As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

Tamanho: px
Começar a partir da página:

Download "As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:"

Transcrição

1 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico é uma metodologia para resolver problemas matemáticos por meio de uma máquina calculadora ou um computador, sendo de grande importância pois, embora os métodos analíticos usualmente nos forneçam a resposta em termos de funções matemáticas, existem problemas que não possuem solução analítica e, mesmo nestes casos podemos obter uma solução numérica para o problema. Uma solução via Cálculo Numérico é um conjunto de dados numéricos que fornecem uma aproximação para a solução exata do problema, aproximação esta que pode ser obtida em grau crescente de exatidão. Para obtermos uma solução numérica precisamos utilizamos apenas as quatro operações aritméticas (soma, subtração, multiplicação e divisão) e operações lógicas, o que torna a combinação computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: Definição e coleta de dados do problema real Modelagem matemática Solução numérica Análise dos resultados Na modelagem matemática o problema real é transformado em um problema matemático através de uma formulação matemática. Geralmente o problema matemático tem mais soluções que o problema real. Ao final do processo de resolução deve-se escolher a solução que melhor se adapta ao que queremos. Quando partimos para a solução numérica, é feita a escolha do método numérico mais eficiente para resolver o problema oriundo da modelagem matemática. O método matemático é um conjunto de procedimentos utilizado para transformar um modelo matemático em um problema numérico ou um conjunto de procedimentos utilizados para resolver um problema numérico. A escolha do método mais eficiente deve envolver: precisão desejada para os resultados; capacidade do método em conduzir aos resultados desejados (velocidade de convergência); esforço computacional despendido (tempo de processamento, economia de memória necessária para a resolução).

2 2 A solução numérica envolve: (a) a elaboração de um algorítmo, que é a descrição seqüencial dos passos que caracterizam um método numérico, (b) a codificação do programa, quando implementamos o algorítmo numa linguagem de programação escolhida, e (c) o processamento do programa, quando o código antes obtido é editado em um arquivo para que possa ser executado pelo computador. Duas idéias são freqüentes em cálculo numérico, a de iteração ou aproximação sucessiva e a de aproximação local. Iteração. Em um sentido amplo, iteração significa a repetição sucessiva de um processo. Um método iterativo se caracteriza por envolver os seguintes elementos: Aproximação inicial: consiste em uma primeira aproximação para a solução do problema numérico. Equação de recorrência: equação por meio da qual, partindo da aproximação inicial, são realizadas as aproximações sucessivas para a solução desejada. Teste de parada: é o instrumento por meio do qual o procedimento iterativo é finalizado. Aproximação local. Aqui a idéia é aproximar uma função por outra que seja de manuzeio mais simples. Por exemplo, aproximar uma função não-linear por uma função linear em um determinado intervalo do domínio das funções. 1 Tipos de erros Durante as etapas de resolução de um problema surgem várias fontes de erros que podem alterar profundamente os resultados obtidos. É muito importante conhecer as causas desses erros para minimizar as suas consequências, ou do contrário, poderemos chegar a resultados distântes do que se esperaria ou até mesmo obter outros que não têm relação nenhuma como a solução do problema real. As principais fontes de erros são as seguintes: erros nos dados de entrada; erros no estabelecimento do modelo matemático; erros de arredondadamento durante a computação; erros de truncamento, e erros humanos e de máquinas. O erro inicial é a soma das incertezas introduzidas no equacionamento do problema, na medição dos parâmetros, nas condições iniciais etc. A influência dessas perturbações no resultado final vai depender da estabilidade do problema. Estabilidade é a condição que nos diz se pequenas perturbações nos dados de entrada provocam pequenas perturbações nos resultados, ou seja

3 3 soluções próximas. Se além de estável, o problema tiver uma única solução, dizemos que ele é bem-posto. O modelo matemático para o problema real deve representar bem o fenômeno que está ocorrendo no mundo físico, normalmente isso exige simplificações no modelo físico para que se possa obter um problema matemático viável de ser resolvido. O processo de simplificação é uma fonte de erros, o que pode, ao final da resolução do problema, implicar na necessidade de reconstruir o seu modelo. 1.1 Medida de erros Tendo em vista que, na aplicação dos métodos numéricos, trabalhamos com aproximações vamos estabelecer duas maneiras de se medir ou delimitar o erro cometido. Seja u o valor exato e v uma aproximação para u, definimos o erro absoluto como sendo E A = u v e o erro relativo como sendo E A u. O tamanho do erro absoluto é mais grave quando o valor verdadeiro é pequeno. É comum apresentar o erro relativo em forma de percentual, o que é obtido multiplicando esta expressão por 100. Exercício: Sejam: a) u = 10, 0010 e v = 10, 0009; b) u = 0, 0010 e v = 0, 0009, em anbos os casos calcule os erros absoluto e relativo. 1.2 Erro de truncamento Este tipo de erro surge toda vez que se substitui um procedimento matemático infinito por um processo finito ou discreto. Como um processo infinito não se conclui somos obrigados a adotar uma aproximação após um número finito de passos. Vejamos dois exemplos clássicos que ilustram fontes de erros de truncamento: o uso de séries no cálculo de funções e o uso de diferenças finitas para aproximar derivadas. Exemplo 1. Para calcular o valor de e 0,5 podemos lançar mão da série de Taylor da função exponencial e x = 1 + x + x2 2! + x3 3! xn n! +... (1) portanto, no cálculo efetivo de e 0,5, precisamos truncar a série, usando apenas um número finito de termos dela. Por exemplo, usando os cinco primeiros termos como aproximação, teremos e 0,5 = 1, Exercício: Calcule o erro absoluto entre o valor acima e o exato (obtido através de uma máquina calculadora). Aumentando o número de termos utilizados, verifique que esse erro diminui. Exemplo 2. A derivada de uma função f(x) pode ser calculada pela diferença centrada f (x 0 ) f(x 0 + h) f(x 0 h) 2h temos que o erro de truncamento (absoluto) da fórmula de diferenças centradas é h2 6 f (k), onde k é um número que depende de x 0 e h; e x 0 h k x 0 + h. Uma forma mais razoável de (2)

4 4 estimar esse erro vem a ser: E h2 6 max{ f (x) ; x 0 h x x 0 + h}. Por exemplo, seja f(x) = sen(x), tomando x 0 = π e h 1 = π 4, temos que f (π) = 1. Utitlizando a aproximação acima temos que f (π) 0, Exercícios: Calcule o erro de truncamento e compare-o com a estimativa doerro. Faça h 2 = π 8 e h 3 = π 16, em cada caso calcule as aproximações para f (π), os erros de truncamento e compare com as estimativas do erro. 1.3 Erro de arredondamento Os erros de arredondamento surgem devido ao fato de algumas propriedades básicas da aritmética real não valerem quando executadas no computador, pois, enquanto na matemática alguns números são representados por infinitos dígitos, na máquina isso não é possível já que uma palavra da memória e a própria memória da máquina são finitas. Dessa forma, os erros de arredondamento dependem de como os números são representados na máquina, a representação depende da base em que os números são escritos e da quantidade máxima de dígitos usados nessa representação. Logo cálculos envolvendo números que não podem ser escrito de modo finito na base escolhida geram erros. Quanto maior for o número de dígitos significativos utilizados (dígitos após a vírgula) maior será a precisão. 2 Conversão de bases e aritmética de ponto flutuante Um número pode ter sua representação em ponto fixo, por exemplo 12, 43, ou em ponto flutuante 0, A forma de representação de um número em ponto flutuante na base β é a seguinte: ±, d 1 d 2 d 3... d p β e ; (3) onde os d i s, i = 1, 2,..., p são os dígitos da parte fracionária(mantissa), tais que 0 d i β 1, d 1 é não-nulo, β é o valor da base (geralmente 2, 8 ou 16) representada na base 10, p é o número de dígitos e e é um expoente inteiro que varia entre m e M, ambos números inteiros. As três partes de um número em ponto flutuante, sinal, mantissa e expoente, têm um comprimento total fixo que depende do computador e do tipo de número representado: se em precisão simples, dupla ou estendida. Um sistema de ponto flutuante F, que depende de β, p, m e M, será representado por F(β, p, m, M), onde a precisão da máquina com o sistema F é definida pelo número p de dígitos na mantissa. O zero é representado de maneira especial, todos os dígitos da mantissa são nulos e o expoente é tomado o menor possível para se evitar a perda de dígitos nas operações. Vale observar que, enquanto na reta real possuímos uma quantidade não-enumerável de números posicionados continuamente, em ponto flutuante os números são representados de forma finita e discreta. Entre dois números de ponto flutuante nem sempre existe um outro número de ponto flutuante.

5 5 2.1 Aritmética de ponto flutunate Quando dois números são somados ou subtraídos, os dígitos do número de expoente menor devem ser deslocados a fim de alinhar as casa decimais, ou seja, devemos representar ambos os fatores com o maior expoente envolvido na operação. O resultado então é arredondado para o número de dígitos que a mantissa comporta, levando em conta uma mantissa normalizada (d 1 0). Na multiplicação, como na divisão, os números devem ser armazenados no formato definido e a operação ser efetuada como no caso de números decimais. O resultado, então, deve ser arredondado e normalizado. Se uma operação aritmética resultar em um número que seja maior em módulo que o maior número representável ocorrerá um overflow. Se, por outro lado, uma operação aritmética resultar em um número que seja menor em módulo que o menor número representável não-nulo ocorrerá um underflow. 2.2 Conversão de bases Além desses erros operacionais, uma outra causa de erros quando se usa computadores é devida à conversão de base. Geralmente fornecemos um número ao computador na base 10 e no entanto ele é armazenado e operado na base 2. Como números com representação finita numa base podem tem representação infinita em outra, converter do sistema decimal para o binário e vice-versa é outra fonte de erros. Exercícios: 1. Converta os seguintes números da forma decimal para a forma binária: x 1 = 37; x 2 = 2347; x 3 = 0, 75; x 4 =(sua matrícula)/10; x 5 = 0, Converta os seguintes números da forma binária para a forma decimal: y 1 = ; y 2 = ; y 3 = 0, 1101; y 4 = 0, Converta os seguintes números da forma decimal para sua forma na base quatro: z 1 = 5268; z 2 = 2, 5; z 3 = ; z 4 = 0, Seja o SPF dado por F (10, 4, 5, 5). Dados os números x = 7237; y = 0, ; z = 2, 585, efetue as seguintes operações: w 1 = x + y + z; w 2 = x y z; w 3 = x y ; w 4 = xy z ; w 5 = x y z 5. Dê um argumento convincente para justificar que, se o número fracionário N tem representação finita na base 2 com k dígitos, então sua representação na base 10 também é finita com k dígitos. 6. Encontre o maior intervalo em que um número q deve se encontrar para aproximar x 4 com erro relativo no máximo de 10 4.

6 6 7. Seja o sistema de ponto flutuante dado por F (6, 6, 6, 6). Quantos números reais podem ser representados de forma exata? Verifique se sua matrícula, escrita de traz para frente, tem representação neste sistema. 3 Condicionamento de algorítmos Como antes definido, um problema é dito bem-posto quando tem uma única solução e é estável. Mas pode acontecer o caso do problema ser bem-posto e, no cálculo de soluções aproximadas, usarmos algorítmos instáveis. Neste caso podemos obter maus resultados. Como exemplo consideremos o cálculo de raízes de equações de segundo grau: Exemplo 3 As raízes da equação ax 2 + bx + c = 0, onde a e b são números positivos, podem ser calculads por x 1 = b + b 2 4ac 2a, x 2 = b b 2 4ac. (4) 2a Quando b 2 >> 4ac, o cálculo de x 2 envolverá a diferença de dois números próximos o que pode acarretar na perda de dígitos significativos. Uma forma de contornar o problema pode ser calcular x 1 como proposto anteriormente e usar a propriedades de raízes de equações do segundo grau: x 1 x 2 = c/a. Calculemos um exemplo prático, seja a equação x 2 100, 22x + 1, 2371 = 0, trabalhando com uma mantissa com 5 dígitos temos: b 2 = b 2 4ac = b 2 4ac = 100, 19. (5) Calculando as raízes pelas fórmulas apresentadas no primeiro procedimento temos x 1 = (100, , 19)/2 = 100, 20 x 2 = (100, , 19)/2 = 0, 015. (6) Agora, usando o valor de x 1 e o segundo procedimento temos x 2 = 1, ,20 = 0, Substituindo na função f(x) = x 2 100, 22x + 1, 2371, verificamos que no primeiro procedimento f(x 2 ) = 0, 26597, enquanto que no segundo f(x 2 ) = 6, Dependendo da precisão desejada, poderíamos considerar a resposta do segundo procedimento como sendo exata. Referências [1] RUGGIERO, M.A.G. e ROCHA LOPES, V.L. Cálculo Numérico - Aspectos Teóricos e Computacionais. MAKRON Books,1996 [2] CUNHA, M.C.C. Métodos Numéricos. Campinas, Editora da Unicamp, [3] CAMPOS Filho,F.F. Algorítmos Numéricos. [4] SPERANTIO,D.,MENDES,J.T.,SILVA,L.H.M. Cálculo Numérico. São Paulo, Prentice Hall, 2003.

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Cálculo Numérico. ECA / 4 créditos / 60 h Introdução, Erros e Matlab. Ricardo Antonello. www.antonello.com.br

Cálculo Numérico. ECA / 4 créditos / 60 h Introdução, Erros e Matlab. Ricardo Antonello. www.antonello.com.br Cálculo Numérico ECA / 4 créditos / 60 h Introdução, Erros e Matlab Ricardo Antonello www.antonello.com.br Conteúdo Erros na fase de modelagem Erros na fase de resolução Erros de arredondamento Erros de

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases...

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases... Índice de conteúdos Índice de conteúdos Capítulo 2. Representação de Números e Erros...1 1.Representação de números em diferentes bases...1 1.1.Representação de números inteiros e conversões de base...1

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

Alguns apontamentos da história da Análise Numérica

Alguns apontamentos da história da Análise Numérica Análise Numérica 1 Âmbito da Análise Numérica Determinar boas soluções aproximadas num tempo computacional razoável? Slide 1 Porquê? Porque em muitos problemas matemáticos e respectivas aplicações práticas

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) I Representação dos números, aritmética de ponto flutuante e erros em máquinas

Leia mais

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução O que é cálculo numérico? Corresponde a um conjunto

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Capítulo 1 Erros e representação numérica

Capítulo 1 Erros e representação numérica Capítulo 1 Erros e representação numérica Objetivos Esperamos que ao final desta aula, você seja capaz de: Pré-requisitos Identificar as fases de modelagem e os possíveis erros nelas cometidos; Compreender

Leia mais

Erros. Cálculo Numérico

Erros. Cálculo Numérico Cálculo Numérico Erros Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Erros - Roteiro Eistência Tipos

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte III) Prof.a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação COMPUTAÇÕES NUMÉRICAS.0 Representação O sistema de numeração decimal é o mais usado pelo homem nos dias de hoje. O número 0 tem papel fundamental, é chamado de base do sistema. Os símbolos 0,,, 3, 4, 5,

Leia mais

Aproximações e Erros de Arredondamento. introdução. exactidão e precisão. Aula 2 Métodos Numéricos Aplicados à Engenharia

Aproximações e Erros de Arredondamento. introdução. exactidão e precisão. Aula 2 Métodos Numéricos Aplicados à Engenharia Aproximações e Erros de Arredondamento Aula 2 Métodos Numéricos Aplicados à Engenharia 23/02/07 João Noronha 1 introdução Em muitos problemas de engenharia não é possível a obtenção de soluções analíticas.

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Aritmética de Números Inteiros Representação de Números

Leia mais

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante.

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica Carlos Balsa Métodos Numéricos

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Representação de grandeza com sinal O bit mais significativo representa o sinal: 0 (indica um número

Leia mais

Aula 6 Aritmética Computacional

Aula 6 Aritmética Computacional Aula 6 Aritmética Computacional Introdução à Computação ADS - IFBA Representação de Números Inteiros Vírgula fixa (Fixed Point) Ponto Flutuante Para todos, a quantidade de valores possíveis depende do

Leia mais

Noções Básicas de Erros

Noções Básicas de Erros Noções Básicas de Erros PROF. ALIRIO SANTOS DE SÁ ALIRIOSA@UFBA.BR MATERIAL ADAPTADA DOS SLIDES DA DISCIPLINA DE CÁLCULO NUMÉRICO DOS PROFESSORES BRUNO QUEIROZ, JOSÉ QUEIROZ E MARCELO BARROS (UFCG). DISPONÍVEL

Leia mais

Capítulo 1. Introdução. 1.1 Sistemas numéricos

Capítulo 1. Introdução. 1.1 Sistemas numéricos EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 1 Introdução O objetivo desta disciplina é discutir e aplicar técnicas e métodos numéricos para a resolução de problemas

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos?

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? &DStWXOR±5HSUHVHQWDomRGH1~PHURVH(UURV,QWURGXomR Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? 7LSRVGH(UURV Erros inerentes à matematização do fenómeno físico: os sistemas

Leia mais

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula Aritmética de Ponto Flutuante e Noções de Erro Sumário 1 Introdução 2 Sistemas de Numeração 3 Representação de Números Inteiros no Computador 4 Representação de Números Reais no Computador 5 Operações

Leia mais

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos Aula 9 Introdução à Computação Ponto Flutuante Ponto Flutuante Precisamos de uma maneira para representar Números com frações, por exemplo, 3,1416 Números muito pequenos, por exemplo, 0,00000001 Números

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos.

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos. Objetivos 2. Sistemas de Numeração, Operações e Códigos Revisar o sistema de numeração decimal Contar no sistema de numeração binário Converter de decimal para binário e vice-versa Aplicar operações aritméticas

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE Os números são na verdade coeficientes de uma determinada base numérica e podem ser representados como números assinalados, não assinalados, em complemento

Leia mais

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Sumário Unidade Lógica Aritmetrica Registradores Unidade Lógica Operações da ULA Unidade de Ponto Flutuante Representação

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Sistema de ponto flutuante

Sistema de ponto flutuante Exemplo: FP(,4,,A) e FP(,4,,T) Sistema de ponto flutuante FP( b, p, q,_) = FP(, 4,, _ ) base 4 dígitos na mantissa dígitos no expoente A=Arredondamento T=Truncatura x ± =± m b t x =± d 1d d d 4 dígitos

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 3 (10/08/15) Aritmética de ponto flutuante Representação de ponto flutuante Normalização Binária Decimal Situações

Leia mais

Representação de Dados

Representação de Dados Representação de Dados Introdução Todos sabemos que existem diferentes tipos de números: fraccionários, inteiros positivos e negativos, etc. Torna-se necessária a representação destes dados em sistema

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Aula 3 - Sistemas de Numeração

Aula 3 - Sistemas de Numeração UEM Universidade Estadual de Maringá DIN - Departamento de Informática Disciplina: Fundamentos da Computação Profª Thelma Elita Colanzi Lopes thelma@din.uem.br Aula 3 - Sistemas de Numeração O ser humano,

Leia mais

Exemplo de Subtração Binária

Exemplo de Subtração Binária Exemplo de Subtração Binária Exercícios Converta para binário e efetue as seguintes operações: a) 37 10 30 10 b) 83 10 82 10 c) 63 8 34 8 d) 77 8 11 8 e) BB 16 AA 16 f) C43 16 195 16 3.5.3 Divisão binária:

Leia mais

A FÓRMULA DE CONVERSÃO ENTRE AS UNIDADES É: F = 1.8 C + 32.0

A FÓRMULA DE CONVERSÃO ENTRE AS UNIDADES É: F = 1.8 C + 32.0 UTILIZANDO NOSSA MÁQUINA HIPOTÉTICA VAMOS CONSTRUIR UM PROGRAMA PARA CONVERTER VALORES DE UMA UNIDADE PARA OUTRA. O NOSSO PROGRAMA RECEBE UM VALOR NUMÉRICO QUE CORRESPONDE A UMA TEMPERATURA EM GRAUS CELSIUS

Leia mais

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional Matemática Computacional 2) Erros de arredondamento Carlos Alberto Alonso Sanches Erros de representação e de cálculo Tipos de erros Erro inerente: sempre presente na incerteza das medidas experimentais

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Sistema de Numeração Prof Daves Martins Msc Computação de Alto Desempenho Email: daves.martins@ifsudestemg.edu.br Sistemas Numéricos Principais sistemas numéricos: Decimal 0,

Leia mais

Cálculo Numérico / Métodos Numéricos. Representação de números em computadores Mudança de base 14:05

Cálculo Numérico / Métodos Numéricos. Representação de números em computadores Mudança de base 14:05 Cálculo Numérico / Métodos Numéricos Representação de números em computadores Mudança de base 14:05 Computadores são "binários" Por que 0 ou 1? 0 ou 1 - "fácil" de obter um sistema físico Transistores

Leia mais

Conversão de Bases e Aritmética Binária

Conversão de Bases e Aritmética Binária Conversão de Bases e Aritmética Binária Prof. Glauco Amorim Sistema de Numeração Decimal Dígitos Decimais: 0 2 3 4 5 6 7 8 9 Potências de base 0 0 0 2 0 0 3 4 0 0 00 000 0 000 Sistema de Numeração Binário

Leia mais

Aritmética de Ponto Fixo

Aritmética de Ponto Fixo úmeros Binários Conversão Binário - Decimal Aritmética de Ponto Fixo 7 6 5 4 3 Prof. Paulo Fernando Seixas Prof. Marcos Antônio Severo Mendes 6 3 x + x = 7 http://www.delt.ufmg.br/~elt/docs/dsp/ Representação

Leia mais

Representação Binária de Números

Representação Binária de Números Departamento de Informática Notas de estudo Alberto José Proença 01-Mar-04 Dep. Informática, Universidade do Minho Parte A: Sistemas de numeração e representação de inteiros A.1 Sistemas de numeração

Leia mais

Organização de Computadores. Cálculos Binários e Conversão entre Bases Aritmética Binária

Organização de Computadores. Cálculos Binários e Conversão entre Bases Aritmética Binária Organização de Computadores Capítulo 4 Cálculos Binários e Conversão entre Bases Aritmética Binária Material de apoio 2 Esclarecimentos Esse material é de apoio para as aulas da disciplina e não substitui

Leia mais

13 Números Reais - Tipo float

13 Números Reais - Tipo float 13 Números Reais - Tipo float Ronaldo F. Hashimoto e Carlos H. Morimoto Até omomentonoslimitamosaouso do tipo inteiro para variáveis e expressões aritméticas. Vamos introduzir agora o tipo real. Ao final

Leia mais

Unidade 3: Sistemas de Numeração Conversões Entre Quaisquer Bases e Aritmética em Bases Alternativas Prof. Daniel Caetano

Unidade 3: Sistemas de Numeração Conversões Entre Quaisquer Bases e Aritmética em Bases Alternativas Prof. Daniel Caetano Arquitetura e Organização de Computadores 1 Unidade 3: Sistemas de Numeração Conversões Entre Quaisquer Bases e Aritmética em Bases Alternativas Prof. Daniel Caetano Objetivo: Apresentar métodos genéricos

Leia mais

Arquitetura de Computadores

Arquitetura de Computadores Arquitetura de Computadores Prof. Fábio M. Costa Instituto de Informática UFG 1S/2004 Representação de Dados e Aritimética Computacional Roteiro Números inteiros sinalizados e nãosinalizados Operações

Leia mais

Em um sistema de numeração de base b qualquer, um número positivo é representado pelo polinômio:

Em um sistema de numeração de base b qualquer, um número positivo é representado pelo polinômio: ELETRÔNICA DIGITAl I 1 SISTEMAS DE NUMERAÇÃO INTRODUÇÃO A base dos sistemas digitais são os circuitos de chaveamento (switching) nos quais o componente principal é o transistor que, sob o ponto de vista

Leia mais

UENF PROGRAMA ANALÍTICO DE DISCIPLINA. Carga Horária:68. Assinaturas: Chefe do Laboratório ou Diretor de Centro: Coordenador do Curso:

UENF PROGRAMA ANALÍTICO DE DISCIPLINA. Carga Horária:68. Assinaturas: Chefe do Laboratório ou Diretor de Centro: Coordenador do Curso: Página: 1 Data de Criação: 11/03/2002 Período Início: 2002/01 Horas Aula Teórica: 68 Prática: 0 ExtraClasse: 0 Carga Horária:68 Número de Créditos: 4 Sistema de Aprovação: Aprovação por Média/Freqüência

Leia mais

Organização e Arquitetura de Computadores. Aula 10 Ponto Flutuante Parte I. 2002 Juliana F. Camapum Wanderley

Organização e Arquitetura de Computadores. Aula 10 Ponto Flutuante Parte I. 2002 Juliana F. Camapum Wanderley Organização e Arquitetura de Computadores Aula 10 Ponto Flutuante Parte I 2002 Juliana F. Camapum Wanderley http://www.cic.unb.br/docentes/juliana/cursos/oac OAC Ponto Flutuante Parte I - 1 Panorama Números

Leia mais

Aritmética de Ponto Flutuante

Aritmética de Ponto Flutuante Aritmética de Ponto Flutuante Entre 1970 e 1980 um grupo formado por cientistas e engenheiros de diferentes empresas de computação realizou um trabalho intenso na tentativa de encontrar um padrão de representação

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante Capítulo SETE Números em Ponto Fixo e Ponto Flutuante 7.1 Números em ponto fixo Observação inicial: os termos ponto fixo e ponto flutuante são traduções diretas dos termos ingleses fixed point e floating

Leia mais

Unidade 5: Sistemas de Representação

Unidade 5: Sistemas de Representação Arquitetura e Organização de Computadores Atualização: 9/8/ Unidade 5: Sistemas de Representação Números de Ponto Flutuante IEEE 754/8 e Caracteres ASCII Prof. Daniel Caetano Objetivo: Compreender a representação

Leia mais

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

Tópico 2. Conversão de Unidades e Notação Científica

Tópico 2. Conversão de Unidades e Notação Científica Tópico 2. Conversão de Unidades e Notação Científica Toda vez que você se refere a um valor ligado a uma unidade de medir, significa que, de algum modo, você realizou uma medição. O que você expressa é,

Leia mais

VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA CÁLCULO NUMÉRICO. José Carlos Morais de Araújo

VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA CÁLCULO NUMÉRICO. José Carlos Morais de Araújo VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA CÁLCULO NUMÉRICO Conteudista José Carlos Morais de Araújo Rio de Janeiro / 2009 TODOS OS DIREITOS RESERVADOS À

Leia mais

O Excel é um software de Planilha Eletrônica integrante dos produtos do Microsoft Office.

O Excel é um software de Planilha Eletrônica integrante dos produtos do Microsoft Office. EXCEL O Excel é um software de Planilha Eletrônica integrante dos produtos do Microsoft Office. É composto das seguintes partes: Pasta de Trabalho um arquivo que reúne várias planilhas, gráficos, tabelas,

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO Atualizado em Prof. Rui Mano E mail: rmano@tpd.puc rio.br SISTEMAS DE NUMERAÇÃO Sistemas de Numer ação Posicionais Desde quando se começou a registrar informações sobre quantidades, foram criados diversos

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de Escola Secundária c/3º CEB José Macedo Fragateiro Curso Profissional de Nível Secundário Componente Técnica Disciplina de Sistemas Digitais e Arquitectura de Computadores 29/21 Módulo 1: Sistemas de Numeração

Leia mais

Computadores e Programação

Computadores e Programação Computadores e Programação 2007 2008 Orlando Oliveira, Helmut Wolters adaptado a partir duma apresentação de Fernando Nogueira, José António Paixão, António José Silva orlando@teor.fis.uc.pt, helmut@coimbra.lip.pt

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Medidas e Incertezas

Medidas e Incertezas Medidas e Incertezas O que é medição? É o processo empírico e objetivo de designação de números a propriedades de objetos ou eventos do mundo real de forma a descreve-los. Outra forma de explicar este

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Conversões em Sistemas de Numeração. José Gustavo de Souza Paiva

Conversões em Sistemas de Numeração. José Gustavo de Souza Paiva Conversões em Sistemas de Numeração José Gustavo de Souza Paiva 1 Conversões entre bases que são potências entre si Primeiro caso base binária para base octal Como 2 3 = 8, podemos separar os bits de um

Leia mais

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar o funcionamento do computador Apresentar a função da memória e dos dispositivos

Leia mais

Critérios de Avaliação. Sobre a Disciplina. Por que estudar Arquitetura? SIM NÃO 20/04/2011. 02 provas. 01 trabalho

Critérios de Avaliação. Sobre a Disciplina. Por que estudar Arquitetura? SIM NÃO 20/04/2011. 02 provas. 01 trabalho Profa. Mariana Monteiro Universidade Estadual do Norte do Paraná Campus Luiz Meneghel Curso: Sistemas de Informação 3º Semestre mariana@uenp.edu.br Ementa Introdução à matéria Sistemas Numéricos Histórico/Gerações

Leia mais

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos Trabalho compilado da Internet Prof. Claudio Passos Sistemas Numéricos A Informação e sua Representação O computador, sendo um equipamento eletrônico, armazena e movimenta as informações internamente sob

Leia mais

Sistemas de Numeração. Engenharia da Computação 3 Período Alex Vidigal Bastos

Sistemas de Numeração. Engenharia da Computação 3 Período Alex Vidigal Bastos UNIPAC Sistemas Digitais Sistemas de Numeração Engenharia da Computação 3 Período Alex Vidigal Bastos 1 Agenda Objetivos Introdução Sistema Binário Sistema Octal Sistema Hexadecimal Aritméticas no Sistema

Leia mais

Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Disciplina de Lógica Computacional Aplicada. Prof. Dr.

Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Disciplina de Lógica Computacional Aplicada. Prof. Dr. Índice 1. SISTEMAS NUMÉRICOS 1.1 Caracterização dos Sistemas Numéricos 1.2 Sistemas Numéricos em uma Base B Qualquer 1.2.1 Sistema de Numeração Decimal 1.2.2. Sistema de Numeração Binário 1.2.3 Sistema

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Ano letivo: 2012/2013. Sistemas de numeração. Pág.: 1/11. Escola profissional de Fafe SDAC. Trabalho elaborado por: Ana Isabel, nº905 TURMA 7.

Ano letivo: 2012/2013. Sistemas de numeração. Pág.: 1/11. Escola profissional de Fafe SDAC. Trabalho elaborado por: Ana Isabel, nº905 TURMA 7. Pág.: 1/11 Escola profissional de Fafe SDAC Trabalho elaborado por: Ana Isabel, nº905 TURMA 7.5 Pág.: 2/11 Índice Introdução... 3 Sistemas de numeração posicionais... 4 Representação na base 2... 4 Representação

Leia mais

AMBIENTE PARA AUXILIAR O DESENVOLVIMENTO DE PROGRAMAS MONOLÍTICOS

AMBIENTE PARA AUXILIAR O DESENVOLVIMENTO DE PROGRAMAS MONOLÍTICOS UNIVERSIDADE REGIONAL DE BLUMENAU CENTRO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIAS DA COMPUTAÇÃO BACHARELADO AMBIENTE PARA AUXILIAR O DESENVOLVIMENTO DE PROGRAMAS MONOLÍTICOS Orientando: Oliver Mário

Leia mais

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais.

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais. 25BCapítulo 2: Números e Aritmética Binária Os computadores armazenam e manipulam a informação na forma de números. Instruções de programas, dados numéricos, caracteres alfanuméricos, são todos representados

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

Programação para Computação

Programação para Computação Universidade Federal do Vale do São Francisco Programação para Computação Professor: Marcelo Santos Linder E-mail: marcelo.linder@univasf.edu.br Ementa Conceito de algoritmo. Lógica de programação e programação

Leia mais

Programas simples em C

Programas simples em C Programas simples em C Problema 1. Escreve um programa em C que dados dois inteiros indique se são iguais ou qual o maior. Utilizar a construção em 5 etapas... quais? 1. Perceber o problema 2. Ideia da

Leia mais

1 Modelo de computador

1 Modelo de computador Capítulo 1: Introdução à Programação Waldemar Celes e Roberto Ierusalimschy 29 de Fevereiro de 2012 1 Modelo de computador O computador é uma máquina capaz de manipular informações processando seqüências

Leia mais

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com - Aula 1 - SISTEMA DE NUMERAÇÃO BINÁRIA E DECIMAL Todos os computadores são formados por circuitos digitais, onde as informações e os dados são codificados com dois níveis de tensão, pelo que o seu sistema

Leia mais

Sistemas Numéricos e a Representação Interna dos Dados no Computador

Sistemas Numéricos e a Representação Interna dos Dados no Computador Capítulo 2 Sistemas Numéricos e a Representação Interna dos Dados no Computador 2.0 Índice 2.0 Índice... 1 2.1 Sistemas Numéricos... 2 2.1.1 Sistema Binário... 2 2.1.2 Sistema Octal... 3 2.1.3 Sistema

Leia mais

Linguagens de programação

Linguagens de programação Prof. André Backes Linguagens de programação Linguagem de Máquina Computador entende apenas pulsos elétricos Presença ou não de pulso 1 ou 0 Tudo no computador deve ser descrito em termos de 1 s ou 0 s

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

Universidade do Minho Departamento de Electrónica Industrial. Sistemas Digitais. Exercícios de Apoio - I. Sistemas de Numeração

Universidade do Minho Departamento de Electrónica Industrial. Sistemas Digitais. Exercícios de Apoio - I. Sistemas de Numeração Universidade do Minho Departamento de Electrónica Industrial Sistemas Digitais Exercícios de Apoio - I Sistemas de Numeração CONVERSÃO ENTRE SISTEMAS DE NUMERAÇÃO Conversão Decimal - Binário Números Inteiros

Leia mais