Verificação e Validação em CFD

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Verificação e Validação em CFD"

Transcrição

1 Erro de arredondamento. Erro iterativo. Erro de discretização. As três componentes do erro numérico têm comportamentos diferentes com o aumento do número de graus de liberdade (refinamento da malha).

2 Erro de arredondamento: > Devido à precisão finita dos computadores. > Pode ser minorado utilizando precisão dupla. > Pode ser o erro dominante em problemas mal condicionados (pequenas diferenças entre números várias ordens de grandeza superiores). > Aumenta com o aumento do número de graus de liberdade (refinamento da malha).

3 Erro de arredondamento, exemplo: Interpolação polinomial em 2-D (ou 3-D) a1 a x 2 φ( x, y) = ,... n anx [ ] n b, b y, b y (n+1) 2 coeficientes determinados a partir de (n+1) 2 pontos em se conhece φ i (x i,y i ) n

4 Erro de arredondamento, exemplo: Interpolação polinomial em 2-D (ou 3-D) Determinação dos coeficientes do polinómio conduz a um sistema de equações lineares Primeiro termo da diagonal principal: 1 Último termo da diagonal principal: x n y n

5 Erro iterativo: > Não linearidade das equações a resolver (convecção nas equações de balanço de quantidade de movimento). > Desacoplamento das equações (modelo de turbulência resolvido para um campo de velocidade fixo e equações de Reynolds resolvidas com viscosidade turbulenta conhecida).

6 Erro iterativo: > Esquemas de discretização com correcções explícitas para os termos de ordem superior. > Solução dos sistemas de equações algébricos com métodos iterativos (Jacobi, Gauss-Seidel, Gradientes Conjugados, GMRES,...).

7 Erro iterativo: > Em princípio, pode ser reduzido até ao nível de precisão da máquina (se não existirem problemas com o erro de arredondamento). > Aumento do número de graus de liberdade (refinamento da malha) tende a dificultar a redução do erro iterativo. Técnicas multigrid podem evitar problemas com a dimensão do sistema de equações a resolver.

8 Erro iterativo: > É importante definir (conhecer) o significado de uma iteração. > Estimativas do erro iterativo baseadas nas diferenças (resíduo) obtidas na última iteração realizada não são fiáveis. > Para estimativas do erro iterativo, a norma L é mais indicada que as normas L 1 e L 2.

9 Erro iterativo, exemplo: > Cálculo do escoamento turbulento num canal com as equações de Navier-Stokes em média temporal de Reynolds. Modelo de viscosidade turbulenta de Spalart & Allmaras (uma equação). > Estimativa inicial da solução é obtida copiando os perfis de entrada (obtidos dos resultados experimentais) para toda a malha. > Solução convergida até à precisão da máquina (10-14 ).

10 Erro iterativo, exemplo: > Critério de convergência baseado na diferença máxima, L, entre iterações sucessivas, e t. > Erro iterativo calculado pela diferença para a solução convergida até à precisão da máquina. > Exemplo apresentado corresponde à componente horizontal do vector velocidade, U 1.

11 Erro iterativo: Erro iterativo máximo é 2 ordens de grandeza maior do que e t! Para a norma L 2, pode chegar a 3 ordens de grandeza.

12 Erro de discretização: > Consequência da transformação da(s) equação(ões) do meio contínuo para um sistema de equações algébrico. > Pode ter uma componente geométrica, que pode até ser dominante em domínios com superfícies de elevada curvatura.

13 Erro de discretização: > Habitualmente é o erro numérico dominante. > Determinação do erro de discretização requer o conhecimento da solução exacta. > Tende a diminuir com o aumento do número de graus de liberdade (refinamento da malha). > Estimativa do erro de discretização pode ser feita com o refinamento sistemático da malha.

14 Erro de discretização: > Em estudos de refinamento de malha admite-se e( φ) = φ φ α p exacto h i φ Variável local ou integral. φ exacto Solução exacta. α Constante relacionada com o nível do erro. h i Dimensão característica da malha. p Ordem de convergência.

15 Erro de discretização: e( φ) = φ φ α p exacto h i > Região assimptótica, i.e. termos de ordem superior são desprezáveis. > Dimensão típica da malha, h i, pode ser difícil de definir (malhas multi-bloco, não estruturadas).

16 Erro de discretização: e( φ) = φ φ α p exacto h i > Número mínimo de malhas para estimar α e φ exacto : 2. > Não é aconselhável utilizar apenas duas malhas. Não há garantia que os resultados estão na região assimptótica, pelo que p não é conhecido. Em problemas não lineares a ordem de convergência não é necessariamente igual à menor ordem dos esquemas de discretização adoptados.

17 Erro de discretização: e( φ) = φ φ α p exacto h i > Número mínimo de malhas para estimar α, p e φ exacto : 3. > Em aplicações práticas pode existir ruído nos resultados (definição de h i, interpolações, integrações,...), pelo que 3 malhas não garantem fiabilidade dos resultados.

18 Erro de discretização, exemplo: > Cálculo da área de uma superfície cilíndrica com uma regra de Gauss com 1 ponto por direcção. ( ) h i 1 N 1 = i > Dois tipos de malha: A. Distâncias equidistantes ao longo do diâmetro, Z. B. Distâncias equidistantes ao longo da superfície, θ.

19 Erro de discretização, exemplo: Y Z X X Y Z Malha Z Z t -3 digítos para x Malha θ

20 Erro de discretização, exemplo: Malha θ Malha Z Malha Z t

21 3. Verificação de códigos Garantir que o programa não tem erros. Contrariamente ao que pode ser assumido, não é uma responsabilidade exclusiva de quem desenvolve o programa (qualquer utilizador de um popular sistema operativo para computadores pessoais percebe esta realidade...). Avaliação de erros, pelo que requer o conhecimento da solução exacta. Problema exclusivamente matemático.

22 4. Verificação de soluções/cálculos A solução exacta não é conhecida. Estimativa do erro numérico admite habitualmente que o erro de discretização é dominante (o que requer um erro iterativo pelo menos duas ordens de grandeza inferior). Métodos baseados em estudos de refinamento de malha são uma das alternativas para a estimativa do erro/incerteza de discretização. Problema exclusivamente matemático.

23 4. Verificação de soluções/cálculos Estimar a incerteza, U, de um cálculo numérico da quantidade φ para a qual a solução exacta é desconhecida Objectivo: φ U ( φ) φexact φ + U ( φ) com um grau de confiança de 95% ( φ) U ( φ) = F e S F S e( φ ) Factor de segurança Estimativa do erro

24 4. Verificação de soluções/cálculos e( φ ) = φ φ = δ = αh i i o RE p i φ i φ o Solução numérica de uma variável local ou integral Estimativa da solução exacta δ RE Estimativa do erro α j h i p j Constante relacionada com o nível de erro Dimensão característica da malha Ordem de convergência observada

25 X X X h i φ φ o 3 Malhas necessárias para calcular φ o, α, p p i RE o i i h e α δ φ φ φ = = = ) ( ( ) ( ) ( ) = = = p p p p RE o h h h h h h h h φ φ φ φ φ φ δ φ φ δ RE φ o 4. Verificação de soluções/cálculos

26 4. Verificação de soluções/cálculos Convergência ou divergência aparente para três malhas com h 2 /h 1 =h 3 /h 2. Razão de Convergência : φ2 φ1 R = φ φ < R <1 Convergência Monotónica -1 < R <0 Convergência Oscilante R > 1 Divergência Monotónica R <-1 Divergência Oscilante

27 5. Validação Estimativa do erro de modelação por comparação com resultados experimentais. Método para a avaliação do erro de modelação proposto recentemente pela ASME: > Diferença entre a solução numérica e a medição experimental, E, que se denomina erro de comparação (comparison error) > Incerteza de validação, U val, (validation uncertainty) obtida da combinação das incertezas numérica, experimental e dos parâmetros que definem o problema (condições fronteira, número de Reynolds,...)

28 5. Validação Método para a avaliação do erro de modelação proposto recentemente pela ASME: E = S Resultado numérico D Medição experimental val S U num Incerteza numérica U D Incerteza experimental U input Incerteza dos parâmetros que definem o problema (condições fronteira, número de Reynolds,...) D ( U ) + ( U ) 2 ( U ) 2 num 2 D input U = +

29 5. Validação Estimar com 95% de confiança o intervalo que contém o erro de modelação E U, E + E >> U val [ ] val U val Erro de modelação é provavelmente semelhante a E, pelo há uma indicação de que o modelo precisa de ser melhorado. E < U val Erro de modelação inferior ao ruído originado pelas incertezas experimental, numérica e dos dados do problema.

30 5. Validação Exemplo: escoamento no plano do hélice de um petroleiro à escala do modelo. > Equações de Reynolds em média temporal com o modelo de turbulência k-ω SST sem leis da parede. > Estudo de refinamento de malha com 6 malhas que variam entre 0, e 6, nós. > Incerteza experimental obtida da assimetria dos valores medidos (estimativa por defeito). > Incerteza dos parâmetros de entrada nula ( modelo forte ).

31 5. Validação Exemplo: escoamento no plano do hélice de um petroleiro à escala do modelo Experimental Numérico z/l PP U x y/l PP

32 5. Validação Exemplo: escoamento no plano do hélice de um petroleiro à escala do modelo. U x Experimental SST ϕ Comparação habitual: qualidade do resultado depende do tamanho dos símbolos e da espessura da linha...

33 5. Validação Exemplo: escoamento no plano do hélice de um petroleiro à escala do modelo. U x Experimental SST ϕ Introdução da incerteza experimental (estimada por defeito)

34 5. Validação Exemplo: escoamento no plano do hélice de um petroleiro à escala do modelo. U x Experimental SST ϕ Introdução da incerteza numérica

35 5. Validação Exemplo: escoamento no plano do hélice de um petroleiro à escala do modelo. U x E= S-D U val =(U 2 num +U2 D )1/2 Erro de comparação é maior do que a incerteza de validação para a maior parte dos locais analisados. Avaliação do erro de modelação requer menores incertezas numérica e experimental ϕ

Solução numérica das equações de Reynolds (RANS)

Solução numérica das equações de Reynolds (RANS) Solução numérica das equações de Reynolds (RANS) Linearização do termo convectivo - Newton (Quasi-Newton) - Picard Discretização - Diferenças Finitas - Volume Finito - Galerkin (Elementos Finitos) 1 Solução

Leia mais

Utilização de Métodos de Cálculo Numérico em Aerodinâmica

Utilização de Métodos de Cálculo Numérico em Aerodinâmica Erro Numérico: - Erro de arredondamento - Erro iterativo - Erro de discretização Três componentes do erro numérico têm comportamentos diferentes com o aumento do número de graus de liberdade (refinamento

Leia mais

6. Erosão. Início do transporte sólido por arrastamento

6. Erosão. Início do transporte sólido por arrastamento 6. Erosão. Início do transporte sólido por arrastamento 6.1. Introdução A erosão consiste na remoção do material do leito pelas forças de arrastamento que o escoamento provoca. O oposto designa-se por

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Trabalho Computacional. A(h) = V h + 2 V π h, (1)

Trabalho Computacional. A(h) = V h + 2 V π h, (1) Unidade de Ensino de Matemática Aplicada e Análise Numérica Departamento de Matemática/Instituto Superior Técnico Matemática Computacional (Mestrado em Engenharia Física Tecnológica) 2014/2015 Trabalho

Leia mais

Métodos Numéricos 2010-11. Exame 11/07/11

Métodos Numéricos 2010-11. Exame 11/07/11 ESCOLA SUPERIOR DE BIOTECNOLOGIA Métodos Numéricos 2010-11 Exame 11/07/11 Parte Teórica Duração: 30 minutos Atenção: Teste sem consulta. Não é permitido o uso da máquina de calcular. Não esquecer de indicar

Leia mais

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics DINÂMICA DOS FLUIDOS COMPUTACIONAL CFD = Computational Fluid Dynamics 1 Problemas de engenharia Métodos analíticos Métodos experimentais Métodos numéricos 2 Problemas de engenharia FENÔMENO REAL (Observado

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Programa de pós-graduação em engenharia de recursos hídricos e ambiental TH705 Mecânica dos fluidos ambiental II Prof. Fernando Oliveira de Andrade Problema do fechamento

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Métodos Numéricos Engenharia Civil, Química e Gestão Industrial

Métodos Numéricos Engenharia Civil, Química e Gestão Industrial Métodos Numéricos Engenharia Civil, Química e Gestão Industrial Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Semestre 2007/2008 Carlos Balsa

Leia mais

Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

Análise de Regressão Linear Simples e Múltipla

Análise de Regressão Linear Simples e Múltipla Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla

Leia mais

MECÂNICA DOS FLUIDOS 2 ME262

MECÂNICA DOS FLUIDOS 2 ME262 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS (CTG) DEPARTAMENTO DE ENGENHARIA MECÂNICA (DEMEC) MECÂNICA DOS FLUIDOS 2 ME262 Prof. ALEX MAURÍCIO ARAÚJO (Capítulo 8) Recife - PE

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Escoamentos exteriores 21

Escoamentos exteriores 21 Escoamentos exteriores 2 Figura 0.2- Variação do coeficiente de arrasto com o número de Reynolds para corpos tri-dimensionais [de White, 999]. 0.7. Força de Sustentação Os perfis alares, ou asas, têm como

Leia mais

Sistema de ponto flutuante

Sistema de ponto flutuante Exemplo: FP(,4,,A) e FP(,4,,T) Sistema de ponto flutuante FP( b, p, q,_) = FP(, 4,, _ ) base 4 dígitos na mantissa dígitos no expoente A=Arredondamento T=Truncatura x ± =± m b t x =± d 1d d d 4 dígitos

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica Carlos Balsa Métodos Numéricos

Leia mais

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis Curso de Avaliações Prof. Carlos Aurélio Nadal cnadal@ufpr.br 1 AULA 03 Revisão: Noções básicas de estatística aplicada a avaliações de imóveis 2 OBSERVAÇÃO: é o valor obtido durante um processo de medição.

Leia mais

Indicações para a elaboração do trabalho a realizar em horário extra lectivo

Indicações para a elaboração do trabalho a realizar em horário extra lectivo Instituto Politécnico de Viseu Escola Superior de Tecnologia Curso: Eng a Mecânica e G. I. Ano: 1 o Semestre: 2 o Ano Lectivo: 2005/2006 Indicações para a elaboração do trabalho a realizar em horário extra

Leia mais

Testes (Não) Paramétricos

Testes (Não) Paramétricos Armando B. Mendes, DM, UAç 09--006 ANOVA: Objectivos Verificar as condições de aplicabilidade de testes de comparação de médias; Utilizar ANOVA a um factor, a dois factores e mais de dois factores e interpretar

Leia mais

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Nome: 2ª série: n o Professor: Luiz Mário Data: / / 2015. ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Orientações: - Este estudo dirigido poderá ser usado para revisar a matéria que será cobrada

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

ANÁLISE NUMÉRICA DA ADERÊNCIA ENTRE AÇO E CONCRETO ENSAIO PULL-OUT TEST

ANÁLISE NUMÉRICA DA ADERÊNCIA ENTRE AÇO E CONCRETO ENSAIO PULL-OUT TEST ANÁLISE NUMÉRICA DA ADERÊNCIA ENTRE AÇO E CONCRETO ENSAIO PULL-OUT TEST Julia Rodrigues Faculdade de Engenharia Civil CEATEC julia.r1@puccamp.edu.br Nádia Cazarim da Silva Forti Tecnologia do Ambiente

Leia mais

Manual de laboratório e tratamento de erros em Técnicas Laboratoriais de Análise

Manual de laboratório e tratamento de erros em Técnicas Laboratoriais de Análise Departamento de Química e Bioquímica Manual de laboratório e tratamento de erros em Técnicas Laboratoriais de Análise Isabel Cavaco Ana Rosa Garcia 2003/2004 Preâmbulo Estas folhas destinam-se aos alunos

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

5 Considerações Finais e Recomendações

5 Considerações Finais e Recomendações Considerações Finais e Recomendações 132 5 Considerações Finais e Recomendações O controle estatístico de processos compõe-se essencialmente do monitoramento on line dos processos por gráficos de controle

Leia mais

Especialização em Engenharia Clínica

Especialização em Engenharia Clínica Especialização em Engenharia Clínica Introdução a Bioestatística Docente: > Marcelino M. de Andrade, Dr. Apresentação: Módulo 02 Teoria Elementar da Amostragem A teoria elementar da amostragem é um estudo

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

PP 301 Engenharia de Reservatórios I 11/05/2011

PP 301 Engenharia de Reservatórios I 11/05/2011 PP 301 Engenharia de Reservatórios I 11/05/2011 As informações abaixo têm como objetivo auxiliar o aluno quanto à organização dos tópicos principais abordados em sala e não excluem a necessidade de estudo

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

Escoamentos Internos

Escoamentos Internos Escoamentos Internos Escoamento Interno Perfil de velocidades e transição laminar/turbulenta Perfil de temperaturas Perda de carga em tubulações Determinação da perda de carga distribuída Determinação

Leia mais

UENF PROGRAMA ANALÍTICO DE DISCIPLINA. Carga Horária:68. Assinaturas: Chefe do Laboratório ou Diretor de Centro: Coordenador do Curso:

UENF PROGRAMA ANALÍTICO DE DISCIPLINA. Carga Horária:68. Assinaturas: Chefe do Laboratório ou Diretor de Centro: Coordenador do Curso: Página: 1 Data de Criação: 11/03/2002 Período Início: 2002/01 Horas Aula Teórica: 68 Prática: 0 ExtraClasse: 0 Carga Horária:68 Número de Créditos: 4 Sistema de Aprovação: Aprovação por Média/Freqüência

Leia mais

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 5: APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM COLEGIADO DE ENGENHARIA

Leia mais

Economia II. A Procura Agregada de Bens e Serviços e a Função IS. Francisco Camões / Sofia Vale / Vivaldo Mendes. Setembro 2007

Economia II. A Procura Agregada de Bens e Serviços e a Função IS. Francisco Camões / Sofia Vale / Vivaldo Mendes. Setembro 2007 Economia II A Procura Agregada de Bens e Serviços e a Função IS Francisco Camões / Sofia Vale / Vivaldo Mendes Setembro 2007 1 A Procura Agregada de Bens e Serviços e a Função IS Equações de Comportamento

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

Medida de Grandezas Eléctricas

Medida de Grandezas Eléctricas Medida de Grandezas Eléctricas As grandezas eléctricas normalmente medidas são: Tensão Corrente Potência eléctrica Energia eléctrica Os valores destas grandezas podem ser obtidas por diferentes formas,

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

4 Resfriamento de Óleo

4 Resfriamento de Óleo 4 Resfriamento de Óleo Para analisar o tempo de resfriamento e o fluxo de calor através das paredes do duto, considerou-se que inicialmente há um fluido quente escoando no interior da tubulação, em regime

Leia mais

AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD

AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD 1 Délio Barroso de Souza, 2 Ulisses Fernandes Alves, 3 Valéria Viana Murata 1 Discente do curso de Engenharia Química 2 Bolsista

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

DIFERENÇA FINITA DE QUARTA ORDEM A equação de equilíbrio, para o problema elastodinâmico, é:

DIFERENÇA FINITA DE QUARTA ORDEM A equação de equilíbrio, para o problema elastodinâmico, é: DIFERENÇA FINITA DE QUARTA ORDEM PARA INTEGRAÇÃO EXPLÍCITA NO DOMÍNIO DO TEMPO DE PROBLEMAS ELASTODINÂMICOS L. A. Souza 1 e C. A. Moura 2 1 Instituto Politécnico / UERJ Caixa Postal 97282 28601-970 Nova

Leia mais

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006. Controlo de velocidade de um motor D.C.

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006. Controlo de velocidade de um motor D.C. Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores Controlo 2005/2006 Controlo de velocidade de um motor D.C. Elaborado por E. Morgado 1 e F. M. Garcia 2 Reformulado

Leia mais

UM ESTUDO DA VARIAÇÃO DE PREÇOS NA ÁREA DE SAÚDE E CUIDADOS PESSOAIS

UM ESTUDO DA VARIAÇÃO DE PREÇOS NA ÁREA DE SAÚDE E CUIDADOS PESSOAIS UM ESTUDO DA VARIAÇÃO DE PREÇOS NA ÁREA DE SAÚDE E CUIDADOS PESSOAIS Tania Miranda Nepomucena ; Ana Paula Coelho Madeira 2 ; Thelma Sáfadi 3 INTRODUÇÃO Atualmente, diversas áreas do conhecimento utilizam-se

Leia mais

Figura 4.6: Componente horizontal de velocidade (128x128 nós de colocação).

Figura 4.6: Componente horizontal de velocidade (128x128 nós de colocação). 59 Figura 4.6: Componente horizontal de velocidade (128x128 nós de colocação). Figura 4.7: Comparação do erro para a componente horizontal de velocidade para diferentes níveis de refinamento. 60 Figura

Leia mais

Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos

Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos Ano Letivo 2015/ 2016 Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos Objeto de avaliação O teste tem por referência o programa de Física e Química A para

Leia mais

Delft3D 3D/2D modeling suite for integral water solutions

Delft3D 3D/2D modeling suite for integral water solutions Delft3D 3D/2D modeling suite for integral water solutions Bruna Arcie Polli Doutoranda em Engenharia de Recursos Hídricos e Ambiental Estágio à docência brunapolli@gmail.com Plano de aula Sistemas computacionais

Leia mais

OTIMIZAÇÃO DE TROCADORES DE CALOR DE TUBOS ALETADOS CIRCULARES E ELÍPTICOS EM REGIME TURBULENTO

OTIMIZAÇÃO DE TROCADORES DE CALOR DE TUBOS ALETADOS CIRCULARES E ELÍPTICOS EM REGIME TURBULENTO III WORKSHOP PROSUL GERAÇÃO DE POTÊNCIA DISTRIBUÍDA E ENERGIA AUTO-SUSTENTÁVEL ROQUE LUIZ SUTIL MAINARDES 1 OTIMIZAÇÃO DE TROCADORES DE CALOR DE TUBOS ALETADOS CIRCULARES E ELÍPTICOS EM REGIME TURBULENTO

Leia mais

Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade

Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade Baseado no trabalho Controlo de Velocidade de um motor DC de E. Morgado, F. Garcia e J. Gaspar João Miguel Raposo Sanches 1 o

Leia mais

DEPRECIAÇÃO E OBSOLÊNCIA

DEPRECIAÇÃO E OBSOLÊNCIA UNIVERSIDADE ESTADUAL DE CAMPINAS - UNICAMP INSTITUTO DE FILOSOFIA E CIÊNCIAS HUMANAS - IFCH DEPARTAMENTO DE ECONOMIA E PLANEJAMENTO ECONÔMICO - DEPE CENTRO TÉCNICO ESCONÔMICO DE ASSISTÊNCIA EMPRESARIAL

Leia mais

Aplicações do Modelo de Elementos Finitos de Propagação de Ondas, EpE_CG a Zonas Portuárias: Sines e Vila do Porto

Aplicações do Modelo de Elementos Finitos de Propagação de Ondas, EpE_CG a Zonas Portuárias: Sines e Vila do Porto Aplicações do Modelo de Elementos Finitos de Propagação de Ondas, EpE_CG a Zonas Portuárias: Sines e Vila do Porto Conceição J.E.M. Fortes 1, Liliana Pinheiro 1, J. Leonel M. Fernandes 2 1 Laboratório

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Técnicas adotas para seu estudo: soluções numéricas (CFD); experimentação (análise dimensional); teoria da camada-limite.

Técnicas adotas para seu estudo: soluções numéricas (CFD); experimentação (análise dimensional); teoria da camada-limite. Escoamento externo Técnicas adotas para seu estudo: soluções numéricas (CFD); experimentação (análise dimensional); teoria da camada-limite. Soluções numéricas, hoje um campo interessante de pesquisa e

Leia mais

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos?

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? &DStWXOR±5HSUHVHQWDomRGH1~PHURVH(UURV,QWURGXomR Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? 7LSRVGH(UURV Erros inerentes à matematização do fenómeno físico: os sistemas

Leia mais

INSTITUTO SUPERIOR DE GESTÃO

INSTITUTO SUPERIOR DE GESTÃO INSTITUTO SUPERIOR DE GESTÃO INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR (Exercícios) ( Texto revisto para o ano lectivo 1- ) António Carlos Morais da Silva Professor de I.O. / ISG Recomendações 1.

Leia mais

Eduardo Camponogara Eugênio de Bona Castelan Neto

Eduardo Camponogara Eugênio de Bona Castelan Neto UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE AUTOMAÇÃO E SISTEMAS CÁLCULO NUMÉRICO PARA CONTROLE E AUTOMAÇÃO Versão preliminar Eduardo Camponogara Eugênio de Bona Castelan Neto Florianópolis,

Leia mais

Equilíbrio e Estabilidade com Manche Livre

Equilíbrio e Estabilidade com Manche Livre Equilíbrio e Estabilidade com Manche Livre João Oliveira ACMAA, DEM, Instituto Superior Técnico, MEAero (Versão de 30 de Setembro de 2011) Superfícies de controlo longitudinal Momento de charneira Leme

Leia mais

REFRAÇÃO DA LUZ. Neste capítulo estudaremos as leis da refração, a reflexão total e a formação de imagens nas lentes esféricas.

REFRAÇÃO DA LUZ. Neste capítulo estudaremos as leis da refração, a reflexão total e a formação de imagens nas lentes esféricas. AULA 18 REFRAÇÃO DA LUZ 1- INTRODUÇÃO Neste capítulo estudaremos as leis da refração, a reflexão total e a formação de imagens nas lentes esféricas. 2- A REFRAÇÃO A refração ocorre quando a luz ao passar

Leia mais

Novos Métodos para. Dimensionamento Sísmico de Estruturas

Novos Métodos para. Dimensionamento Sísmico de Estruturas Novos Métodos para Dimensionamento Sísmico de Estruturas Rita Bento Instituto Superior Técnico Junho 2003 Ciclo de Palestras em Engenharia Civil 2003 Universidade Nova de Lisboa Centro de Investigação

Leia mais

INSPECÇÃO E REABILITAÇÃO DO SEMINÁRIO CONCILIAR DE BRAGA

INSPECÇÃO E REABILITAÇÃO DO SEMINÁRIO CONCILIAR DE BRAGA Encontro Nacional Betão Estrutural 2004 1 INSPECÇÃO E REABILITAÇÃO DO SEMINÁRIO CONCILIAR DE BRAGA P.B. LOURENÇO Prof. Associado EEUM Guimarães J. BARBOSA LOURENÇO Eng. Civil GPBL, Lda Porto D.V. OLIVEIRA

Leia mais

CONTROLO. 2º semestre 2007/2008. Transparências de apoio às aulas teóricas. Capítulo 1 Introdução ao Controlo: Exemplos Motivadores

CONTROLO. 2º semestre 2007/2008. Transparências de apoio às aulas teóricas. Capítulo 1 Introdução ao Controlo: Exemplos Motivadores Mestrado Integrado em Engenharia Electrotécnica e de Computadores (LEEC) Departamento de Engenharia Electrotécnica e de Computadores (DEEC) CONTROLO 2º semestre 2007/2008 Transparências de apoio às aulas

Leia mais

2 Estudo dos Acoplamentos

2 Estudo dos Acoplamentos 24 2 Estudo dos Acoplamentos Um problema acoplado é aquele em que dois ou mais sistemas físicos interagem entre si e cujo acoplamento pode ocorrer através de diferentes graus de interação (Zienkiewicz

Leia mais

4. RESULTADOS E DISCUSSÃO

4. RESULTADOS E DISCUSSÃO 4. RESULTADOS E DISCUSSÃO 4.1. Energia cinética das precipitações Na Figura 9 estão apresentadas as curvas de caracterização da energia cinética aplicada pelo simulador de chuvas e calculada para a chuva

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS 2 O que são e Por que se usam algarismos significativos? O valor 1,00 não é igual a 1? Do ponto de vista matemático, sim. Mas sempre que se façam medições

Leia mais

Aproximações e Erros de Arredondamento. introdução. exactidão e precisão. Aula 2 Métodos Numéricos Aplicados à Engenharia

Aproximações e Erros de Arredondamento. introdução. exactidão e precisão. Aula 2 Métodos Numéricos Aplicados à Engenharia Aproximações e Erros de Arredondamento Aula 2 Métodos Numéricos Aplicados à Engenharia 23/02/07 João Noronha 1 introdução Em muitos problemas de engenharia não é possível a obtenção de soluções analíticas.

Leia mais

CAP. 3 - EXTENSÔMETROS - "STRAIN GAGES" Exemplo: extensômetro Huggenberger

CAP. 3 - EXTENSÔMETROS - STRAIN GAGES Exemplo: extensômetro Huggenberger CAP. 3 - EXTENSÔMETOS - "STAIN GAGES" 3. - Extensômetros Mecânicos Exemplo: extensômetro Huggenberger Baseia-se na multiplicação do deslocamento através de mecanismos de alavancas. Da figura: l' = (w /

Leia mais

Resumo. Sistemas e Sinais Composição de Máquinas de Estados (2) Retroacção. Esta Aula

Resumo. Sistemas e Sinais Composição de Máquinas de Estados (2) Retroacção. Esta Aula Resumo Sistemas e Sinais Composição de Máquinas de Estados () lco@ist.utl.pt Retroacção Retroacção bem-formada Retroação sem entradas Máquinas de saída determinada pelo estado Instituto Superior Técnico

Leia mais

Díodo de Junção Semicondutora

Díodo de Junção Semicondutora íodo de Junção emicondutora ispositivos Eletrónicos Licenciatura em Engenharia Electrónica C. Ferreira Fernandes 2012-13 Laboratório de ispositivos Electrónicos ÍOO E JUNÇÃO Material utilizado: Placa de

Leia mais

PRÁTICA 12: VISCOSIDADE DE LÍQUIDOS

PRÁTICA 12: VISCOSIDADE DE LÍQUIDOS PRÁTICA 12: VISCOSIDADE DE LÍQUIDOS Viscosidade é uma característica dos líquidos que está relacionada com a sua habilidade de fluir. Quanto maior a viscosidade de um líquido (ou de uma solução) mais difícil

Leia mais

Bancada de visualização de escoamentos: maquetes

Bancada de visualização de escoamentos: maquetes MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA Bancada de visualização de escoamentos: maquetes RELATÓRIO DE TRABALHO DE CONCLUSÃO

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar o comportamento

Leia mais

PROJETO DE UM TROCADOR DE CALOR PARA RESFRIAMENTO DE FLUIDO EM UM CIRCUITO HIDRÁULICO UTILIZADO NA AGRICULTURA DE PRECISÃO

PROJETO DE UM TROCADOR DE CALOR PARA RESFRIAMENTO DE FLUIDO EM UM CIRCUITO HIDRÁULICO UTILIZADO NA AGRICULTURA DE PRECISÃO PROJETO DE UM TROCADOR DE CALOR PARA RESFRIAMENTO DE FLUIDO EM UM CIRCUITO HIDRÁULICO UTILIZADO NA AGRICULTURA DE PRECISÃO Clovis Adelar Mattjie (FAHOR) cm000627@fahor.com.br Renato Ristof (FAHOR) rr000875@fahor.com.br

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

Simulação Numérica do Aquecimento de Água Utilizando-se um Cilindro Ferromagnético

Simulação Numérica do Aquecimento de Água Utilizando-se um Cilindro Ferromagnético Simulação Numérica do Aquecimento de Água Utilizando-se um Cilindro Ferromagnético Paulo Tibúrcio Pereira, Universidade Federal de São João Del Rei UFSJ Engenharia de Telecomunicações 36420-000, Ouro Branco,

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Capítulo 8 Equações Diferenciais Ordinárias Vários modelos utilizados nas ciências naturais e exatas envolvem equações diferenciais. Essas equações descrevem a relação entre uma função, o seu argumento

Leia mais

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Prof. José Carlos Fogo Departamento de Estatística - UFSCar Outubro de 2014 Prof. José Carlos Fogo (DEs - UFSCar) Material Didático

Leia mais

IA344 - Dinâmica Caótica em Sistemas de Engenharia

IA344 - Dinâmica Caótica em Sistemas de Engenharia IA344 - Dinâmica Caótica em Sistemas de Engenharia (FEEC/Unicamp - Primeiro Semestre de 2005) 1 Transformações (Mapas) de Poincaré Um sistema dinâmico é usualmente definido como um fluxo contínuo, que

Leia mais

Toleranciamento Geométrico João Manuel R. S. Tavares

Toleranciamento Geométrico João Manuel R. S. Tavares CFAC Concepção e Fabrico Assistidos por Computador Toleranciamento Geométrico João Manuel R. S. Tavares Bibliografia Simões Morais, José Almacinha, Texto de Apoio à Disciplina de Desenho de Construção

Leia mais

Amostragem e PCM. Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento

Amostragem e PCM. Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Amostragem e PCM Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Roteiro 1 Amostragem 2 Introdução O processo

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Especialidade em Ativos Calibração Conformidade Metrológica

Especialidade em Ativos Calibração Conformidade Metrológica Especialidade em Ativos Calibração Conformidade Metrológica Metrologia é a Ciência da Medida Uma reputação de qualidade é um dos bens de mais alto valor de uma empresa. A grande importância de uma alta

Leia mais

Testedegeradoresde. Parte X. 38 Testes de Ajuste à Distribuição. 38.1 Teste Chi-Quadrado

Testedegeradoresde. Parte X. 38 Testes de Ajuste à Distribuição. 38.1 Teste Chi-Quadrado Parte X Testedegeradoresde números aleatórios Os usuários de uma simulação devem se certificar de que os números fornecidos pelo gerador de números aleatórios são suficientemente aleatórios. O primeiro

Leia mais

Forças Aplicadas no Avião. Forças Aplicadas no Avião

Forças Aplicadas no Avião. Forças Aplicadas no Avião 7631 º Ano da Licenciatura em Engenharia Aeronáutica 1. Forças no Avião em Voo linha de referência do avião L α T α T γ vento relativo horizontal L Sustentação (força aerodinâmica) D Arrasto (força aerodinâmica)

Leia mais

ANEMÔMETRO A FIO QUENTE

ANEMÔMETRO A FIO QUENTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA INSTRUMENTAÇÀO ELTRÔNICA ANEMÔMETRO A FIO QUENTE Cayo Cid de França Moraes 200321285 Natal/RN ANEMÔMETRO

Leia mais

Níveis óptimos de compensação de reactiva numa subestação da rede de transporte Sensibilidade ao modelo de carga e representação da rede

Níveis óptimos de compensação de reactiva numa subestação da rede de transporte Sensibilidade ao modelo de carga e representação da rede Níveis óptimos de compensação de reactiva numa subestação da rede de transporte Sensibilidade ao modelo de carga e representação da rede Mª Rita Guedes da Silva 1 e António Pitarma 1 1 Divisão de Planeamento

Leia mais

Ventilação de impulso em parques de estacionamento cobertos não compartimentados. João Viegas (LNEC)

Ventilação de impulso em parques de estacionamento cobertos não compartimentados. João Viegas (LNEC) Ventilação de impulso em parques de estacionamento cobertos não compartimentados João Viegas (LNEC) Enquadramento > Ventilação em parques de estacionamento cobertos destina-se a: realizar o escoamento

Leia mais

6 Mistura Rápida. Continuação

6 Mistura Rápida. Continuação 6 Mistura Rápida Continuação 2 Ressalto em medidor Parshall (calha Parshall): Foi idealizado por R.L. Parshall, engenheiro do Serviço de Irrigação do Departamento de Agricultura dos EUA. Originalmente

Leia mais

Norma Interpretativa 2 Uso de Técnicas de Valor Presente para mensurar o Valor de Uso

Norma Interpretativa 2 Uso de Técnicas de Valor Presente para mensurar o Valor de Uso Norma Interpretativa 2 Uso de Técnicas de Valor Presente para mensurar o Valor de Uso Esta Norma Interpretativa decorre da NCRF 12 - Imparidade de Activos. Sempre que na presente norma existam remissões

Leia mais

Modelos Pioneiros de Aprendizado

Modelos Pioneiros de Aprendizado Modelos Pioneiros de Aprendizado Conteúdo 1. Hebb... 2 2. Perceptron... 5 2.1. Perceptron Simples para Classificaçãod e Padrões... 6 2.2. Exemplo de Aplicação e Motivação Geométrica... 9 2.3. Perceptron

Leia mais

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

Características de um fluido

Características de um fluido FLUIDOS - Propriedades Características de um fluido Gases e liquídos podem ambos ser considerados fluidos. Há certas características partilhadas por todos os fluidos que podem usar-se para distinguir liquidos

Leia mais

Teste de Hipóteses e Intervalos de Confiança

Teste de Hipóteses e Intervalos de Confiança Teste de Hipóteses e Intervalos de Confiança Teste de Hipótese e Intervalo de Confiança para a média Monitor Adan Marcel 1) Deseja-se estudar se uma moléstia que ataca o rim altera o consumo de oxigênio

Leia mais

ANÁLISE DE PROGRAMAS DE CÁLCULO PARA ESTRUTURAS DE ALVENARIA RESISTENTE. Ivone Maciel 1 Paulo Lourenço 2 ivone@civil.uminho.pt pbl@civil.uminho.

ANÁLISE DE PROGRAMAS DE CÁLCULO PARA ESTRUTURAS DE ALVENARIA RESISTENTE. Ivone Maciel 1 Paulo Lourenço 2 ivone@civil.uminho.pt pbl@civil.uminho. ANÁLISE DE PROGRAMAS DE CÁLCULO PARA ESTRUTURAS DE ALVENARIA RESISTENTE Ivone Maciel 1 Paulo Lourenço 2 ivone@civil.uminho.pt pbl@civil.uminho.pt 1 Mestranda e Bolseira de investigação do Departamento

Leia mais

GERAÇÃO DE APROXIMAÇÕES PARA CORRELAÇÕES EM CÓDIGOS DE ANÁLISE TERMO-HIDRÁULICA. Luiz Carlos Martins Pereira* e Eduardo Gomes Dutra do Carmo**

GERAÇÃO DE APROXIMAÇÕES PARA CORRELAÇÕES EM CÓDIGOS DE ANÁLISE TERMO-HIDRÁULICA. Luiz Carlos Martins Pereira* e Eduardo Gomes Dutra do Carmo** GERAÇÃO DE APROXIMAÇÕES PARA CORRELAÇÕES EM CÓDIGOS DE ANÁLISE TERMO-HIDRÁULICA Luiz Carlos Martins Pereira* e Eduardo Gomes Dutra do Carmo** *Comissão Nacional de Energia Nuclear (CNEN) Rua General Severiano

Leia mais

f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana

f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Resolução de equações A resolução de equações (encontrar o valor de x ) é um dos problemas mais básicos e antigos da Matemática, motivado desde sempre por

Leia mais