, os materiais i das aulas e os modelos utilizados para

Leia mais

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte III) Prof.a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Aritmética de Números Inteiros Representação de Números

Leia mais

MATEMÁTICA BÁSICA E CALCULADORA

MATEMÁTICA BÁSICA E CALCULADORA DISCIPLINA MATEMÁTICA FINANCEIRA PROFESSOR SILTON JOSÉ DZIADZIO APOSTILA 01 MATEMÁTICA BÁSICA E CALCULADORA A matemática Financeira tem como objetivo principal estudar o valor do dinheiro em função do

Leia mais

CURSO E COLÉGIO APOIO. Professor: Ronaldo Correa

CURSO E COLÉGIO APOIO. Professor: Ronaldo Correa CURSO E COLÉGIO APOIO Professor: Ronaldo Correa Holiday - Christmas.mpg medidas 1-Medidas Grandeza tudo aquilo que pode ser medido. Medir comparar com um padrão. No Brasil e na maioria dos países as unidades

Leia mais

Conversão de Bases e Aritmética Binária

Conversão de Bases e Aritmética Binária Conversão de Bases e Aritmética Binária Prof. Glauco Amorim Sistema de Numeração Decimal Dígitos Decimais: 0 2 3 4 5 6 7 8 9 Potências de base 0 0 0 2 0 0 3 4 0 0 00 000 0 000 Sistema de Numeração Binário

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

Incerteza. Geralmente não conseguimos obter um valor exato para a medida de uma grandeza física. Medidas Elétricas

Incerteza. Geralmente não conseguimos obter um valor exato para a medida de uma grandeza física. Medidas Elétricas Incerteza Geralmente não conseguimos obter um valor exato para a medida de uma grandeza física. Medidas Elétricas TE215 Laboratório de Eletrônica I Engenharia Elétrica Fatores que influenciam o processo

Leia mais

Erros. Cálculo Numérico

Erros. Cálculo Numérico Cálculo Numérico Erros Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Erros - Roteiro Eistência Tipos

Leia mais

METROLOGIA MEDIDAS E CONVERSÕES

METROLOGIA MEDIDAS E CONVERSÕES METROLOGIA MEDIDAS E CONVERSÕES Prof. Fagner Ferraz 1 Algarismos significativos Os algarismos significativos são os algarismos que têm importância na exatidão de um número, por exemplo, o número 2,67 tem

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Medidas e Grandezas em Física

Medidas e Grandezas em Física CMJF - Colégio Militar de Juiz de Fora - Laboratório de Física Medidas e Grandezas em Física MEDIDAS EM FÍSICA Uma das maneiras de se estudar um fenômeno é estabelecer relações matemáticas entre as grandezas

Leia mais

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS 2 O que são e Por que se usam algarismos significativos? O valor 1,00 não é igual a 1? Do ponto de vista matemático, sim. Mas sempre que se façam medições

Leia mais

CAPÍTULO 9. PROCESSAMENTO DOS DADOS 9.5. ALGARISMOS SIGNIFICATIVOS. =0.01 gcm 3 3.36 Logo o resultado experimental é: = 5.82 g 0.

CAPÍTULO 9. PROCESSAMENTO DOS DADOS 9.5. ALGARISMOS SIGNIFICATIVOS. =0.01 gcm 3 3.36 Logo o resultado experimental é: = 5.82 g 0. CAPÍTULO 9. PROCESSAMENTO DOS DADOS 9.5. ALGARISMOS SIGNIFICATIVOS Logo o resultado experimental é: =(1.732 ± 0.001) gcm 3 O erro relativo do volume (0.1%) é uma ordem de grandeza maior que o erro relativo

Leia mais

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES REVISÃO Disciplina: Cálculo e Estatística Aplicada Professor: Dr. Fábio Saraiva da

Leia mais

Algarismos Significativos

Algarismos Significativos Algarismos Significativos Neste texto você conhecerá melhor os algarismos significativos, bem como as Regras gerais para realização de operações com algarismos significativos e as regras para Conversão

Leia mais

ANEXO IV REGRAS DE COMPATIBILIZAÇÃO DE VALORES

ANEXO IV REGRAS DE COMPATIBILIZAÇÃO DE VALORES ANEXO IV REGRAS DE COMPATIBILIZAÇÃO DE VALORES O resultado de uma medição, envolvendo o resultado base (RB) e a incerteza do resultado (IR), deveo resultado de uma medição, envolvendo o resultado base

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução O que é cálculo numérico? Corresponde a um conjunto

Leia mais

Ambos têm os algarismos 7854 seguidos, a potência de dez apenas moverá a vírgula, que não afeta a quantidade de algarismos significativos.

Ambos têm os algarismos 7854 seguidos, a potência de dez apenas moverá a vírgula, que não afeta a quantidade de algarismos significativos. ALGARISMOS SIGNIFICATIVOS Os algarismos significativos são os algarismos que têm importância na exatidão de um número, por exemplo, o número 2,67 tem três algarismos significativos. Se expressarmos o número

Leia mais

ARREDONDAMENTO DE NÚMEROS

ARREDONDAMENTO DE NÚMEROS ARREDONDAMENTO DE NÚMEROS Umas das maiores dificuldades, quando lidamos com números, é como devemos ou podemos apresentar esses números para quem vai utiliza-los. Quando a humanidade só conhecia os números

Leia mais

Capítulo 1 Erros e representação numérica

Capítulo 1 Erros e representação numérica Capítulo 1 Erros e representação numérica Objetivos Esperamos que ao final desta aula, você seja capaz de: Pré-requisitos Identificar as fases de modelagem e os possíveis erros nelas cometidos; Compreender

Leia mais

Representação de Dados

Representação de Dados Representação de Dados Introdução Todos sabemos que existem diferentes tipos de números: fraccionários, inteiros positivos e negativos, etc. Torna-se necessária a representação destes dados em sistema

Leia mais

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Sumário Unidade Lógica Aritmetrica Registradores Unidade Lógica Operações da ULA Unidade de Ponto Flutuante Representação

Leia mais

Aula ERROS E TRATAMENTOS DE DADOS

Aula ERROS E TRATAMENTOS DE DADOS ERROS E TRATAMENTOS DE DADOS METAS Apresentar os algarismos significativos e operações que os envolvem; apresentar os conceitos de precisão e exatidão; apresentar os tipos de erros experimentais; apresentar

Leia mais

Aula 6 Aritmética Computacional

Aula 6 Aritmética Computacional Aula 6 Aritmética Computacional Introdução à Computação ADS - IFBA Representação de Números Inteiros Vírgula fixa (Fixed Point) Ponto Flutuante Para todos, a quantidade de valores possíveis depende do

Leia mais

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação COMPUTAÇÕES NUMÉRICAS.0 Representação O sistema de numeração decimal é o mais usado pelo homem nos dias de hoje. O número 0 tem papel fundamental, é chamado de base do sistema. Os símbolos 0,,, 3, 4, 5,

Leia mais

Aritmética Binária e. Bernardo Nunes Gonçalves

Aritmética Binária e. Bernardo Nunes Gonçalves Aritmética Binária e Complemento a Base Bernardo Nunes Gonçalves Sumário Soma e multiplicação binária Subtração e divisão binária Representação com sinal Sinal e magnitude Complemento a base. Adição binária

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) I Representação dos números, aritmética de ponto flutuante e erros em máquinas

Leia mais

MÉTODOS DE CALIBRAÇÃO

MÉTODOS DE CALIBRAÇÃO MÉTODOS DE CALIBRAÇÃO Sinais obtidos por equipamentos e instrumentos devem ser calibrados para evitar erros nas medidas. Calibração, de acordo com o INMETRO, é o conjunto de operações que estabelece, sob

Leia mais

Técnicas de Medidas e Tratamento de Dados Experimentais

Técnicas de Medidas e Tratamento de Dados Experimentais IQ-UFG Curso Experimental de Química Geral e Inorgânica Técnicas de Medidas e Tratamento de Dados Experimentais Prof. Dr. Anselmo Introdução A interpretação e análise dos resultados são feitas a partir

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

Organização e Arquitetura de Computadores. Aula 10 Ponto Flutuante Parte I. 2002 Juliana F. Camapum Wanderley

Organização e Arquitetura de Computadores. Aula 10 Ponto Flutuante Parte I. 2002 Juliana F. Camapum Wanderley Organização e Arquitetura de Computadores Aula 10 Ponto Flutuante Parte I 2002 Juliana F. Camapum Wanderley http://www.cic.unb.br/docentes/juliana/cursos/oac OAC Ponto Flutuante Parte I - 1 Panorama Números

Leia mais

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos.

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos. Objetivos 2. Sistemas de Numeração, Operações e Códigos Revisar o sistema de numeração decimal Contar no sistema de numeração binário Converter de decimal para binário e vice-versa Aplicar operações aritméticas

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS

Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS Introdução a Analise Química - II sem/2012 Profa Ma Auxiliadora - 1 Introdução à Análise Química QUI 094 1 semestre 2012 Profa. Maria Auxiliadora Costa Matos ERRO E TRATAMENTO DE DADOS ANALÍTICOS Introdução

Leia mais

Introdução a Química Analítica. Professora Mirian Maya Sakuno

Introdução a Química Analítica. Professora Mirian Maya Sakuno Introdução a Química Analítica Professora Mirian Maya Sakuno Química Analítica ou Química Quantitativa QUÍMICA ANALÍTICA: É a parte da química que estuda os princípios teóricos e práticos das análises

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases...

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases... Índice de conteúdos Índice de conteúdos Capítulo 2. Representação de Números e Erros...1 1.Representação de números em diferentes bases...1 1.1.Representação de números inteiros e conversões de base...1

Leia mais

PRIMEIRO TRIMESTRE NOTAS DE AULAS LUCAS XAVIER www.wikifisica.com (FILOMENA E CORONEL) FÍSICA

PRIMEIRO TRIMESTRE NOTAS DE AULAS LUCAS XAVIER www.wikifisica.com (FILOMENA E CORONEL) FÍSICA α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π ϖ θ ϑ ρ σ ς τ υ ω ξ ψ ζ Α Β Χ Ε Φ Γ Η Ι Κ Λ Μ Ν Ο Π Θ Ρ Σ Τ Υ Ω Ξ Ψ Ζ PRIMEIRO TRIMESTRE NOTAS DE AULAS LUCAS XAVIER www.wikifisica.com (FILOMENA E CORONEL) FÍSICA Ciência

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos Aula 9 Introdução à Computação Ponto Flutuante Ponto Flutuante Precisamos de uma maneira para representar Números com frações, por exemplo, 3,1416 Números muito pequenos, por exemplo, 0,00000001 Números

Leia mais

Hardware de Computadores

Hardware de Computadores Sistema Binário Hardware de Computadores O sistema binário é um sistema de numeração posicional em que todas as quantidades são representadas, utilizando-se como base as cifras: zero e um (0 e 1). Os computadores

Leia mais

INSTRUMENTAÇÃO. Aula 6

INSTRUMENTAÇÃO. Aula 6 INSTRUMENTAÇÃO Aula 6 1 2 CLASSIFICAÇÃO DOS ERROS DE MEDIÇÃO ERRO Falta de precisão Erro grosseiro Tendência (Bias) Engano Mau uso do equipamento Gafe Erros aleatórios Erros sistemáticos Resolução Histerese

Leia mais

Alguns apontamentos da história da Análise Numérica

Alguns apontamentos da história da Análise Numérica Análise Numérica 1 Âmbito da Análise Numérica Determinar boas soluções aproximadas num tempo computacional razoável? Slide 1 Porquê? Porque em muitos problemas matemáticos e respectivas aplicações práticas

Leia mais

Representação de Dados e Sistemas de Numeração

Representação de Dados e Sistemas de Numeração 1 Representação de Dados e Sistemas de Numeração Sistema de numeração decimal e números decimais (base 10) Sistema de numeração binário e números binários (base 2) Conversão entre binário e decimal Sistema

Leia mais

CAPÍTULO II COLETANDO DADOS EXPERIMENTAIS

CAPÍTULO II COLETANDO DADOS EXPERIMENTAIS CAPÍTULO II COLETANDO DADOS EXPERIMENTAIS II.1 A Comunicação em Ciência e Tecnologia A comunicação torna-se ainda mais perfeita, mais objetiva, se a questão envolver a definição da igualdade ou não de

Leia mais

QUÍMICA TECNOLÓGICA I

QUÍMICA TECNOLÓGICA I Universidade Federal dos Vales do Jequitinhonha e Mucuri Bacharelado em Ciência e Tecnologia Diamantina - MG QUÍMICA TECNOLÓGICA I Prof a. Dr a. Flaviana Tavares Vieira flaviana.tavares@ufvjm.edu.br Alquimia

Leia mais

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos Trabalho compilado da Internet Prof. Claudio Passos Sistemas Numéricos A Informação e sua Representação O computador, sendo um equipamento eletrônico, armazena e movimenta as informações internamente sob

Leia mais

Aproximações e Erros de Arredondamento. introdução. exactidão e precisão. Aula 2 Métodos Numéricos Aplicados à Engenharia

Aproximações e Erros de Arredondamento. introdução. exactidão e precisão. Aula 2 Métodos Numéricos Aplicados à Engenharia Aproximações e Erros de Arredondamento Aula 2 Métodos Numéricos Aplicados à Engenharia 23/02/07 João Noronha 1 introdução Em muitos problemas de engenharia não é possível a obtenção de soluções analíticas.

Leia mais

Física Geral - Laboratório (2014/1) Erros sistemáticos Limites de erro em instrumentos de medida (multímetros analógicos e digitais)

Física Geral - Laboratório (2014/1) Erros sistemáticos Limites de erro em instrumentos de medida (multímetros analógicos e digitais) Física Geral - Laboratório (2014/1) Erros sistemáticos Limites de erro em instrumentos de medida (multímetros analógicos e digitais) 1 Incertezas do Tipo A e incertezas do Tipo B Até agora, nos preocupamos

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

CAPÍTULO 1 MEDIÇÃO E O ERRO DE MEDIÇÃO

CAPÍTULO 1 MEDIÇÃO E O ERRO DE MEDIÇÃO CAPÍTULO 1 MEDIÇÃO E O ERRO DE MEDIÇÃO 1.1. Definições do Vocabulário Internacional de Metrologia (VIM) Metrologia: Ciência das medições [VIM 2.2]. Medição: Conjunto de operações que têm por objectivo

Leia mais

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE Os números são na verdade coeficientes de uma determinada base numérica e podem ser representados como números assinalados, não assinalados, em complemento

Leia mais

Em um sistema de numeração de base b qualquer, um número positivo é representado pelo polinômio:

Em um sistema de numeração de base b qualquer, um número positivo é representado pelo polinômio: ELETRÔNICA DIGITAl I 1 SISTEMAS DE NUMERAÇÃO INTRODUÇÃO A base dos sistemas digitais são os circuitos de chaveamento (switching) nos quais o componente principal é o transistor que, sob o ponto de vista

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

1.1 Definições e Conceitos Importantes

1.1 Definições e Conceitos Importantes 1 INTRODUÇÃO À TEORIA DE ERROS Quando procuramos obter resultados através de observações experimentais, devemos ter sempre à mente que nossa observações serão sempre limitadas, no sentido de que jamais

Leia mais

Operações aritméticas

Operações aritméticas Circuitos Lógicos Operações aritméticas Prof.: Daniel D. Silveira Horário: 4a.f e 6a.f de 10h às 12h 1 Adição binária A soma binária ocorre da mesma forma que a decimal:» A operação sobre os dígitos na

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Sistema de Numeração Prof Daves Martins Msc Computação de Alto Desempenho Email: daves.martins@ifsudestemg.edu.br Sistemas Numéricos Principais sistemas numéricos: Decimal 0,

Leia mais

Sistemas de Numeração. Engenharia da Computação 3 Período Alex Vidigal Bastos

Sistemas de Numeração. Engenharia da Computação 3 Período Alex Vidigal Bastos UNIPAC Sistemas Digitais Sistemas de Numeração Engenharia da Computação 3 Período Alex Vidigal Bastos 1 Agenda Objetivos Introdução Sistema Binário Sistema Octal Sistema Hexadecimal Aritméticas no Sistema

Leia mais

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos?

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? &DStWXOR±5HSUHVHQWDomRGH1~PHURVH(UURV,QWURGXomR Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? 7LSRVGH(UURV Erros inerentes à matematização do fenómeno físico: os sistemas

Leia mais

Capítulo 1. Introdução. 1.1 Sistemas numéricos

Capítulo 1. Introdução. 1.1 Sistemas numéricos EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 1 Introdução O objetivo desta disciplina é discutir e aplicar técnicas e métodos numéricos para a resolução de problemas

Leia mais

Sistemas de Numeração. Introdução ao Computador 2010/1 Renan Manola

Sistemas de Numeração. Introdução ao Computador 2010/1 Renan Manola Sistemas de Numeração Introdução ao Computador 2010/1 Renan Manola Introdução Em sistemas digitais o sistema de numeração binário é o mais importante, já fora do mundo digital o sistema decimal é o mais

Leia mais

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais.

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais. 25BCapítulo 2: Números e Aritmética Binária Os computadores armazenam e manipulam a informação na forma de números. Instruções de programas, dados numéricos, caracteres alfanuméricos, são todos representados

Leia mais

Medidas de Grandezas Fundamentais - Teoria do Erro

Medidas de Grandezas Fundamentais - Teoria do Erro UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL Medidas de Grandezas Fundamentais - Teoria do Erro Objetivo As práticas que serão trabalhadas nesta aula têm os objetivos de

Leia mais

Usando unidades de medida

Usando unidades de medida Usando unidades de medida O problema Q uando alguém vai à loja de autopeças para comprar alguma peça de reposição, tudo que precisa é dizer o nome da peça, a marca do carro, o modelo e o ano de fabricação.

Leia mais

METROLOGIA Escala e Paquímetro. Prof. João Paulo Barbosa, M.Sc.

METROLOGIA Escala e Paquímetro. Prof. João Paulo Barbosa, M.Sc. METROLOGIA Escala e Paquímetro Prof. João Paulo Barbosa, M.Sc. Regras de Arredondamento Quando o algarismo seguinte ao último algarismo a ser conservado for inferior a 5, o último algarismo a ser conservado

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Introdução ao Estudo dos Fenômenos Físicos

Introdução ao Estudo dos Fenômenos Físicos Universidade Federal do Espírito Santo Centro de Ciências Exatas Departamento de Física Introdução ao Estudo dos Fenômenos Físicos Aula 05 Medidas físicas Medidas, valores numéricos e unidades. Sistemas

Leia mais

Arquitetura de Computadores

Arquitetura de Computadores Arquitetura de Computadores Prof. Fábio M. Costa Instituto de Informática UFG 1S/2004 Representação de Dados e Aritimética Computacional Roteiro Números inteiros sinalizados e nãosinalizados Operações

Leia mais

Física Geral - Laboratório (2014/1) Aula 6: Limites de erro em instrumentos de medida (multímetros analógicos e digitais)

Física Geral - Laboratório (2014/1) Aula 6: Limites de erro em instrumentos de medida (multímetros analógicos e digitais) Física Geral - Laboratório (2014/1) Aula 6: Limites de erro em instrumentos de medida (multímetros analógicos e digitais) 1 Incertezas do Tipo A e incertezas do Tipo B Até agora, nos preocupamos em estimar

Leia mais

A INTEGRAÇÃO ENTRE ESTATÍSTICA E METROLOGIA

A INTEGRAÇÃO ENTRE ESTATÍSTICA E METROLOGIA A INTEGRAÇÃO ENTRE ESTATÍSTICA E METROLOGIA João Cirilo da Silva Neto jcirilo@araxa.cefetmg.br. CEFET-MG-Centro Federal de Educação Tecnológica de Minas Gerais-Campus IV, Araxá Av. Ministro Olavo Drumonnd,

Leia mais

Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Disciplina de Lógica Computacional Aplicada. Prof. Dr.

Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Disciplina de Lógica Computacional Aplicada. Prof. Dr. Índice 1. SISTEMAS NUMÉRICOS 1.1 Caracterização dos Sistemas Numéricos 1.2 Sistemas Numéricos em uma Base B Qualquer 1.2.1 Sistema de Numeração Decimal 1.2.2. Sistema de Numeração Binário 1.2.3 Sistema

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

UNIVERSIDADE FEDERAL DE ALFENAS UNIFAL/MG. Projeto Institucional de Formação Continuada

UNIVERSIDADE FEDERAL DE ALFENAS UNIFAL/MG. Projeto Institucional de Formação Continuada 1 UNIVERSIDADE FEDERAL DE ALFENAS UNIFAL/MG Projeto Institucional de Formação Continuada Aprendizagem de Matemática Mediada por suas Aplicações 6 o Encontro: Matemática Financeira Professor José Carlos

Leia mais

CAPÍTULO 6 ARITMÉTICA DIGITAL

CAPÍTULO 6 ARITMÉTICA DIGITAL CAPÍTULO 6 ARITMÉTICA DIGITAL Introdução Números decimais Números binários positivos Adição Binária Números negativos Extensão do bit de sinal Adição e Subtração Overflow Aritmético Circuitos Aritméticos

Leia mais

O Excel é um software de Planilha Eletrônica integrante dos produtos do Microsoft Office.

O Excel é um software de Planilha Eletrônica integrante dos produtos do Microsoft Office. EXCEL O Excel é um software de Planilha Eletrônica integrante dos produtos do Microsoft Office. É composto das seguintes partes: Pasta de Trabalho um arquivo que reúne várias planilhas, gráficos, tabelas,

Leia mais

ORGANIZAÇÃO DE COMPUTADORES MÓDULO 13

ORGANIZAÇÃO DE COMPUTADORES MÓDULO 13 ORGANIZAÇÃO DE COMPUTADORES MÓDULO 13 Índice 1. Circuitos Digitais - Continuação...3 1.1. Por que Binário?... 3 1.2. Conversão entre Bases... 3 2 1. CIRCUITOS DIGITAIS - CONTINUAÇÃO 1.1. POR QUE BINÁRIO?

Leia mais

Representação Binária de Números

Representação Binária de Números Departamento de Informática Notas de estudo Alberto José Proença 01-Mar-04 Dep. Informática, Universidade do Minho Parte A: Sistemas de numeração e representação de inteiros A.1 Sistemas de numeração

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Conversões em Sistemas de Numeração. José Gustavo de Souza Paiva

Conversões em Sistemas de Numeração. José Gustavo de Souza Paiva Conversões em Sistemas de Numeração José Gustavo de Souza Paiva 1 Conversões entre bases que são potências entre si Primeiro caso base binária para base octal Como 2 3 = 8, podemos separar os bits de um

Leia mais

ELETRÔNICA DIGITAL 1

ELETRÔNICA DIGITAL 1 CENTRO FEDERAL DE ENSINO TECNOLÓGICO DE SANTA CATARINA UNIDADE SÃO JOSÉ ÁREA DE TELECOMUNICAÇÕES ELETRÔNICA DIGITAL 1 CAPÍTULO 1 SUMÁRIO INTRODUÇÃO...2 1. SISTEMAS DE NUMERAÇÃO...4 1.1 Introdução...4

Leia mais

Programação. Folha Prática 3. Lab. 3. Departamento de Informática Universidade da Beira Interior Portugal 2015. Copyright 2010 All rights reserved.

Programação. Folha Prática 3. Lab. 3. Departamento de Informática Universidade da Beira Interior Portugal 2015. Copyright 2010 All rights reserved. Programação Folha Prática 3 Lab. 3 Departamento de Informática Universidade da Beira Interior Portugal 2015 Copyright 2010 All rights reserved. LAB. 3 3ª semana EXPRESSÕES E INSTRUÇÕES 1. Revisão de conceitos

Leia mais