Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Tamanho: px
Começar a partir da página:

Download "Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho."

Transcrição

1 Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

2 Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

3 Introdução Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

4 Introdução Apresentação - Docente Aulas teóricas A. Ismael F. Vaz - aivaz@dps.uminho.pt Aula teórico-prática e práticas Senhorinha Teixeira st@dps.uminho.pt Ana Maria Rocha arocha@dps.uminho.pt Horário de atendimento Quintas das 14h00 às 15h00. Marcação por . As docentes das TPs e Ps terão o seu horário de atendimento. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

5 Introdução Apresentação - Docente Aulas teóricas A. Ismael F. Vaz - aivaz@dps.uminho.pt Aula teórico-prática e práticas Senhorinha Teixeira st@dps.uminho.pt Ana Maria Rocha arocha@dps.uminho.pt Horário de atendimento Quintas das 14h00 às 15h00. Marcação por . As docentes das TPs e Ps terão o seu horário de atendimento. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

6 Introdução Apresentação - Docente Aulas teóricas A. Ismael F. Vaz - aivaz@dps.uminho.pt Aula teórico-prática e práticas Senhorinha Teixeira st@dps.uminho.pt Ana Maria Rocha arocha@dps.uminho.pt Horário de atendimento Quintas das 14h00 às 15h00. Marcação por . As docentes das TPs e Ps terão o seu horário de atendimento. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

7 Introdução Apresentação - Disciplina Página da disciplina; 6 fichas TPs a realizar ao longo do semestre (17 valores nas aulas Ts) e 6 fichas Ps a realizar ao longo do semestre (3 valores cada - nas aulas Ps). A classificação final é: Fichas TPs + Fichas Ps. Não é obrigatória a presença nas aulas Ts, TPs ou Ps. Mas atenção aos momentos de avaliação. A avaliação feitas nas aulas Ps é considerada avaliação laboratorial, pelo que é exigido o valor mínimo de 50% para ter frequência (poder ir a exame). A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

8 Introdução Apresentação - Disciplina Página da disciplina; 6 fichas TPs a realizar ao longo do semestre (17 valores nas aulas Ts) e 6 fichas Ps a realizar ao longo do semestre (3 valores cada - nas aulas Ps). A classificação final é: Fichas TPs + Fichas Ps. Não é obrigatória a presença nas aulas Ts, TPs ou Ps. Mas atenção aos momentos de avaliação. A avaliação feitas nas aulas Ps é considerada avaliação laboratorial, pelo que é exigido o valor mínimo de 50% para ter frequência (poder ir a exame). A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

9 Introdução Apresentação - Disciplina Página da disciplina; 6 fichas TPs a realizar ao longo do semestre (17 valores nas aulas Ts) e 6 fichas Ps a realizar ao longo do semestre (3 valores cada - nas aulas Ps). A classificação final é: Fichas TPs + Fichas Ps. Não é obrigatória a presença nas aulas Ts, TPs ou Ps. Mas atenção aos momentos de avaliação. A avaliação feitas nas aulas Ps é considerada avaliação laboratorial, pelo que é exigido o valor mínimo de 50% para ter frequência (poder ir a exame). A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

10 Introdução Apresentação - Disciplina Página da disciplina; 6 fichas TPs a realizar ao longo do semestre (17 valores nas aulas Ts) e 6 fichas Ps a realizar ao longo do semestre (3 valores cada - nas aulas Ps). A classificação final é: Fichas TPs + Fichas Ps. Não é obrigatória a presença nas aulas Ts, TPs ou Ps. Mas atenção aos momentos de avaliação. A avaliação feitas nas aulas Ps é considerada avaliação laboratorial, pelo que é exigido o valor mínimo de 50% para ter frequência (poder ir a exame). A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

11 Introdução Apresentação - Disciplina Página da disciplina; 6 fichas TPs a realizar ao longo do semestre (17 valores nas aulas Ts) e 6 fichas Ps a realizar ao longo do semestre (3 valores cada - nas aulas Ps). A classificação final é: Fichas TPs + Fichas Ps. Não é obrigatória a presença nas aulas Ts, TPs ou Ps. Mas atenção aos momentos de avaliação. A avaliação feitas nas aulas Ps é considerada avaliação laboratorial, pelo que é exigido o valor mínimo de 50% para ter frequência (poder ir a exame). A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

12 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

13 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

14 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

15 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

16 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

17 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

18 Introdução Programa detalhado Dia 28-Fev 06-Mar 13-Mar 27-Mar 03-Abr Matéria Apresentação da disciplina. Erros. Algarismos significativos. Fórmula fundamental dos erros. Erros de truncatura. Solução de equações não lineares. Método dos gráficos. Método da secante e sua convergência. Método de Newton e sua convergência. Critérios de paragem. Sistemas de equações lineares. Eliminação de Gauss com pivotagem parcial. Avaliação sobre zeros de funções (2.5 valores). Métodos iterativos de Gauss-Seidel e Jacobi. Sistemas de equações não lineares. Método de Newton. Interpolação polinomial. Diferenças divididas. Fórmula interpoladora de Newton. Erro da fórmula interpoladora de Newton. Avaliação sobre sistemas lineares e não lineares (2.5 valores). A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

19 Introdução Programa detalhado Dia 10-Abr 17-Abr 24-Abr 08-Mai 30-Mai 05-Jun 12-Jun 19-Jun 26-Jun 03-Jul Matéria Splines lineares e cúbicas. Splines cúbicas. Revisões Revisões. Avaliação sobre interpolação (3 valores). Mínimos quadrados polinomiais e modelos lineares. Equações diferenciais com condições iniciais de 1 a. Sistemas de equações diferenciais de 1 a ordem. Equações diferenciais de ordem superior. Avaliação sobre mínimos quadrados (3 valores). Equações diferencias com condições fronteira. Integração numérica. Fórmulas simples e compostas do Trapézio, Simpson e 3/8. Revisões. Avaliação sobre equações diferenciais (3 valores). Revisões. Avaliação sobre integração (3 valores). Revisões. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

20 Introdução Motivação da disciplina Presente em todos os cursos de engenharia (aplicações em todas as áreas da engenharia); A disciplina de métodos numéricos dedica-se à resolução numérica de problemas matemáticos. Com o desenvolvimento dos computadores encontra-se direccionada para a implementação de algoritmos estáveis. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

21 Introdução Motivação da disciplina Presente em todos os cursos de engenharia (aplicações em todas as áreas da engenharia); A disciplina de métodos numéricos dedica-se à resolução numérica de problemas matemáticos. Com o desenvolvimento dos computadores encontra-se direccionada para a implementação de algoritmos estáveis. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

22 Introdução Controlo óptimo - Um exemplo Problema de optimização do processo semi-contínuo de produção de Etanol. O problema de optimização é: (t 0 = 0 e t f = 61.2 dias) max u(t) s.t. J(t f ) x 3 (t f )x 4 (t f ) dx 1 = g 1 x 1 u x 1 dt x 4 dx 2 = 10g 1 x 1 + u 150 x 2 dt x 4 dx 3 = g 2 x 1 u x 3 dt x 4 dx 4 = u dt 0 x 4 (t f ) u(t) 12 t [t 0, t f ] com ( ) ( ) x 2 g 1 = 1 + x 3 / x 2 ( ) ( ) 1 x 2 g 2 = 1 + x 3 / x 2 onde x 1, x 2 e x 3 são as concentrações da massa celular, substrato e produto (g/l), e x 4 é o volume (L). As condições iniciais são: x(t 0 ) = (1, 150, 0, 10) T. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

23 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

24 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

25 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

26 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

27 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

28 Erros Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

29 Erros Formato de vírgula flutuante normalizado fl(x) = ±0.d 1 d 2...d k 10 e onde, 0.d 1 d 2... d k corresponde à mantissa, e e é o expoente. fl t (x) representa o valor de x em vírgula flutuante truncado e fl a (x) representa o valor de x em vírgula flutuante arredondado. Exemplo x = 2 3 fl t (x) = fl a (x) = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

30 Erros Formato de vírgula flutuante (norma IEEE-754, 32 bits) σ e + 64 d 1 d 2 d 3 d 4 d 5 d 6 1 bit 7 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits Exemplo x = = = ( ) σ e + 64 d 1 d 2 d 3 d 4 d 5 d 6 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

31 Erros Exemplo de programação A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

32 Erros Exemplo de programação A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

33 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

34 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

35 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

36 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

37 Erros Fórmula fundamental dos erros Dados n valores aproximados, x 1,..., x n, e os seus respectivos erros absolutos é possível calcular um majorante para o erro absoluto cometido quando se aplica uma função f, através da fórmula fundamental dos erros. δ f M x1 δ x1 + M x2 δ x M xn δ xn f onde max x I xi Mxi, com I = I x1 I xn I xi = [x i δ xi, x i + δ xi ] r f δ f f(x 1,..., x n ) e A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

38 Erros Exemplo Cálculo dos limites do erro absoluto e relativo do cálculo da função f(x) = x 1 x 2. Temos que f x 1 Mx1 = 1 e f x 2 Mx2 = 1, logo e δ f = δ x1 + δ x2 r f δ x 1 + δ x2 x 1 x 2 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

39 Erros Algarismos Significativos Casa decimais são as casas (algarismos) à direita da vírgula. Os algarismos significativos são aqueles em que temos confiança do seu valor. Exemplos: tem 1 algarismo significativo se δ = 0.05, 2 se δ = e 7 se δ = tem 7 casas decimais e 2 algarismos significativos (δ = ). Quando todas as casas decimais são significativas 0.2 é diferente de A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

40 Zeros de funções Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

41 Zeros de funções Forma geral do problema Pretende-se determinar x tal que f(x) = 0 Exemplo Temos x = como solução para e x + x = 0 Nota: uma equação não linear pode não ter solução, ou ter mais do que uma. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

42 Zeros de funções Métodos iterativos Uma sequência diz-se iterativa se é definida por uma função F independente de k e dependente de um ou vários elementos anteriores a ele, x k = F (x k 1, x k 2,... ) Aproximações iniciais Um método que se baseie numa sequência iterativa com k 1 elementos anteriores necessita também de k 1 valores iniciais. Exemplo x k = x k 1 + x k 2 Partindo de x 0 = 1 e x 1 = 1 temos x 2 = x 1 + x 0 = 2, x 3 = x 2 + x 1 = = 3, x 4 = x 3 + x 2 = = 5 gera uma sequência com os números de Fibonacci. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

43 Zeros de funções Convergência Uma sequência iterativa diz-se convergente quando Convergência superlinear lim x k = x k lim k + x x k+1 x = L ou lim x k k + x x k+1 x x k = 0 Convergência quadrática x x k+1 lim k + x x k 2 = L A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

44 Zeros de funções Critério de Paragem A sequência de aproximações pode ser infinita. Como se pretende obter uma aproximação à solução implementa-se um critério de paragem. Estimativa do erro relativo d k = x k+1 x k x k+1 ɛ 1 Valor da função f(x k+1 ) ɛ 2 Número máximo de iterações k n max A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

45 Zeros de funções Método dos gráficos Uma aproximação ao zero da função f(x) pode obter-se pela intersecção do gráfico de f(x) com o eixo dos xx; se f(x) = g(x) h(x) os zeros de f(x) são os pontos de intersecção de g(x) com h(x). O método dos gráficos é frequentemente usado para obtermos uma aproximação inicial para outros métodos mais precisos. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

46 Zeros de funções Exemplo f(x) = e x + x g(x) = e x h(x) = x g(x) 0.2 h(x) y f(x) x A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

47 Zeros de funções Método da bissecção Se f(x i )f(x s ) < 0 então existe um número ímpar de raízes de f(x) no intervalo [x i, x s ]. Aproxima-se da raiz calculando x k = x i+x s 2, k = 1, 2,... Considera-se o intervalo [x i, x k ] se f(x i )f(x k ) < 0 e faz-se x s x k ou [x k, x s ] se f(x k )f(x s ) < 0 e faz-se x i x k A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

48 Zeros de funções Interpretação gráfica (Bissecção) f(x) = e x + x f(x) xi xk+1 xk xs xs x A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

49 Zeros de funções Método da secante Método iterativo em que se fornece o x 1 e x 2 (a raiz não está necessariamente no intervalo [x 1, x 2 ]). O próximo valor é calculado pela seguinte fórmula (equação iterativa): x k+1 = x k (x k x k 1 )f(x k ), k = 2, 3,... f(x k ) f(x k 1 ) Zeros complexos: O método da secante também calcula zeros complexos, bastando para isso usar aritmética complexa. Convergência: A convergência do método da Secante depende do valor de M 2m ser pequeno. M é o max f (ξ) e m é o min f (η), onde ξ, η I. ɛ k+1 = f (ξ) 2f (η) ɛ k 1ɛ k A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

50 Zeros de funções Interpretação gráfica (Secante) f(x) = e x + x f(x) xk+2 xk+1 xk xk x A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

51 Zeros de funções Método de Newton Método iterativo em que se fornece o x 0. O próximo valor é calculado pela seguinte formula (equação iterativa): x k+1 = x k f(x k) f, k = 1, 2,... (x k ) Zeros complexos: O método de Newton também calcula zeros complexos, bastando para isso usar aritmética complexa. Convergência: A convergência do método de Newton depende do valor de M 2m ser pequeno. M é o max f (ξ) e m é o min f (η), onde ξ, η I. ɛ k+1 = f (ξ) 2f (η) ɛ2 k A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

52 Zeros de funções Interpretação gráfica (Newton) f(x) = e x + x f(x) xk+2 xk+1 xk x A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

53 Zeros de funções Principais propriedades Ambos possuem convergência local. Superlinear no caso do método da secante e quadrática no método de newton. O método da secante não usa derivadas. O método da secante e de Newton podem falhar quando o denominador da equação iterativa é próximo de zero, i.e., quando f(x k ) f(x k 1 ) ou f (x k ) 0. O método da secante e de Newton não convergem necessariamente para o zero mais próximo da aproximação inicial. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

54 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

55 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

56 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

57 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

58 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

59 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

60 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

61 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

62 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

63 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

64 Resolução de sistemas lineares Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

65 Resolução de sistemas lineares Forma geral do problema a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x a nn x n = b n É um sistema com n equações lineares nas n incógnitas, x 1, x 2,..., x n. O sistema pode ser escrito na forma matricial Ax = b a 11 a a 1n a 21 a a 2n... a n1 a n2... a nn x 1 x 2... x n = b 1 b 2... b n A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

66 Resolução de sistemas lineares Exemplo x 1 x 2 x 3 = É um sistema linear de dimensão 3 3. A matriz dos coeficientes A = R 3 3 e o vector b = (1, 1, 1) T R 3 é o vector dos termos independentes A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

67 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

68 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

69 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

70 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

71 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

72 Resolução de sistemas lineares Tipos de métodos Métodos directos e estáveis. Métodos que calculam a solução exacta do sistema ao fim de um número finito de operações elementares, caso não ocorram erros de arredondamento. Matrizes dos coeficientes densas e de pequena dimensão. Métodos iterativos. Métodos que definem uma sequência infinita de operações, determinando uma sequência de aproximações, cujo limite é a solução exacta do sistema. Matrizes dos coeficientes esparsas e de grande dimensão. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

73 Resolução de sistemas lineares Tipos de métodos Métodos directos e estáveis. Métodos que calculam a solução exacta do sistema ao fim de um número finito de operações elementares, caso não ocorram erros de arredondamento. Matrizes dos coeficientes densas e de pequena dimensão. Métodos iterativos. Métodos que definem uma sequência infinita de operações, determinando uma sequência de aproximações, cujo limite é a solução exacta do sistema. Matrizes dos coeficientes esparsas e de grande dimensão. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

74 Resolução de sistemas lineares Estabilidade numérica Considere-se o seguinte sistema linear: { x1 + x 2 = x 1 + x 2 = 2 cuja solução é x = (1, 1) T. Usando aritmética de três algarismos significativos e considerando o multiplicador igual a = , surge o sistema condensado { x 1 + x 2 = cuja solução é x = (0, 1) T!!! x 2 = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

75 Resolução de sistemas lineares Motivação - Continuação Se nas mesmas condições usarmos a pivotagem parcial temos { x 1 + x 2 = x 1 + x 2 = m = = cuja solução é x = (1, 1) T. { x1 + x 2 = 2 x 2 = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

76 Resolução de sistemas lineares Eliminação de Gauss com Pivotagem Parcial (EGPP) Corresponde a eliminação de Gauss, mas em que a linha usada na eliminação dos elementos da coluna das linhas seguintes é o maior em módulo. Exemplo: m 21 = 3 9 m 31 = 6 9 = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

77 Resolução de sistemas lineares Eliminação de Gauss com Pivotagem Parcial (EGPP) m 32 = = 0.1 = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

78 Resolução de sistemas lineares Substituição inversa Quando a matriz é triangular superior pode-se determinar a solução directamente, através da substituição inversa. Exemplo vem que x 3 = = 0.875, x ( 2) = = x 1 = 1 ( 9) = 0.5 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

79 Resolução de sistemas lineares Substituição directa Quando a matriz é triangular inferior pode-se determinar a solução directamente, através da substituição directa. Exemplo vem que x 1 = 2 1 = 2, x 2 = = 1 x 3 = ( 1) 1 = 0 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

80 Resolução de sistemas lineares Decomposição LU Da eliminação de Gauss com Pivotagem Parcial resulta Exemplo ( ) (A I ) (U J ) ( ) ( ) A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

81 Resolução de sistemas lineares Determinantes de Matrizes det(a) = ( 1) s n u ii onde u ii corresponde aos elementos da diagonal da matriz U e s é o número de trocas de linhas para obter a matriz U. Exemplo ( 1 2 det 2 1 ) ( = ( 1) det i=1 ) = ( 1) = 3 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

82 Resolução de sistemas lineares Cálculo da Inversa de Matrizes A matriz inversa de A (A 1 ) verifica AA 1 = I = A 1 A. O cálculo da matriz inversa reduz-se a resolução de n sistemas lineares da forma Ax j = e j, j = 1,..., n, em que os vectores independentes e j são as colunas da matriz identidade. O vector solução x j corresponde à coluna j da matriz inversa. Na prática resolve-se os n sistemas em simultâneo, i.e., resolve-se a equação (U J ) por substituição inversa. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

83 Resolução de sistemas lineares Cálculo da Inversa de Matrizes - Exemplo ( ) ( ) ( ) ( ) { x11 = = x 21 = = ( ) { x12 = 1 1 ( ) 2 = x 22 = = ( ) ( ) A inversa de é A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

84 Resolução de sistemas lineares Métodos iterativos Nos métodos iterativos a solução exacta só é obtida ao fim de uma sequência infinita de operações. O processo parte de uma aproximação inicial para a solução do sistema e usa uma equação iterativa da forma Mx (k+1) = Nx (k) + b, para k = 1, 2,... Os métodos em que M e N não dependem de k dizem-se estacionários. Os métodos de Jacobi e Gauss-Seidel são métodos estacionário. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

85 Resolução de sistemas lineares Método Iterativo Jacobi D matriz dos elementos da diagonal principal, L matriz dos simétricos dos elementos abaixo da diagonal principal e U matriz dos simétricos dos elementos acima da diagonal principal. O método de Jacobi usa a partição de A em D (L + U), i.e, M = D e N = L + U A equação iterativa fica Dx (k+1) = (L + U)x (k) + b ou x (k+1) = D 1 (L + U)x (k) + D 1 b A matriz iteração é C J = M 1 N = D 1 (L + U) A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

86 Resolução de sistemas lineares Método Iterativo Gauss-Seidel M = D L N = U A equação iterativa fica Mx (k+1) = Nx (k) + b ou x (k+1) = M 1 Nx (k) + M 1 b A matriz iteração é C GS = M 1 N = (D L) 1 U. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

87 Resolução de sistemas lineares Critério de Paragem Erro relativo na aproximação x (k+1) x (k) x (k+1) < ɛ 1 Resíduo Ax (k+1) b < ɛ 2 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

88 Resolução de sistemas lineares Convergência dos métodos iterativos Condições suficientes A simétrica e definida positiva = GS exibe convergência global; A é estrita e diagonalmente dominante = J e GS exibem convergência global; C p < 1, para qualquer normal p, = J e GS exibem convergência global; C é a matriz iteração de Jacobi ou Gauss-Seidel. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

89 Resolução de sistemas lineares Convergência dos métodos iterativos Condições suficientes A simétrica e definida positiva = GS exibe convergência global; A é estrita e diagonalmente dominante = J e GS exibem convergência global; C p < 1, para qualquer normal p, = J e GS exibem convergência global; C é a matriz iteração de Jacobi ou Gauss-Seidel. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

90 Resolução de sistemas lineares Convergência dos métodos iterativos Condições suficientes A simétrica e definida positiva = GS exibe convergência global; A é estrita e diagonalmente dominante = J e GS exibem convergência global; C p < 1, para qualquer normal p, = J e GS exibem convergência global; C é a matriz iteração de Jacobi ou Gauss-Seidel. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

91 Resolução de sistemas lineares Algumas definições Uma matriz A diz-se simétrica se A = A T. Uma matriz é definida positiva se d T Ad > 0, d 0. É equivalente a verificar que todos os determinante das sub-matrizes principais são maiores do que zero. Uma matriz A diz-se estrita e diagonalmente dominante se a ii > n a ij, i = 1,..., n j=1 j i A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

92 Resolução de sistemas lineares Algumas definições Uma matriz A diz-se simétrica se A = A T. Uma matriz é definida positiva se d T Ad > 0, d 0. É equivalente a verificar que todos os determinante das sub-matrizes principais são maiores do que zero. Uma matriz A diz-se estrita e diagonalmente dominante se a ii > n a ij, i = 1,..., n j=1 j i A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

93 Resolução de sistemas lineares Algumas definições Uma matriz A diz-se simétrica se A = A T. Uma matriz é definida positiva se d T Ad > 0, d 0. É equivalente a verificar que todos os determinante das sub-matrizes principais são maiores do que zero. Uma matriz A diz-se estrita e diagonalmente dominante se a ii > n a ij, i = 1,..., n j=1 j i A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

94 Resolução de sistemas lineares Exemplo - convergência de Gauss-Seidel Considere-se a seguinte matriz dos coeficientes de um sistema linear ( ) 3 1 A = 1 2 Como a A = A T a matriz é simétrica. ( ) 3 1 det( 3 ) = 3 > 0 det(a) = = 5 > Logo A é simétrica e definida positiva e o método de Gauss-Seidel converge. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

95 Resolução de sistemas lineares Exemplo - convergência de Jacobi Considere-se o seguinte sistema ( Como 1 2 a matriz dos coeficientes não é estrita e diagonalmente dominante e nada se pode concluir acerca da convergência do método de Jacobi. No entanto se trocarmos as linhas temos ( 3 1 ) e como 3 > 1 e 2 > 1 a matriz é estrita e diagonalmente dominante, logo o método de Jacobi converge. ) A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

96 Resolução de sistemas lineares Exemplo - convergência de Jacobi Considere-se a seguinte matriz dos coeficientes de um sistema linear ( ) 3 2 A = 3 1 Como 3 > 2, mas 1 3 a matriz dos coeficientes não é estrita e diagonalmente dominante e nada se pode concluir acerca da convergência do método de Jacobi. D = ( ) L = ( ) U = ( ) A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

97 Resolução de sistemas lineares Continuação ( ) ( C J = D (L + U) = ( ) = 3 0 ) Como C J = max{ , } = 3 1 e c J 1 = max{ 0 + 3, } = 3 1 nada se pode concluir acerca da convergência do método de Jacobi. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

98 Resolução de sistemas lineares Uma iteração do método de Gauss-Seidel Considere-se o seguinte sistema linear ( A = ), x (1) = (0, 0) T e ɛ 1 = ɛ = 0.1 ( ) 3 0 D = L = 0 2 Equação iterativa é ( ) U = ( ) (D L)x (k+1) = Ux (k) + b A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

99 Resolução de sistemas lineares Continuação 1 a iteração C.P. ( ) ( x (2) 0 1 = 0 0 ( x (2) x (1) x (2) = ) { ( ( ) ( 0 0 ) ( ) = ( 1 1 x (2) 1 = 1 3 = x (2) 2 = = ) ( 0 0 ) ) ) = = Como o critério não se verifica deve-se continuar com a próxima iteração. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

100 Resolução de sistemas não lineares Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

101 Resolução de sistemas não lineares Sistemas de equações não lineares Forma geral do problema f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0... f n (x 1, x 2,..., x n ) = 0 em que f = (f 1, f 2,..., f n ) T é um vector de funções pelo menos uma vez continuamente diferenciáveis. Pretende-se determinar um x = (x 1, x 2,..., x n) T tal que f(x ) = (0, 0,..., 0) T = 0. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

102 Resolução de sistemas não lineares Fórmula de Taylor a uma dimensão Se f : R R for l + 1 vezes diferenciável temos que f(x) = l k=0 f (k) (a) k! (x a) k + f (l+1) (ξ) (x a)l+1 (l + 1)! com ξ [a, x] e a função definida em torno de a. Exemplo: Valor da função em x (k+1) definido em torno de x (k). f(x (k+1) ) f(x (k) ) + f (x (k) )(x (k+1) x (k) ) ou seja, quando se pretende que f(x (k+1) ) = 0 vem x (k+1) = x (k) f(x(k) ) f (x (k) ) Eq. it. do método de Newton A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

103 Resolução de sistemas não lineares Fórmula de Taylor para dimensão n Se f : R n R n temos que f(x (k+1) ) f(x (k) )+ f 1 (x (k) ) f 1 (x (k) ) x 1 f 2 (x (k) ) f 2 (x (k) ) x 1 x 2... x f n(x (k) ) x 1 f n(x (k) ) x 2... f 1 (x (k) ) x n f 2 (x (k) ) x n f n(x (k) ) x n x (k+1) 1 x (k) 1 x (k+1) 2 x (k) 2 x (k+1) n... x (k) n e deduzindo a equação iterativa do método de Newton para sistemas de equações não lineares temos, J(x (k) ) (k) x = f(x (k) ), com x (k+1) = x (k) + (k) x em que J(x) é o Jacobiano da função. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

104 Resolução de sistemas não lineares Critério de paragem x (k+1) x (k) 2 x (k+1) = (k) x 2 2 x (k+1) ɛ 1 2 Se x (k+1) 2 é zero, ou próximo de zero, então o critério deve ser (k) x 2 ɛ 1 Número máximo de iterações. f(x (k+1) ) 2 ɛ 2 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

105 Resolução de sistemas não lineares Critério de paragem x (k+1) x (k) 2 x (k+1) = (k) x 2 2 x (k+1) ɛ 1 2 Se x (k+1) 2 é zero, ou próximo de zero, então o critério deve ser (k) x 2 ɛ 1 Número máximo de iterações. f(x (k+1) ) 2 ɛ 2 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

106 Resolução de sistemas não lineares Critério de paragem x (k+1) x (k) 2 x (k+1) = (k) x 2 2 x (k+1) ɛ 1 2 Se x (k+1) 2 é zero, ou próximo de zero, então o critério deve ser (k) x 2 ɛ 1 Número máximo de iterações. f(x (k+1) ) 2 ɛ 2 A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

107 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

108 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

109 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

110 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

111 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

112 Resolução de sistemas não lineares Um exemplo Considere-se o seguinte sistema não linear { 3x 2 + 2y 2 = 35 4x 2 3y 2 cujo Jacobiano é J(x, y) = = 24 ( 6x 4y 8x 6y ) Temos f(x, y) = ( 3x 2 + 2y x 2 3y 2 24 ) e a aproximação inicial é (x, y) (1) = (2.5, 2). Pretende-se determinar a solução com uma precisão de ɛ 1 = ɛ 2 = A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

113 Resolução de sistemas não lineares Continuação 1 a iteração ( ) J((x, y) (1) 15 8 ) = J(2.5, 2) = ( ) f((x, y) (1) 8.25 ) = f(2.5, 2) = 11 ( (1) (x,y) = ( ) ) ( ) ( e (x, y) (2) = (x, y) (1) + (1) (x,y) = (3.05, 2)T ) A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

114 Resolução de sistemas não lineares Continuação C.P. ( f (x, y) (2)) ( ) = = 1.21 ɛ 2 = 0.1 Como o critério não se verifica faz-se uma nova iteração. A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

115 Interpolação polinomial Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

116 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

117 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN MIEMec. 2007/ / 203

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho)

Leia mais

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008 Métodos Numéricos C A. Ismael F. Vaz 1 1 Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho) MN C 2007/2008

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho)

Leia mais

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008 Métodos Numéricos C A. Ismael F. Vaz 1 1 Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho) MN C 2007/2008

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

Sistema de ponto flutuante

Sistema de ponto flutuante Exemplo: FP(,4,,A) e FP(,4,,T) Sistema de ponto flutuante FP( b, p, q,_) = FP(, 4,, _ ) base 4 dígitos na mantissa dígitos no expoente A=Arredondamento T=Truncatura x ± =± m b t x =± d 1d d d 4 dígitos

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Análise de Regressão Linear Simples e Múltipla

Análise de Regressão Linear Simples e Múltipla Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla

Leia mais

Alguns apontamentos da história da Análise Numérica

Alguns apontamentos da história da Análise Numérica Análise Numérica 1 Âmbito da Análise Numérica Determinar boas soluções aproximadas num tempo computacional razoável? Slide 1 Porquê? Porque em muitos problemas matemáticos e respectivas aplicações práticas

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica Carlos Balsa Métodos Numéricos

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Trabalho Computacional. A(h) = V h + 2 V π h, (1)

Trabalho Computacional. A(h) = V h + 2 V π h, (1) Unidade de Ensino de Matemática Aplicada e Análise Numérica Departamento de Matemática/Instituto Superior Técnico Matemática Computacional (Mestrado em Engenharia Física Tecnológica) 2014/2015 Trabalho

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Programação não linear para que serve? A programação linear tem a função objectivo e os constrangimentos lineares. O que nem sempre acontece na realidade,

Leia mais

Verificação e Validação em CFD

Verificação e Validação em CFD Erro de arredondamento. Erro iterativo. Erro de discretização. As três componentes do erro numérico têm comportamentos diferentes com o aumento do número de graus de liberdade (refinamento da malha). Erro

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula Aritmética de Ponto Flutuante e Noções de Erro Sumário 1 Introdução 2 Sistemas de Numeração 3 Representação de Números Inteiros no Computador 4 Representação de Números Reais no Computador 5 Operações

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Métodos Numéricos Engenharia Civil, Química e Gestão Industrial

Métodos Numéricos Engenharia Civil, Química e Gestão Industrial Métodos Numéricos Engenharia Civil, Química e Gestão Industrial Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Semestre 2007/2008 Carlos Balsa

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

PP 301 Engenharia de Reservatórios I 11/05/2011

PP 301 Engenharia de Reservatórios I 11/05/2011 PP 301 Engenharia de Reservatórios I 11/05/2011 As informações abaixo têm como objetivo auxiliar o aluno quanto à organização dos tópicos principais abordados em sala e não excluem a necessidade de estudo

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional Matemática Computacional 2) Erros de arredondamento Carlos Alberto Alonso Sanches Erros de representação e de cálculo Tipos de erros Erro inerente: sempre presente na incerteza das medidas experimentais

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

CAPÍTULO 2. Grafos e Redes

CAPÍTULO 2. Grafos e Redes CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Capítulo 8 Equações Diferenciais Ordinárias Vários modelos utilizados nas ciências naturais e exatas envolvem equações diferenciais. Essas equações descrevem a relação entre uma função, o seu argumento

Leia mais

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Aulas Teóricas e de Problemas de Álgebra Linear

Aulas Teóricas e de Problemas de Álgebra Linear Aulas Teóricas e de Problemas de Álgebra Linear Nuno Martins Departamento de Matemática Instituto Superior Técnico Maio de Índice Parte I (Aulas teóricas e chas de exercícios) Matrizes e sistemas de equações

Leia mais

Discussão de Sistemas Teorema de Rouché Capelli

Discussão de Sistemas Teorema de Rouché Capelli Material by: Caio Guimarães (Equipe Rumoaoita.com) Discussão de Sistemas Teorema de Rouché Capelli Introdução: Apresentamos esse artigo para mostrar como utilizar a técnica desenvolvida a partir do Teorema

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Indicações para a elaboração do trabalho a realizar em horário extra lectivo

Indicações para a elaboração do trabalho a realizar em horário extra lectivo Instituto Politécnico de Viseu Escola Superior de Tecnologia Curso: Eng a Mecânica e G. I. Ano: 1 o Semestre: 2 o Ano Lectivo: 2005/2006 Indicações para a elaboração do trabalho a realizar em horário extra

Leia mais

O ENSINO DE CÁLCULO NUMÉRICO: UMA EXPERIÊNCIA COM ALUNOS DO CURSO DE CIÊNCIA DA COMPUTAÇÃO

O ENSINO DE CÁLCULO NUMÉRICO: UMA EXPERIÊNCIA COM ALUNOS DO CURSO DE CIÊNCIA DA COMPUTAÇÃO O ENSINO DE CÁLCULO NUMÉRICO: UMA EXPERIÊNCIA COM ALUNOS DO CURSO DE CIÊNCIA DA COMPUTAÇÃO Prof. Leugim Corteze Romio Universidade Regional Integrada URI Campus Santiago-RS leugimcr@urisantiago.br Prof.

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

UENF PROGRAMA ANALÍTICO DE DISCIPLINA. Carga Horária:68. Assinaturas: Chefe do Laboratório ou Diretor de Centro: Coordenador do Curso:

UENF PROGRAMA ANALÍTICO DE DISCIPLINA. Carga Horária:68. Assinaturas: Chefe do Laboratório ou Diretor de Centro: Coordenador do Curso: Página: 1 Data de Criação: 11/03/2002 Período Início: 2002/01 Horas Aula Teórica: 68 Prática: 0 ExtraClasse: 0 Carga Horária:68 Número de Créditos: 4 Sistema de Aprovação: Aprovação por Média/Freqüência

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Departamento de Matemática para a Ciência e Tecnologia Universidade do Minho 2005/2006 Engenharia e Gestão Industrial Engenharia Electrónica Industrial e de Computadores

Leia mais

Unidade 5: Sistemas de Representação

Unidade 5: Sistemas de Representação Arquitetura e Organização de Computadores Atualização: 9/8/ Unidade 5: Sistemas de Representação Números de Ponto Flutuante IEEE 754/8 e Caracteres ASCII Prof. Daniel Caetano Objetivo: Compreender a representação

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 4 Expansão linear e geradores Se u ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u ; u ; :::;

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Linear (PL) Aula 5: O Método Simplex. 2 Algoritmo. O que é um algoritmo? Qualquer procedimento iterativo e finito de solução é um algoritmo. Um algoritmo é um processo que se repete (itera)

Leia mais

Fundamentos Tecnológicos

Fundamentos Tecnológicos 1 2 Potenciação Fundamentos Tecnológicos Potenciação, radiciação e operações algébricas básicas Prof. Flavio Fernandes Dados um número real positivo a e um número natural n diferente de zero, chama-se

Leia mais

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Matemática Básica - 08. Função Logarítmica

Matemática Básica - 08. Função Logarítmica Matemática Básica Função Logarítmica 08 Versão: Provisória 0. Introdução Quando calculamos as equações exponenciais, o método usado consistia em reduzirmos os dois termos da equação à mesma base, como

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

EE531 - Turma S. Diodos. Laboratório de Eletrônica Básica I - Segundo Semestre de 2010

EE531 - Turma S. Diodos. Laboratório de Eletrônica Básica I - Segundo Semestre de 2010 EE531 - Turma S Diodos Laboratório de Eletrônica Básica I - Segundo Semestre de 2010 Professor: José Cândido Silveira Santos Filho Daniel Lins Mattos RA: 059915 Raquel Mayumi Kawamoto RA: 086003 Tiago

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante Capítulo SETE Números em Ponto Fixo e Ponto Flutuante 7.1 Números em ponto fixo Observação inicial: os termos ponto fixo e ponto flutuante são traduções diretas dos termos ingleses fixed point e floating

Leia mais

Unidade II - Sistemas de Equações Lineares

Unidade II - Sistemas de Equações Lineares Unidade II - Sistemas de Equações Lineares 1- Situando a Temática Discutiremos agora um dos mais importantes temas da matemática: Sistemas de Equações Lineares Trata-se de um tema que tem aplicações dentro

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Álgebra Linear Resumo das aulas teóricas e práticas Paulo R. Pinto http://www.math.ist.utl.pt/ ppinto/ Lisboa, Novembro de 2011

Álgebra Linear Resumo das aulas teóricas e práticas Paulo R. Pinto http://www.math.ist.utl.pt/ ppinto/ Lisboa, Novembro de 2011 Álgebra Linear Resumo das aulas teóricas e práticas Paulo R Pinto http://wwwmathistutlpt/ ppinto/ Lisboa, Novembro de 2011 Conteúdo 1 Matrizes e sistemas lineares 1 11 Álgebra das Matrizes 1 12 Operações

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Projecto de Programação por Objectos 2007/08 Escalonamento em Multi-processador por Programação Evolutiva MEBiom/MEEC 1 Problema

Projecto de Programação por Objectos 2007/08 Escalonamento em Multi-processador por Programação Evolutiva MEBiom/MEEC 1 Problema Projecto de Programação por Objectos 2007/08 Escalonamento em Multi-processador por Programação Evolutiva MEBiom/MEEC 1 Problema Considere-se um sistema com um conjunto finito de processadores P = {p1,...,

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

3 Matemática financeira e atuarial

3 Matemática financeira e atuarial 3 Matemática financeira e atuarial A teoria dos juros compostos em conjunto com a teoria da probabilidade associada à questão da sobrevivência e morte de um indivíduo são os fundamentos do presente trabalho.

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 3 (10/08/15) Aritmética de ponto flutuante Representação de ponto flutuante Normalização Binária Decimal Situações

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Pro. Dr. Sergio Pilling IPD/ Física e Astronomia IV Interpolação Numérica Objetivos: O objetivo desta aula é apresentar a interpolação

Leia mais

INSTITUTO SUPERIOR DE GESTÃO

INSTITUTO SUPERIOR DE GESTÃO INSTITUTO SUPERIOR DE GESTÃO INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR (Exercícios) ( Texto revisto para o ano lectivo 1- ) António Carlos Morais da Silva Professor de I.O. / ISG Recomendações 1.

Leia mais

CÁLCULO NUMÉRICO COM. i=1. Flaulles B.Bergamaschi

CÁLCULO NUMÉRICO COM. i=1. Flaulles B.Bergamaschi n CÁLCULO NUMÉRICO COM 0 1 2 3 4 5 6 7 8 50 40 30 20 10 0 0 10 20 30 40 50 i=1 Flaulles B.Bergamaschi PARA ELIANE... Sumário 1 Sistemas Lineares 1 1.1 Introdução......................... 1 1.1.1 Solução

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos?

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? &DStWXOR±5HSUHVHQWDomRGH1~PHURVH(UURV,QWURGXomR Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? 7LSRVGH(UURV Erros inerentes à matematização do fenómeno físico: os sistemas

Leia mais

Resolução de Sistemas de

Resolução de Sistemas de Capítulo 4 Resolução de Sistemas de Equações Lineares 4. Introdução Aresolução de sistemas de equações lineares é um dos problemas numéricos mais comuns em aplicações científicas. Tais sistemas surgem,

Leia mais

4 Sistemas de Equações Lineares

4 Sistemas de Equações Lineares Nova School of Business and Economics Apontamentos Álgebra Linear 4 Sistemas de Equações Lineares 1 Definição Rank ou característica de uma matriz ( ) Número máximo de linhas de que formam um conjunto

Leia mais

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/2003

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/2003 INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo 00/003 ANÁLISE NUMÉRICA Formulário 1. Representação de Números e Teoria

Leia mais

a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ 1 2 3 Os elementos da diagonal principal são: a ij para i = j

a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ 1 2 3 Os elementos da diagonal principal são: a ij para i = j Cap. 2.- Matrizes e Sistemas Lineares 2.. Definição Matriz é um conjunto organizado de números dispostos em linhas e colunas. Representações Matriz retangular A, m x n (eme por ene) a 2 a n A=[a a 2 a

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Ajuste de Curvas. Ajuste de Curvas

Ajuste de Curvas. Ajuste de Curvas Ajuste de Curvas 2 AJUSTE DE CURVAS Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente

Leia mais