Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008

Tamanho: px
Começar a partir da página:

Download "Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008"

Transcrição

1 Métodos Numéricos C A. Ismael F. Vaz 1 1 Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

2 Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Mínimos quadrados lineares 8 Mínimos quadrados não lineares 9 Integração numérica 10 Optimização não linear sem restrições 11 Método de Davies Swann e Campey 12 Método de Nelder Mead 13 Método de Segurança de Newton 14 Método quasi-newton A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

3 Introdução Contents 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Mínimos quadrados lineares 8 Mínimos quadrados não lineares 9 Integração numérica 10 Optimização não linear sem restrições 11 Método de Davies Swann e Campey 12 Método de Nelder Mead 13 Método de Segurança de Newton 14 Método quasi-newton A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

4 Introdução Apresentação - Docente Aulas teóricas A. Ismael F. Vaz - aivaz@dps.uminho.pt Aulas teórico-práticas Isabel Espírito Santo - iapinho@dps.uminho.pt Horário de atendimento A combinar... A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

5 Introdução Apresentação - Disciplina Uma primeira parte de métodos numéricos e uma segunda parte de optimização não linear sem restrições; Página da disciplina; 7 fichas TPs para realizar ao longo do semestre (nas aulas Ts). A classificação final é a soma das notas das fichas TPs. Não é obrigatória a presença nas aulas Ts e TPs. Mas atenção aos momentos de avaliação. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

6 Introdução Apresentação - Disciplina Uma primeira parte de métodos numéricos e uma segunda parte de optimização não linear sem restrições; Página da disciplina; 7 fichas TPs para realizar ao longo do semestre (nas aulas Ts). A classificação final é a soma das notas das fichas TPs. Não é obrigatória a presença nas aulas Ts e TPs. Mas atenção aos momentos de avaliação. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

7 Introdução Apresentação - Disciplina Uma primeira parte de métodos numéricos e uma segunda parte de optimização não linear sem restrições; Página da disciplina; 7 fichas TPs para realizar ao longo do semestre (nas aulas Ts). A classificação final é a soma das notas das fichas TPs. Não é obrigatória a presença nas aulas Ts e TPs. Mas atenção aos momentos de avaliação. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

8 Introdução Apresentação - Disciplina Uma primeira parte de métodos numéricos e uma segunda parte de optimização não linear sem restrições; Página da disciplina; 7 fichas TPs para realizar ao longo do semestre (nas aulas Ts). A classificação final é a soma das notas das fichas TPs. Não é obrigatória a presença nas aulas Ts e TPs. Mas atenção aos momentos de avaliação. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

9 Introdução Apresentação - Disciplina Uma primeira parte de métodos numéricos e uma segunda parte de optimização não linear sem restrições; Página da disciplina; 7 fichas TPs para realizar ao longo do semestre (nas aulas Ts). A classificação final é a soma das notas das fichas TPs. Não é obrigatória a presença nas aulas Ts e TPs. Mas atenção aos momentos de avaliação. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

10 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

11 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

12 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

13 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

14 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

15 Introdução Programa detalhado / Avaliações Dia 25-Fev 29-Fev 04-Mar 11-Mar 01-Abr 08-Abr Matéria Apresentação da disciplina. Erros. Algarismos significativos. Fórmula fundamental dos erros. Erros de truncatura. Solução de equações não lineares. Método dos gráficos. Método da secante e sua convergência. Método de Newton e sua convergência. Critérios de paragem. Sistemas de equações lineares. Eliminação de Gauss com pivotagem parcial. Métodos iterativos de Gauss-Seidel e Jacobi. Método de Newton para sistemas de equações não lineares. Avaliação sobre zeros de funções (2.5 valores). Interpolação polinomial. Diferenças divididas. Fórmula interpoladora de Newton. Erro da fórmula interpoladora de Newton. Avaliação sobre sistemas lineares e não lineares (2.5 valores). Mínimos quadrados polinomiais e modelos lineares. Mínimos quadrados não lineares. Método de Gauss-Newton. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

16 Introdução Programa detalhado / Avaliações - cont. Dia Matéria 15-Abr Revisões. Avaliação sobre interpolação e mínimos quadrados (3 valores). 22-Abr Integração numérica. Fórmulas simples e compostas do Trapézio, Simpson e 3/8. 29-Abr Optimização não linear sem restrições. Condições de optimalidade. Avaliação sobre integração numérica (2.5 valores). 06-Mai Procura unidimensional. Método DSC. Procura multidimensional. Método de Nelder-Mead. 20-Mai Método de Newton. Método de segurança de Newton. Avaliação sobre condições de optimalidade e DSC + NM (3 valores). 27-Mai Procura unidimensional com divisões sucessivas de α por 2. Critério de Armijo. Questionários. 03-Jun Método quasi-newton. Revisões. Avaliação sobre segurança de Newton (4 valores). 17-Jun Revisões. Avaliação sobre quasi-newton (2.5 valores). A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

17 Introdução Motivação da disciplina Presente em todos os cursos de engenharia (aplicações em todas as áreas da engenharia); A disciplina de métodos numéricos dedica-se à resolução numérica de problemas matemáticos. Com o desenvolvimento dos computadores encontra-se direccionada para a implementação de algoritmos estáveis. A optimização consiste em determinar soluções óptimas para problema matemáticos. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

18 Introdução Motivação da disciplina Presente em todos os cursos de engenharia (aplicações em todas as áreas da engenharia); A disciplina de métodos numéricos dedica-se à resolução numérica de problemas matemáticos. Com o desenvolvimento dos computadores encontra-se direccionada para a implementação de algoritmos estáveis. A optimização consiste em determinar soluções óptimas para problema matemáticos. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

19 Introdução Motivação da disciplina Presente em todos os cursos de engenharia (aplicações em todas as áreas da engenharia); A disciplina de métodos numéricos dedica-se à resolução numérica de problemas matemáticos. Com o desenvolvimento dos computadores encontra-se direccionada para a implementação de algoritmos estáveis. A optimização consiste em determinar soluções óptimas para problema matemáticos. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

20 Introdução Controlo óptimo - Um exemplo Problema de optimização do processo semi-contínuo de produção de Etanol. O problema de optimização é: (t 0 = 0 e t f = 61.2 dias) max u(t) J(t f ) x 3 (t f )x 4 (t f ) s.a dx 1 = g 1 x 1 u x 1 dt x 4 dx 2 = 10g 1 x 1 + u 150 x 2 dt x 4 dx 3 = g 2 x 1 u x 3 dt x 4 dx 4 = u dt 0 x 4 (t f ) u(t) 12 t [t 0, t f ] com ( ) ( ) x 2 g 1 = 1 + x 3 / x 2 ( ) ( ) 1 x 2 g 2 = 1 + x 3 / x 2 onde x 1, x 2 e x 3 são as concentrações da massa celular, substrato e produto (g/l), e x 4 é o volume (L). As condições iniciais são: x(t 0 ) = (1, 150, 0, 10) T. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

21 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

22 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

23 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

24 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

25 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

26 Erros Contents 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Mínimos quadrados lineares 8 Mínimos quadrados não lineares 9 Integração numérica 10 Optimização não linear sem restrições 11 Método de Davies Swann e Campey 12 Método de Nelder Mead 13 Método de Segurança de Newton 14 Método quasi-newton A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

27 Erros Formato de vírgula flutuante normalizado fl(x) = ±0.d 1 d 2...d k 10 e onde, 0.d 1 d 2... d k corresponde à mantissa, e e é o expoente. fl t (x) representa o valor de x em vírgula flutuante truncado e fl a (x) representa o valor de x em vírgula flutuante arredondado. Exemplo x = 2 3 fl t (x) = fl a (x) = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

28 Erros Formato de vírgula flutuante (norma IEEE-754, 32 bits) σ e + 64 d 1 d 2 d 3 d 4 d 5 d 6 1 bit 7 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits Exemplo x = = = ( ) σ e + 64 d 1 d 2 d 3 d 4 d 5 d 6 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

29 Erros Exemplo de programação A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

30 Erros Exemplo de programação A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

31 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

32 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

33 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

34 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

35 Erros Fórmula fundamental dos erros Dados n valores aproximados, x 1,..., x n, e os seus respectivos erros absolutos é possível calcular um majorante para o erro absoluto cometido quando se aplica uma função f, através da fórmula fundamental dos erros. δ f M x1 δ x1 + M x2 δ x M xn δ xn f onde max x I xi Mxi, com I = I x1 I xn I xi = [x i δ xi, x i + δ xi ] r f δ f f(x 1,..., x n ) e A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

36 Erros Exemplo Cálculo dos limites do erro absoluto e relativo do cálculo da função f(x) = x 1 x 2. Temos que f x 1 Mx1 = 1 e f x 2 Mx2 = 1, logo e δ f = δ x1 + δ x2 r f δ x 1 + δ x2 x 1 x 2 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

37 Erros Algarismos Significativos Casa decimais são as casas (algarismos) à direita da vírgula. Os algarismos significativos são aqueles em que temos confiança do seu valor. Exemplos: tem 1 algarismo significativo se δ = 0.05, 2 se δ = e 7 se δ = tem 7 casas decimais e 2 algarismos significativos (δ = ). Quando todas as casas decimais são significativas 0.2 é diferente de A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

38 Zeros de funções Contents 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Mínimos quadrados lineares 8 Mínimos quadrados não lineares 9 Integração numérica 10 Optimização não linear sem restrições 11 Método de Davies Swann e Campey 12 Método de Nelder Mead 13 Método de Segurança de Newton 14 Método quasi-newton A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

39 Zeros de funções Forma geral do problema Pretende-se determinar x tal que f(x) = 0 Exemplo Temos x = como solução para e x + x = 0 Nota: uma equação não linear pode não ter solução, ou ter mais do que uma. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

40 Zeros de funções Métodos iterativos Uma sequência diz-se iterativa se é definida por uma função F independente de k e dependente de um ou vários elementos anteriores a ele, x k = F (x k 1, x k 2,... ) Aproximações iniciais Um método que se baseie numa sequência iterativa com k 1 elementos anteriores necessita também de k 1 valores iniciais. Exemplo x k = x k 1 + x k 2 Partindo de x 0 = 1 e x 1 = 1 temos x 2 = x 1 + x 0 = 2, x 3 = x 2 + x 1 = = 3, x 4 = x 3 + x 2 = = 5 gera uma sequência com os números de Fibonacci. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

41 Zeros de funções Convergência Uma sequência iterativa diz-se convergente quando Convergência superlinear lim x k = x k lim k + x x k+1 x = L ou lim x k k + x x k+1 x x k = 0 Convergência quadrática x x k+1 lim k + x x k 2 = L A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

42 Zeros de funções Critério de Paragem A sequência de aproximações pode ser infinita. Como se pretende obter uma aproximação à solução implementa-se um critério de paragem. Estimativa do erro relativo d k = x k+1 x k x k+1 ɛ 1 Valor da função f(x k+1 ) ɛ 2 Número máximo de iterações k n max A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

43 Zeros de funções Método dos gráficos Uma aproximação ao zero da função f(x) pode obter-se pela intersecção do gráfico de f(x) com o eixo dos xx; se f(x) = g(x) h(x) os zeros de f(x) são os pontos de intersecção de g(x) com h(x). O método dos gráficos é frequentemente usado para obtermos uma aproximação inicial para outros métodos mais precisos. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

44 Zeros de funções Exemplo f(x) = e x + x g(x) = e x h(x) = x g(x) 0.2 h(x) y f(x) x A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

45 Zeros de funções Método da bissecção Se f(x i )f(x s ) < 0 então existe um número ímpar de raízes de f(x) no intervalo [x i, x s ]. Aproxima-se da raiz calculando x k = x i+x s 2, k = 1, 2,... Considera-se o intervalo [x i, x k ] se f(x i )f(x k ) < 0 e faz-se x s x k ou [x k, x s ] se f(x k )f(x s ) < 0 e faz-se x i x k A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

46 Zeros de funções Interpretação gráfica (Bissecção) f(x) = e x + x f(x) xi xk+1 xk xs xs x A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

47 Zeros de funções Método da secante Método iterativo em que se fornece o x 1 e x 2 (a raiz não está necessariamente no intervalo [x 1, x 2 ]). O próximo valor é calculado pela seguinte fórmula (equação iterativa): x k+1 = x k (x k x k 1 )f(x k ), k = 2, 3,... f(x k ) f(x k 1 ) Zeros complexos: O método da secante também calcula zeros complexos, bastando para isso usar aritmética complexa. Convergência: A convergência do método da Secante depende do valor de M 2m ser pequeno. M é o max f (ξ) e m é o min f (η), onde ξ, η I. ɛ k+1 = f (ξ) 2f (η) ɛ k 1ɛ k A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

48 Zeros de funções Interpretação gráfica (Secante) f(x) = e x + x f(x) xk+2 xk+1 xk xk x A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

49 Zeros de funções Método de Newton Método iterativo em que se fornece o x 0. O próximo valor é calculado pela seguinte formula (equação iterativa): x k+1 = x k f(x k) f, k = 1, 2,... (x k ) Zeros complexos: O método de Newton também calcula zeros complexos, bastando para isso usar aritmética complexa. Convergência: A convergência do método de Newton depende do valor de M 2m ser pequeno. M é o max f (ξ) e m é o min f (η), onde ξ, η I. ɛ k+1 = f (ξ) 2f (η) ɛ2 k A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

50 Zeros de funções Interpretação gráfica (Newton) f(x) = e x + x f(x) xk+2 xk+1 xk x A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

51 Zeros de funções Principais propriedades Ambos possuem convergência local. Superlinear no caso do método da secante e quadrática no método de newton. O método da secante não usa derivadas. O método da secante e de Newton podem falhar quando o denominador da equação iterativa é próximo de zero, i.e., quando f(x k ) f(x k 1 ) ou f (x k ) 0. O método da secante e de Newton não convergem necessariamente para o zero mais próximo da aproximação inicial. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

52 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

53 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

54 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

55 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

56 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

57 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

58 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

59 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

60 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

61 Zeros de funções Exemplo e x + x = 0 Método de Newton com x 0 = 0.5, ε 1 = 0.5, ε 2 = 0.1, n max = 2. Temos então que f(x) = e x + x e que f (x) = e x a iteração x 0 = 0.5 f( 0.5) = e = e f ( 0.5) = x 1 = x 0 f( 0.5) f ( 0.5) = = CP: f( ) = (Verdadeiro) x 1 x 0 x 1 = = (Verdadeiro) O processo iterativo pára com x x 1 = E se o ε 1 fosse 0.1? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

62 Resolução de sistemas lineares Contents 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Mínimos quadrados lineares 8 Mínimos quadrados não lineares 9 Integração numérica 10 Optimização não linear sem restrições 11 Método de Davies Swann e Campey 12 Método de Nelder Mead 13 Método de Segurança de Newton 14 Método quasi-newton A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

63 Resolução de sistemas lineares Forma geral do problema a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x a nn x n = b n É um sistema com n equações lineares nas n incógnitas, x 1, x 2,..., x n. O sistema pode ser escrito na forma matricial Ax = b a 11 a a 1n a 21 a a 2n... a n1 a n2... a nn x 1 x 2... x n = b 1 b 2... b n A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

64 Resolução de sistemas lineares Exemplo x 1 x 2 x 3 = É um sistema linear de dimensão 3 3. A matriz dos coeficientes A = R 3 3 e o vector b = (1, 1, 1) T R 3 é o vector dos termos independentes A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

65 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

66 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

67 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

68 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

69 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

70 Resolução de sistemas lineares Tipos de métodos Métodos directos e estáveis. Métodos que calculam a solução exacta do sistema ao fim de um número finito de operações elementares, caso não ocorram erros de arredondamento. Matrizes dos coeficientes densas e de pequena dimensão. Métodos iterativos. Métodos que definem uma sequência infinita de operações, determinando uma sequência de aproximações, cujo limite é a solução exacta do sistema. Matrizes dos coeficientes esparsas e de grande dimensão. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

71 Resolução de sistemas lineares Tipos de métodos Métodos directos e estáveis. Métodos que calculam a solução exacta do sistema ao fim de um número finito de operações elementares, caso não ocorram erros de arredondamento. Matrizes dos coeficientes densas e de pequena dimensão. Métodos iterativos. Métodos que definem uma sequência infinita de operações, determinando uma sequência de aproximações, cujo limite é a solução exacta do sistema. Matrizes dos coeficientes esparsas e de grande dimensão. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

72 Resolução de sistemas lineares Estabilidade numérica Considere-se o seguinte sistema linear: { x1 + x 2 = x 1 + x 2 = 2 cuja solução é x = (1, 1) T. Usando aritmética de três algarismos significativos e considerando o multiplicador igual a = , surge o sistema condensado { x 1 + x 2 = cuja solução é x = (0, 1) T!!! x 2 = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

73 Resolução de sistemas lineares Motivação - Continuação Se nas mesmas condições usarmos a pivotagem parcial temos { x 1 + x 2 = x 1 + x 2 = m = = cuja solução é x = (1, 1) T. { x1 + x 2 = 2 x 2 = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

74 Resolução de sistemas lineares Eliminação de Gauss com Pivotagem Parcial (EGPP) Corresponde a eliminação de Gauss, mas em que a linha usada na eliminação dos elementos da coluna das linhas seguintes é o maior em módulo. Exemplo: m 21 = 3 9 m 31 = 6 9 = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

75 Resolução de sistemas lineares Eliminação de Gauss com Pivotagem Parcial (EGPP) m 32 = = 0.1 = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

76 Resolução de sistemas lineares Substituição inversa Quando a matriz é triangular superior pode-se determinar a solução directamente, através da substituição inversa. Exemplo vem que x 3 = = 0.875, x ( 2) = = x 1 = 1 ( 9) = 0.5 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

77 Resolução de sistemas lineares Substituição directa Quando a matriz é triangular inferior pode-se determinar a solução directamente, através da substituição directa. Exemplo vem que x 1 = 2 1 = 2, x 2 = = 1 x 3 = ( 1) 1 = 0 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

78 Resolução de sistemas lineares Decomposição LU Da eliminação de Gauss com Pivotagem Parcial resulta Exemplo ( ) (A I ) (U J ) ( ) ( ) A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

79 Resolução de sistemas lineares Determinantes de Matrizes det(a) = ( 1) s n u ii onde u ii corresponde aos elementos da diagonal da matriz U e s é o número de trocas de linhas para obter a matriz U. Exemplo ( 1 2 det 2 1 ) ( = ( 1) det i=1 ) = ( 1) = 3 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

80 Resolução de sistemas lineares Cálculo da Inversa de Matrizes A matriz inversa de A (A 1 ) verifica AA 1 = I = A 1 A. O cálculo da matriz inversa reduz-se a resolução de n sistemas lineares da forma Ax j = e j, j = 1,..., n, em que os vectores independentes e j são as colunas da matriz identidade. O vector solução x j corresponde à coluna j da matriz inversa. Na prática resolve-se os n sistemas em simultâneo, i.e., resolve-se a equação (U J ) por substituição inversa. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

81 Resolução de sistemas lineares Cálculo da Inversa de Matrizes - Exemplo ( ) ( ) ( ) ( ) { x11 = = x 21 = = ( ) { x12 = 1 1 ( ) 2 = x 22 = = ( ) ( ) A inversa de é A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

82 Resolução de sistemas lineares Métodos iterativos Nos métodos iterativos a solução exacta só é obtida ao fim de uma sequência infinita de operações. O processo parte de uma aproximação inicial para a solução do sistema e usa uma equação iterativa da forma Mx (k+1) = Nx (k) + b, para k = 1, 2,... Os métodos em que M e N não dependem de k dizem-se estacionários. Os métodos de Jacobi e Gauss-Seidel são métodos estacionário. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

83 Resolução de sistemas lineares Método Iterativo Jacobi D matriz dos elementos da diagonal principal, L matriz dos simétricos dos elementos abaixo da diagonal principal e U matriz dos simétricos dos elementos acima da diagonal principal. O método de Jacobi usa a partição de A em D (L + U), i.e, M = D e N = L + U A equação iterativa fica Dx (k+1) = (L + U)x (k) + b ou x (k+1) = D 1 (L + U)x (k) + D 1 b A matriz iteração é C J = M 1 N = D 1 (L + U) A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

84 Resolução de sistemas lineares Método Iterativo Gauss-Seidel M = D L N = U A equação iterativa fica Mx (k+1) = Nx (k) + b ou x (k+1) = M 1 Nx (k) + M 1 b A matriz iteração é C GS = M 1 N = (D L) 1 U. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

85 Resolução de sistemas lineares Critério de Paragem Erro relativo na aproximação x (k+1) x (k) x (k+1) < ɛ 1 Resíduo Ax (k+1) b < ɛ 2 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

86 Resolução de sistemas lineares Convergência dos métodos iterativos Condições suficientes A simétrica e definida positiva = GS exibe convergência global; A é estrita e diagonalmente dominante = J e GS exibem convergência global; C p < 1, para qualquer normal p, = J e GS exibem convergência global; C é a matriz iteração de Jacobi ou Gauss-Seidel. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

87 Resolução de sistemas lineares Convergência dos métodos iterativos Condições suficientes A simétrica e definida positiva = GS exibe convergência global; A é estrita e diagonalmente dominante = J e GS exibem convergência global; C p < 1, para qualquer normal p, = J e GS exibem convergência global; C é a matriz iteração de Jacobi ou Gauss-Seidel. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

88 Resolução de sistemas lineares Convergência dos métodos iterativos Condições suficientes A simétrica e definida positiva = GS exibe convergência global; A é estrita e diagonalmente dominante = J e GS exibem convergência global; C p < 1, para qualquer normal p, = J e GS exibem convergência global; C é a matriz iteração de Jacobi ou Gauss-Seidel. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

89 Resolução de sistemas lineares Algumas definições Uma matriz A diz-se simétrica se A = A T. Uma matriz é definida positiva se d T Ad > 0, d 0. É equivalente a verificar que todos os determinante das sub-matrizes principais são maiores do que zero. Uma matriz A diz-se estrita e diagonalmente dominante se a ii > n a ij, i = 1,..., n j=1 j i A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

90 Resolução de sistemas lineares Algumas definições Uma matriz A diz-se simétrica se A = A T. Uma matriz é definida positiva se d T Ad > 0, d 0. É equivalente a verificar que todos os determinante das sub-matrizes principais são maiores do que zero. Uma matriz A diz-se estrita e diagonalmente dominante se a ii > n a ij, i = 1,..., n j=1 j i A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

91 Resolução de sistemas lineares Algumas definições Uma matriz A diz-se simétrica se A = A T. Uma matriz é definida positiva se d T Ad > 0, d 0. É equivalente a verificar que todos os determinante das sub-matrizes principais são maiores do que zero. Uma matriz A diz-se estrita e diagonalmente dominante se a ii > n a ij, i = 1,..., n j=1 j i A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

92 Resolução de sistemas lineares Exemplo - convergência de Gauss-Seidel Considere-se a seguinte matriz dos coeficientes de um sistema linear ( ) 3 1 A = 1 2 Como a A = A T a matriz é simétrica. ( ) 3 1 det( 3 ) = 3 > 0 det(a) = = 5 > Logo A é simétrica e definida positiva e o método de Gauss-Seidel converge. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

93 Resolução de sistemas lineares Exemplo - convergência de Jacobi Considere-se o seguinte sistema ( Como 1 2 a matriz dos coeficientes não é estrita e diagonalmente dominante e nada se pode concluir acerca da convergência do método de Jacobi. No entanto se trocarmos as linhas temos ( 3 1 ) e como 3 > 1 e 2 > 1 a matriz é estrita e diagonalmente dominante, logo o método de Jacobi converge. ) A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

94 Resolução de sistemas lineares Exemplo - convergência de Jacobi Considere-se a seguinte matriz dos coeficientes de um sistema linear ( ) 3 2 A = 3 1 Como 3 > 2, mas 1 3 a matriz dos coeficientes não é estrita e diagonalmente dominante e nada se pode concluir acerca da convergência do método de Jacobi. D = ( ) L = ( ) U = ( ) A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

95 Resolução de sistemas lineares Continuação ( ) ( C J = D (L + U) = ( ) = 3 0 ) Como C J = max{ , } = 3 1 e c J 1 = max{ 0 + 3, } = 3 1 nada se pode concluir acerca da convergência do método de Jacobi. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

96 Resolução de sistemas lineares Uma iteração do método de Gauss-Seidel Considere-se o seguinte sistema linear ( A = ), x (1) = (0, 0) T e ɛ 1 = ɛ = 0.1 ( ) 3 0 D = L = 0 2 Equação iterativa é ( ) U = ( ) (D L)x (k+1) = Ux (k) + b A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

97 Resolução de sistemas lineares Continuação 1 a iteração C.P. ( ) ( x (2) 0 1 = 0 0 ( x (2) x (1) x (2) = ) { ( ( ) ( 0 0 ) ( ) = ( 1 1 x (2) 1 = 1 3 = x (2) 2 = = ) ( 0 0 ) ) ) = = Como o critério não se verifica deve-se continuar com a próxima iteração. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

98 Resolução de sistemas não lineares Contents 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Mínimos quadrados lineares 8 Mínimos quadrados não lineares 9 Integração numérica 10 Optimização não linear sem restrições 11 Método de Davies Swann e Campey 12 Método de Nelder Mead 13 Método de Segurança de Newton 14 Método quasi-newton A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

99 Resolução de sistemas não lineares Sistemas de equações não lineares Forma geral do problema f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0... f n (x 1, x 2,..., x n ) = 0 em que f = (f 1, f 2,..., f n ) T é um vector de funções pelo menos uma vez continuamente diferenciáveis. Pretende-se determinar um x = (x 1, x 2,..., x n) T tal que f(x ) = (0, 0,..., 0) T = 0. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

100 Resolução de sistemas não lineares Fórmula de Taylor a uma dimensão Se f : R R for l + 1 vezes diferenciável temos que f(x) = l k=0 f (k) (a) k! (x a) k + f (l+1) (ξ) (x a)l+1 (l + 1)! com ξ [a, x] e a função definida em torno de a. Exemplo: Valor da função em x (k+1) definido em torno de x (k). f(x (k+1) ) f(x (k) ) + f (x (k) )(x (k+1) x (k) ) ou seja, quando se pretende que f(x (k+1) ) = 0 vem x (k+1) = x (k) f(x(k) ) f (x (k) ) Eq. it. do método de Newton A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

101 Resolução de sistemas não lineares Fórmula de Taylor para dimensão n Se f : R n R n temos que f(x (k+1) ) f(x (k) )+ f 1 (x (k) ) f 1 (x (k) ) x 1 f 2 (x (k) ) f 2 (x (k) ) x 1 x 2... x f n(x (k) ) x 1 f n(x (k) ) x 2... f 1 (x (k) ) x n f 2 (x (k) ) x n f n(x (k) ) x n x (k+1) 1 x (k) 1 x (k+1) 2 x (k) 2 x (k+1) n... x (k) n e deduzindo a equação iterativa do método de Newton para sistemas de equações não lineares temos, J(x (k) ) (k) x = f(x (k) ), com x (k+1) = x (k) + (k) x em que J(x) é o Jacobiano da função. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

102 Resolução de sistemas não lineares Critério de paragem x (k+1) x (k) 2 x (k+1) = (k) x 2 2 x (k+1) ɛ 1 2 Se x (k+1) 2 é zero, ou próximo de zero, então o critério deve ser (k) x 2 ɛ 1 Número máximo de iterações. f(x (k+1) ) 2 ɛ 2 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

103 Resolução de sistemas não lineares Critério de paragem x (k+1) x (k) 2 x (k+1) = (k) x 2 2 x (k+1) ɛ 1 2 Se x (k+1) 2 é zero, ou próximo de zero, então o critério deve ser (k) x 2 ɛ 1 Número máximo de iterações. f(x (k+1) ) 2 ɛ 2 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

104 Resolução de sistemas não lineares Critério de paragem x (k+1) x (k) 2 x (k+1) = (k) x 2 2 x (k+1) ɛ 1 2 Se x (k+1) 2 é zero, ou próximo de zero, então o critério deve ser (k) x 2 ɛ 1 Número máximo de iterações. f(x (k+1) ) 2 ɛ 2 A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

105 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

106 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

107 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

108 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

109 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular (nova aproximação inicial). O método de Newton não converge necessariamente para a solução mais próxima da aproximação inicial. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

110 Resolução de sistemas não lineares Um exemplo Considere-se o seguinte sistema não linear { 3x 2 + 2y 2 = 35 4x 2 3y 2 cujo Jacobiano é J(x, y) = = 24 ( 6x 4y 8x 6y ) Temos f(x, y) = ( 3x 2 + 2y x 2 3y 2 24 ) e a aproximação inicial é (x, y) (1) = (2.5, 2). Pretende-se determinar a solução com uma precisão de ɛ 1 = ɛ 2 = A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

111 Resolução de sistemas não lineares Continuação 1 a iteração ( ) J((x, y) (1) 15 8 ) = J(2.5, 2) = ( ) f((x, y) (1) 8.25 ) = f(2.5, 2) = 11 ( (1) (x,y) = ( ) ) ( ) ( e (x, y) (2) = (x, y) (1) + (1) (x,y) = (3.05, 2)T ) A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

112 Resolução de sistemas não lineares Continuação C.P. ( f (x, y) (2)) ( ) = = 1.21 ɛ 2 = 0.1 Como o critério não se verifica faz-se uma nova iteração. A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

113 Interpolação polinomial Contents 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Mínimos quadrados lineares 8 Mínimos quadrados não lineares 9 Integração numérica 10 Optimização não linear sem restrições 11 Método de Davies Swann e Campey 12 Método de Nelder Mead 13 Método de Segurança de Newton 14 Método quasi-newton A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

114 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

115 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

116 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

117 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN C 2007/ / 216

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho)

Leia mais

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008 Métodos Numéricos C A. Ismael F. Vaz 1 1 Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho) MN C 2007/2008

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Métodos Numéricos C Apresentação da Disciplina

Métodos Numéricos C Apresentação da Disciplina Métodos Numéricos C Apresentação da Disciplina Isabel Espírito Santo Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho iapinho@dps.uminho.pt http://www.norg.uminho.pt/iapinho/

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear

Leia mais

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

Métodos Numéricos. MEI - Logística e distribuição Optimização não linear com restrições de igualdade 2004/2005

Métodos Numéricos. MEI - Logística e distribuição Optimização não linear com restrições de igualdade 2004/2005 Métodos Numéricos MEI - Logística e distribuição Optimização não linear com restrições de igualdade 2004/2005 Métodos Numéricos - MEI 1 Apresentação - Docentes Aulas teóricas: A. Ismael F. Vaz - aivaz@dps.uminho.pt

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo III Resolução Numérica de Sistemas de Equações Normas, Erros e Condicionamento.

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =

Leia mais

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B =

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B = Departamento de Matemática da Universidade de Coimbra Optimização Numérica Licenciatura em Matemática Ano lectivo 2006/2007 Folha 1 1. Considere as matrizes A = [ 1 1 1 2 ] e B = [ 1 3 1 2 (a) Verifique

Leia mais

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 6 - Solução de Sistema de Equações Algébricas Métodos diretos: 1- Eliminação de Gauss com substituição recuada 2- Decomposição

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Análise Numérica Licenciaturas em Engenharia Ambiente,Civil e Química I - Equações Não Lineares.

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 lineares Muitos problemas da Física, Matemática, Engenharia, Biologia, economia e outras ciências,

Leia mais

Sistemas Lineares. Métodos Iterativos Estacionários

Sistemas Lineares. Métodos Iterativos Estacionários -58 Sistemas Lineares Estacionários Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo -

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos

- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos Tópicos Tópicos - Métodos numéricos - Métodos analíticos versus métodos numéricos - Necessidade de se usar métodos numéricos - Métodos iterativos - Resolução de problemas - Problemas com equações não lineares

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé. Lista 1: Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS.

SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé. Lista 1: Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS. SME300 - Cálculo Numérico - Turma Elétrica/Automação - Prof. Murilo F. Tomé Lista 1: Solução Numérica de Sistema Lineares NORMAS DE VETORES E MATRIZES 1. Dado o vetor v = ( 3, 1, 8, 2) T, calcule v 1,

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares DMPA IM UFRGS Cálculo Numérico Índice Sistema de Equações Lineares 1 Sistema de Equações Lineares 2 com pivoteamento parcial 3 Método de Jacobi Método Gauss-Seidel Sistema de Equações Lineares n equações

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios o semestre de 009/00 - LEMat e MEQ Resolução de sistemas lineares. Inuência dos erros de arredondmento. Consideremos o sistema linear A x = b, onde 0 6 0 A = 0 6,

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

Resolução de Sistemas de Equações Lineares

Resolução de Sistemas de Equações Lineares 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Resolução de Sistemas de Equações

Leia mais

Uma equação linear com n variáveis tem a seguinte forma:

Uma equação linear com n variáveis tem a seguinte forma: Edgard Jamhour Uma equação linear com n variáveis tem a seguinte forma: a 1 x 1 + a 2 x 2 +... + a n x n = b onde a 1, a 2,..., a n e b são constantes reais. Um sistema de equações lineares é um conjunto

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de

Leia mais

Câmpus de Bauru. Plano de Ensino. Seriação ideal 3

Câmpus de Bauru. Plano de Ensino. Seriação ideal 3 Curso 1503 / 1504 - Licenciatura em Matemática Ênfase Identificação Disciplina 0007220A - Cálculo Numérico Computacional Docente(s) Antonio Roberto Balbo Unidade Faculdade de Ciências Departamento Departamento

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Capítulo III Sistemas de equações

Capítulo III Sistemas de equações Capítulo III Sistemas de equações III1 - Condicionamento de sistemas lineares 1 Seja 1 0 0 10 6 e considere o sistema Ax = b, com b = 1 10 6 T, que tem por solução exacta x = 1 1 T (a) Determine cond(a)

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte

Leia mais

MÉTODOS NUMÉRICOS C. Mestrado de ciclo integrado em. Engenharia de COMUNICAÇÕES EXERCÍCIOS TEÓRICO-PRÁTICOS

MÉTODOS NUMÉRICOS C. Mestrado de ciclo integrado em. Engenharia de COMUNICAÇÕES EXERCÍCIOS TEÓRICO-PRÁTICOS MÉTODOS NUMÉRICOS C Mestrado de ciclo integrado em Engenharia de COMUNICAÇÕES EXERCÍCIOS TEÓRICO-PRÁTICOS Ano lectivo de 2007/2008 1 ERROS. SOLUÇÃO DE UMA EQUAÇÃO NÃO LINEAR. 1 1 Erros. Solução de uma

Leia mais

Capítulo III: Sistemas de equações. III.1 - Condicionamento de sistemas lineares

Capítulo III: Sistemas de equações. III.1 - Condicionamento de sistemas lineares EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL Capítulo III: Sistemas de equações III1 - Condicionamento de sistemas lineares 1 Seja 1 0 0 10 6 e considere o sistema Ax = b, com b = 1 10 6 T, que tem por solução

Leia mais

Capítulo 2 - Sistemas de Equações Lineares

Capítulo 2 - Sistemas de Equações Lineares Capítulo 2 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase. Disciplina A - Cálculo Numérico Computacional

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase. Disciplina A - Cálculo Numérico Computacional Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006315A - Cálculo Numérico Computacional Docente(s) Antonio Roberto Balbo Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Sistemas de Equações Lineares Análise Numérica Artur M C Brito da Cruz Escola Superior de Tecnologia Instituto Politécnico de Setúbal 5/6 versão de Setembro de 7 Conteúdo Matrizes 3 Operações com Matrizes

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

2. Sistemas lineares

2. Sistemas lineares 2. Sistemas lineares 2.1 Conceitos fundamentais. 2.2 Sistemas triangulares. 2.3 Eliminação de Gauss. 2.4 Decomposição LU. 2.5 Decomposição de Cholesky. 2.6 Decomposição espectral. 2.7 Uso da decomposição.

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

Computação Científica 65

Computação Científica 65 Capítulo 3. 1. Métodos numéricos Sempre que se pretende resolver um problema cuja solução é um valor numérico, é habitual ter de se considerar, para além de conceitos mais abstratos (que fornecem um modelo

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números

Leia mais

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO CCI - MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO Prof. Paulo André ttp://www.comp.ita.br/~pauloac pauloac@ita.br Sala 0 Prédio da Computação -Gregory DEFINIÇÃO Em matemática computacional, interpolar significa

Leia mais

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0)

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0) MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Sistemas Lineares : Utilizando o método de eliminação de Gauss, calcule o determinante e a seguir a inversa da matriz abaixo. Efetue todos os

Leia mais

Cálculo Numérico Ponto Fixo

Cálculo Numérico Ponto Fixo Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente

Leia mais

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias MAP-2121 - Primeiro exercício programa - 2006 Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias Instruções gerais - Os exercícios computacionais pedidos

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Introdução. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil

TP062-Métodos Numéricos para Engenharia de Produção Introdução. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil TP062-Métodos Numéricos para Engenharia de Produção Introdução Prof. Volmir Wilhelm Curitiba, Paraná, Brasil TP062-Métodos Numéricos para Engenharia de Produção Ementa Matrizes. Sistemas lineares. Zeros

Leia mais

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17.

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17. 1 2011-02-08 13:00 2h Capítulo 1 Aritmética computacional 1.1 Erros absolutos e relativos 1.2 O polinómio de Taylor Resolução do exercício 1.3 2 2011-02-08 15:00 1h30m As aulas laboratoriais só começam

Leia mais

2006/2007 EXERCÍCIOS. 2. Determine a representação decimal dos seguintes números: , ( ) 2 , (1A0F ) 16

2006/2007 EXERCÍCIOS. 2. Determine a representação decimal dos seguintes números: , ( ) 2 , (1A0F ) 16 ANÁLISE NUMÉRICA 006/007 EXERCÍCIOS. Represente os números nas bases, 5 e 6. 57,,.3, 06.0, 0.7, 3.7, 5. Determine a representação decimal dos seguintes números: (00), () 3, (47) 8, (A0F ) 6, (0.000), (0.),

Leia mais

Aula 10 Sistemas Não-lineares e o Método de Newton.

Aula 10 Sistemas Não-lineares e o Método de Newton. Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Observação: Esta lista abrange os três primeiros tópicos da ementa do curso, teoria dos erros, sistemas lineares, e zeros de funções. Ela abrange

Leia mais

Sistemas Lineares - Métodos Iterativos : Jacobi e Gauss-Seidel. Profa. Cynthia de O. Lage Ferreira Métodos Numéricos e Computacionais I - SME0305

Sistemas Lineares - Métodos Iterativos : Jacobi e Gauss-Seidel. Profa. Cynthia de O. Lage Ferreira Métodos Numéricos e Computacionais I - SME0305 Sistemas Lineares - Métodos Iterativos : Jacobi e Gauss-Seidel Profa. Cynthia de O. Lage Ferreira Métodos Numéricos e Computacionais I - SME35 Métodos Iterativos Nesta seção, vamos estudar métodos iterativos

Leia mais

SME CÁLCULO NUMÉRICO I PROFESSORES MARCOS ARENALES MARISTELA SANTOS. Agosto 2011

SME CÁLCULO NUMÉRICO I PROFESSORES MARCOS ARENALES MARISTELA SANTOS. Agosto 2011 SME0100 - CÁLCULO NUMÉRICO I PROFESSORES MARCOS ARENALES MARISTELA SANTOS Agosto 2011 SME0100 - Cálculo Numérico I Ementa: 1) Representação de números no computador. Erros em métodos numéricos. 2) Soluções

Leia mais

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS Maio 12, 2008 2 Contents 1. Complementos de Álgebra Linear 3 1.1. Determinantes 3 1.2. Valores e vectores próprios 5 2. Análise em

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)

Leia mais

DISTRIBUIÇÃO DA CARGA HORÁRIA TEÓRICA PRÁTICA TEO/PRAT OUTRAS NÚMERO MÁXIMO DE ALUNOS POR TURMA AULAS TEÓRICAS PRÁTICAS 80 40

DISTRIBUIÇÃO DA CARGA HORÁRIA TEÓRICA PRÁTICA TEO/PRAT OUTRAS NÚMERO MÁXIMO DE ALUNOS POR TURMA AULAS TEÓRICAS PRÁTICAS 80 40 unesp UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS UNIVERSITÁRIO DE BAURU FACULDADE DE CIÊNCIAS PLANO DE ENSINO 2008 UNIDADE UNIVERSITÁRIA: FACULDADE DE CIÊNCIAS CURSO: LICENCIATURA EM MATEMÁTICA HABILITAÇÃO:

Leia mais

Aula 3 11/12/2013. Integração Numérica

Aula 3 11/12/2013. Integração Numérica CÁLCULO NUMÉRICO Aula 3 11/12/2013 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/64 Integração Numérica Cálculo Numérico 4/64 Integração Numérica Em determinadas

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Capítulo 3 Sistemas de equações lineares Os sistemas de equações lineares fazem parte da descrição matemática dos mais diversos fenômenos em todas as áreas das ciências naturais e também são peça fundamental

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s.

Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s. Análise Numérica 1 Resolução de equações não lineares ou Cálculo de zeros de funções Problema: Dada a função f(x) determinar o valor s tal que f(s) = 0. Slide 1 Solução: Fórmulas exemplo: fórmula resolvente

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ Cálculo Numérico S. C. Coutinho Provas e gabaritos Lembre-se: Nas provas não são aceitas respostas sem justicativa. Você

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

MÉTODOS NUMÉRICOS II ENGENHARIA POLÍMEROS EXERCÍCIOS TEÓRICO-PRÁTICOS

MÉTODOS NUMÉRICOS II ENGENHARIA POLÍMEROS EXERCÍCIOS TEÓRICO-PRÁTICOS MÉTODOS NUMÉRICOS II ENGENHARIA POLÍMEROS EXERCÍCIOS TEÓRICO-PRÁTICOS Ano lectivo de 2003/2004 1 1 Celina Pinto Leão, DPS (2004) Métodos Numéricos II - Eng a Polimeros Exercícios - Optimização não linear

Leia mais

Universidade Federal de Campina Grande

Universidade Federal de Campina Grande Universidade Federal de Campina Grande Departamento de Sistemas e Computação Disciplina: Métodos e Software Numéricos Prof.: José Eustáquio Rangel de Queiroz Práticas de Avaliação e Planejamento das Atividades

Leia mais

Cálculo Numérico. Sistemas lineares Métodos Iterativos: Introdução Método Iterativo de Jacobi-Richardson

Cálculo Numérico. Sistemas lineares Métodos Iterativos: Introdução Método Iterativo de Jacobi-Richardson Cálculo Numérico Sistemas lineares Métodos Iterativos: Introdução Método Iterativo de Jacobi-Richardson Métodos como: Métodos exatos Método de eliminação de Gauss Método de decomposição LU Método de Cholesky

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 20 (09/11/15) Interpolação: Introdução Características Interpolação Linear: Introdução Características Exercícios

Leia mais

Cálculo Numérico e Computacional CNC

Cálculo Numérico e Computacional CNC Cálculo Numérico e Computacional Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Sumário Introdução à Teoria de Erros e Estabilidade 3. Representação de Números.......................................

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ). MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração : Sejam x =, x =, x 2 = 2 e x 3 = 3. (a) Determine os polinômios de Lagrange L i (x) correspondentes a estes pontos

Leia mais

Erros e Aritmética de ponto flutuante

Erros e Aritmética de ponto flutuante Cálculo Numérico Noções básicas sobre erros Aritmética de ponto flutuante Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br DCC IM UFRJ Parte I Noções básicas sobre erros Introdução Validação Modelagem

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic Eng Biomédica e Bioengenharia-2009/2010 O problema geral da interpolação polinomial consiste em, dados n + 1 pontos (reais ou complexos) x

Leia mais

1. Escreva aproximações com três e cinco algarismos significativos correctos para os números: π, 1 3, 1 11, e 3.

1. Escreva aproximações com três e cinco algarismos significativos correctos para os números: π, 1 3, 1 11, e 3. Universidade de Trás-os-Montes e Alto Douro Métodos Numéricos e Estatísticos Lic. Eng. Biomédica e Bioengenharia, 29/2 a Parte: Métodos Numéricos Teoria de erros. Escreva aproximações com três e cinco

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional Curso 4402 - Engenharia de Produção Ênfase Identificação Disciplina 0002029EM1 - Cálculo Numérico Computacional Docente(s) Adriana Cristina Cherri Nicola Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Capítulo 2 - Sistemas de Equações Lineares

Capítulo 2 - Sistemas de Equações Lineares Capítulo 2 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica Carlos

Leia mais

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção.

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção. 1 a) Mostre que f (x) = x cos x possui uma raiz no intervalo [0, 1]. b) Prove que essa raiz é única. c) Sem executar o método, preveja o número de iterações que o algoritmo da bissecção utilizaria para

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Capítulo 3 Sistemas de Equações Lineares Um sistema com n equações lineares pode ser escrito na forma : ou na forma matricial onde com a 1,1 x 1 + a 1,2 x 2 + + a x n = b 1 a 2,1 x 1 + a 2,2 x 2 + + a

Leia mais

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes Raízes de Equações métodos delimitados Aula 5 (16/0/07) Métodos Numéricos Aplicados à Engenharia Licenciatura em Engenharia Alimentar Escola Superior Agrária de Coimbra qual o problema? Podemos calcular

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35.

1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35. Computação Científica Folha Prática Computação Numérica 1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35 c) 192 d) 255 e) 347 f) 513

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 04/2014 Sistemas de Equações Lineares Parte 2 FATORAÇÃO LU Cálculo Numérico 3/37 FATORAÇÃO LU Uma fatoração LU de uma dada

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/ 21 Sumário

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA 1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: CST em Sistemas de Telecomunicações, Tecnologia Nome da disciplina: Métodos Numéricos Código: INF065 Carga horária: 67 horas Semestre previsto: 3º Pré-requisito(s):

Leia mais

Física Computacional 18 matrizes: inversão, valores próprios e sol. da eq. De Schrödinger

Física Computacional 18 matrizes: inversão, valores próprios e sol. da eq. De Schrödinger Física Computacional 18 matrizes: inversão, valores próprios e sol. da eq. De Schrödinger 1. Trabalhar com matrizes, e aplicá-las a um problema físico a. Inversão da matriz, eliminação de Gauss b. Determinante

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Não Linear Aula 7: Programação Não-Linear - Funções de Várias variáveis Vector Gradiente; Matriz Hessiana; Conveidade de Funções e de Conjuntos; Condições óptimas de funções irrestritas; Método

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais