x exp( t 2 )dt f(x) =

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "x exp( t 2 )dt f(x) ="

Transcrição

1 INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação Os métodos de aproximação são destinados a problemas de ler nas enterlinhas dos dados tabelados, ou então, trabalhar com funções dadas implicitamente ou por expressões muito complicadas Por exemplo, calcular valores de funções definidas como pela integral abaixo f(x) = x 0 exp( t 2 )dt não é tão simples, já que não é possível encontrar uma primitiva para o integrando Nem tão pouco e simples trabalhar com a função de Bessel de primeiro tipo e ordem p dada por: J p (x) = n=0 ( 1) n Γ(n + 1)Γ(n + p + 1) (x 2 )2n+p, onde Γ(p) = 0 x p 1 e x dx, p > 0 No intuito de se escolher a melhor forma de aproximar o problema dado, trabalha-se com duas classes de métodos para aproximação de dados, cuja diferença básica entre elas está em considerarmos, ou não, a existência de erros nos dados No caso de considerarmos que os dados são precisos podemos exigir que a curva de ajuste passe pelos pontos dados Estes problemas são resolvidos através do técnica da Interpolação Para o nosso curso, estaremos interesssados na interpolação polinomial No caso de dados não-precisos, o Método dos Quadrados Mínimos tem sido o mais usado 1 Interpolação Polinomial Procuramos estabelecer métodos numéricos que permitam encontrar um polinômio que passe por n + 1 pontos conhecidos, denotados por (x 0, y 0 ), (x 1, y 1 ),, (x n, y n ) onde x i x j quando i j Como, por exemplo, encontrar uma aproximação para funções conhecidas apenas em pontos discretos y 0 = f(x 0 ),, y n = f(x n ), ou seja, um polinômio p(x) tal que p(x 0 ) = f(x 0 ),, p(x n ) = f(x n )? O polinômio p(x) que satisfaz essas condições é chamado de polinômio interpolador de f(x) nos pontos x 0, x 1,, x n Teorema1 Seja f(x) uma função conhecida nos n+1 pontos distintos x 0, x 1,, x n Existe um único polinômio p(x), de grau menor ou igual a n, tal que p(x i ) = f(x i ), para i = 0, 1,, n Demonstração: Para ver isso substituimos cada x i, i = 0, 1,, n em p(x) = a 0 + a 1 x + a 2 x a n x n, construimos o sistema linear Ax = b, onde a matriz-coluna de incógnitas é x = [a 0 a 1 a n ] t, a dos termos independentes é b = [f(x 0 )f(x 1 ) f(x n )] t e a matriz A do

2 INTERPOLAÇÃO POLINOMIAL 2 sistema é dada por: 1 x 0 x 2 0 x n 0 1 x 1 x 2 1 x n 1 A = 1 x 2 x 2 2 x n 2 1 x n x 2 n x n n, como a matriz A é não-singular, temos que o sistema possui uma única solução x = [α 0 α 1 α n ] t, o que nos dá um único polinômio p(x) = α 0 + α 1 x + α 2 x α n x n Como a resolução de sistemas lineares já nos leva a erros de arredondamento ou à necessidade de avaliar a convergência dos métodos, ou seja, já possui as suas próprias dificuldades e problemas, não é muito razoável determinar os coeficientes do polinômio interpolador usando esses métodos Por isso agora estudaremos métodos numéricos específicos para esse fim 11 Interpolação de Lagrange Seja o problema de achar o polinômio que interpola y = f(x) nos n + 1 pontos distintos x 0,, x n, então devemos ter p(x) = f(x 0 )L n 0 (x) + f(x 1)L n 1 (x) + + f(x n)l n n(x), onde L n i (x) é tal que: L n i (x k ) = { 1 para k = i, 0 para k i Estes são os polinômios de Lagrange, que têm a forma: L n i (x) = (x i x 0 )(x i x 1 ) (x i x i 1 )(x i x i+1 ) (x i x n ) (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) Exemplos: 1 Calcule o polinômio que interpola f(x) = 1 x 2 nos pontos x 0 = 2; x 1 = 2, 5; x 2 = 4 Determine o erro E(2, 25) = f(2, 25) p(2, 25) 2 A função y = f(x) passa pelos pontos da tabela abaixo: Pede-se: x 0, 1 0, 2 0, 3 0, 4 y 2, 121 2, 288 2, 507 2, 784 Calcular um valor aproximado para f(0,32) usando um polinômio interpolador p 2 (x) de grau 2 Calcular um valor aproximado para f(0,32) usando um polinômio interpolador p 3 (x) de grau 3 Determinar o valor exato de f(0,32), sabendo que a função é dada por f(x) = x 3 + 2x 2 + x + 2

3 INTERPOLAÇÃO POLINOMIAL 3 Calcular e 1 = f(0, 32) p 2 (0, 32) e e 2 = f(0, 32) p 3 (0, 32) Comparar os valores de e 1 e e 2 O resultado era o esperado? Por quê? Teorema2 Seja [a, b] um intervalo que contém os pontos x 0, x 1,, x n e f(x) uma função com (n + 1) derivadas contínuas em [a, b] Pode-se mostrar que o erro de polinômio interpolador de f(x) em x 0, x 1,, x n é, no ponto x [a, b], dado por E(x) = f(x) p n (x) = f (n+1) (α) (n + 1)! [(x x 0)(x x 1 ) (x x n )], onde a derivada de ordem (n + 1) é calculada num ponto α [a, b] que depende de x 12 Diferenças Divididas e a Forma de Newton Qual é o grau adequado para p n (x)? Um teste razoável é aumentar o número de pontos (nós) de interpolação, crescendo assim o grau de p n (x) e testar se houve alguma melhora significativa nos cálculos Dessa forma, é importante que o trabalho efetuado no cálculo do polinômio de grau n seja aproveitado no cálculo do novo polinômio de grau n + 1 No caso da forma de Lagrange, aumentar o número de nós de interpolação significa refazer todas as contas! A Forma de Newton para o polinômio interpolador tem a característica da recorrência, ou seja, o polinômio interpolador de grau n + 1 é calculado a partir do polinômio de grau n e um novo nó Vamos procurar escrever p n (x) na forma abaixo: p n (x) = c 0 + c 1 (x x 0 ) + c 2 (x x 0 )(x x 1 ) + + c n (x x 0 )(x x 1 ) (x x n 1 ) que é a forma de Newton para p n (x), onde x 0, x 1,, x n são os nós e as constantes são determinadas pelas condições de interpolação A partir das condições de interpolação temos p n (x i ) = f(x i ), i = 0, 1,, n Fazendo x = x 0 temos f(x 0 ) = p n (x 0 ) E n (x 0 ) = 0 c 0 = f(x 0 ) Fazendo x = x 1 temos f(x 1 ) = p n (x 1 ) E n (x 1 ) = 0 c 1 = f(x 1) f(x 0 ) Fazendo x = x 2 temos f(x 2 ) = p n (x 2 ) E n (x 2 ) = 0 c 2 = f(x 2 ) f(x 0 ) x 2 x 0 f(x 1) f(x 0 ) x 1 x 0 Seguindo o mesmo raciocínio calculamos todos os coeficientes de p n (x) Esta não é a forma mais prática para se calcular os coeficientes de p n (x) 121 Diferenças Divididas Definimos f[x] = f(x) Dados os nós de interpolação: x 0, x 1,, x k, por recorrência, definimos para qualquer k: f[x 0, x 1,, x k 1, x k, x] = f[x 0, x 1,, x k 1, x] f[x 0, x 1,, x k 1, x k ] x x k

4 INTERPOLAÇÃO POLINOMIAL 4 f[x 0 ] = f(x 0 ) = c 0 Fazendo k = 0 e x = x 1 temos f[x 0, x 1 ] = f[x 1] f[x 0 ] = f(x 1) f(x 0 ) = c 1 Fazendo k = 1 e x = x 2 temos f[x 0, x 1, x 2 ] = f[x 0, x 2 ] f[x 0, x 1 ] = f(x 2 ) f(x 0 ) x 2 x 0 f(x 1) f(x 0 ) x 1 x 0 = c 2 f[x 2 ] f[x 0 ] x 2 x 0 f[x 1] f[x 0 ] x 1 x 0 = E, esta, continua não sendo uma forma prática para se calcular os coeficientes de p n (x) Mas levando em conta que c n = f[x 0,, x n ], que são os coeficientes do polinômio interpolador que passa pelos pontos x 0, x 1,, x n, temos que a ordem em que os x is aparecem não influencia o resultado do cálculo da diferença dividida, logo f[x 0, x 1,, x n ] = f[x 1,, x n, x 0 ] Sendo assim, c n = f[x 1,, x n 1, x 0 ] f[x 1,, x n ] = f[x 1,, x n ] f[x 0, x 1,, x n 1 ] x 0 x n x n x 0 Então: c 1 = f[x 1] f[x 0 ] c 2 = f[x 1, x 2 ] f[x 0, x 1 ] x 2 x 0 c 3 = f[x 1, x 2, x 3 ] f[x 0, x 1, x 2 ] x 3 x 0 Que na forma da Tabela das diferenças divididas são fáceis de serem calculados 122 Tabela das diferenças divididas Genericamente, a k-ésima diferença dividida relativa aos pontos x i, x i+1,, x i+k é calculada por f[x i, x i+1,, x i+k ] = f[x i+1,, x i+k ] f[x i, x i+1,, x i+k 1 ] x i+k x i Exemplos: 1 Seja f(x) tabelada abaixo, encontre seu polinômio interpolador nos nós dados: x f(x) Seja f(x) tabelada abaixo, encontre seu polinômio interpolador nos nós dados: x f(x) 4 1 1

5 INTERPOLAÇÃO POLINOMIAL 5 13 Estudo do erro na interpolação Teorema3 Sejam x 0 < x 1 < < x n, (n + 1) pontos Seja f(x) uma função com derivadas até ordem (n+1) para todo x [x 0, x n ] Seja p n (x) o polinômio interpolador de f(x) nos pontos x 0, x 1,, x n Então, em qualquer ponto x [x 0, x n ], o erro é dado por E n (x) = f(x) p n (x) = f (n+1) (α) (n + 1)! [(x x 0)(x x 1 ) (x x n )], onde a derivada de ordem (n + 1) é calculada num ponto α [x 0, x n ] Teorema4 f[x 0, x 1,, x n, x] = f (n+1) (α) (n + 1)!, para x, α (x 0, x n ) 131 Limitante para o erro Corolário1 Sob as hipóteses do Teorema3, se f (n+1) (x) for contínua em I = [x 0, x n ], podemos escrever E n (x) = f(x) p n (x) M n+1 (n + 1)! (x x 0)(x x 1 ) (x x n ), onde M n+1 = max f (n+1) (x), x I Corolário2 Se além das hipóteses anteriores tivermos que os nós são igualmente espaçados, ou seja, = = = x n x n 1 = h, então f(x) p n (x) < hn+1 M n+1 4(n + 1) Exemplos: 1 Seja f(x) = e x + x 1 tabelada abaixo, encontre f(0, 7) por interpolação linear e faça uma análise do erro cometido: x 0 0, 5 1, 0 1, 5 2, 0 f(x) 0, 0 1, , , , Seja f(x) tabelada abaixo, encontre f(0, 47) por interpolação quadrática e dê uma estimativa para o erro cometido: 14 Fenômeno de Runge x 0, 2 0, 34 0, 4 0, 52 0, 6 0, 72 f(x) 0, 16 0, 22 0, 27 0, 29 0, 32 0, 37 Pergunta-se: A sequência de polinômios p n (x) converge para f(x) em [a, b] quando x 0, x 1,, x n cobre esse intervalo, ou seja, quando n? No caso onde x i+1 x i = h, i = 0, 1,, n 1, ou seja, quando os pontos são igualmente 1 espaçados, o exemplo f(x) =, com x [ 1, 1], mostra que divergências podem ser x2

6 INTERPOLAÇÃO POLINOMIAL 6 esperadas É o Fenômeno de Runge Esse problema é resolvido tomando um novo tipo de espaçamento, por exemplo tomando os nós de Chebyschev onde m é o grau do polinômio interpolador x i = cos( 2i + 1 π m ) 15 Interpolação Inversa Problema: Dado y (f(x 0 ), f(x n )), obter x, tal que f(x) = y Formas de resolvê-lo: 1 Primeiro, obter p n (x) que interpola f(x) em x 0, x 1,, x n e em seguida, encontrar x tal que p n (x) = y Por exemplo: dada a f(x) tabelada abaixo, encontre x tal que f(x) = 2 2 Interpolação inversa x 0, 5 0, 6 0, 7 0, 8 0, 9 1, 0 f(x) 1, 65 1, 82 2, 01 2, 23 2, 46 2, 72 Se f(x) for inversível num intervalo contendo y, então faremos a interpolação de x = f 1 (y) = g(y) Uma condição, para que uma função contínua num intervalo [a, b] seja inversível, é que seja monótona neste intervalo Por exemplo: dada a f(x) tabelada abaixo, encontre x tal que f(x) = 1, 3165 usando interpolação quadrática x 0, 0 0, 1 0, 2 0, 3 0, 4 0, 5 y = e x 1, 0 1, , , , , A raiz de uma função pode ser aproximada pela raiz do seu polinômio interpolador Use uma parábola para determinar a raiz da função tabelada abaixo: x f(x) 0,8421 0,909 0,141-0,757-0,959 4 Use uma cúbica para determinar uma aproximação para a única raiz positiva da equação 4 cos x e x = 0 5 Dados valores tabelados da variável dependente y em função da variável x, frequentemente pretende-se achar o valor de x da variável independente correspondente ao valor y dado Isto é conhecido como interpolação inversa A partir da tabela abaixo, determine a raiz de f(x) usando interpolação inversa sobre 3 pontos: x 0,7 1,0 1,2 1,5 1,6 f(x) -2,57-2,00-1,23 0,63 0,79

7 REFERÊNCIAS 7 6 Sabe-se que f(x) = 5x 3 3x 2 +2x 2 tem um zero no intervalo [0; 1] Usando interpolação inversa sobre uma tabela de 4 pontos, determine, aproximadamente, esse zero 7 Uma maneira de se calcular a derivada de uma função em um ponto x 0, quando não se conhece a expressão analítica da mesma, é usar uma tabela para formar um polinômio que aproxime a função, derivar então esse polinômio e avaliar sua derivada em x = x 0 Dada a tabela abaixo, calcule f (0, 50) usando um polinômio interpolador de grau 2: x 0,40 0,45 0,50 0,55 0,60 f(x) 1,51 1,49 1,47 1,44 1,42 8 Suspeita-se que a tabela abaixo represente um polinômio cúbico Como testar esse fato? justifique a sua resposta x -3,0-2,0-1,0 0,0 1,0 2,0 f(x) -9,0 0,0 1,0 0,0 3,0 16,0 9 Qual deve ser o valor de h, se queremos obter ln x, com 3 casas decimais corretas para x 1, através de interpolação linear usando uma tabela para argumentos x i igualmente espaçados de h? 10 Dada uma função f(x), deseja-se calcular a integral de f(x) no intervalo [a; b] Para isso podemos interpolar f(x) em n + 1 pontos por um polinômio de grau n e integrá-lo Use esse método para estimar 1 0 x x 2 + 3x + 2 dx com n = 4 Compare o resultado com seu valor exato que é ln 9 8 Referências [1] RUGGIERO, MAG e ROCHA LOPES, VL Cálculo Numérico - Aspectos Teóricos e Computacionais MAKRON Books,1996 [2] CUNHA, MCC Métodos Numéricos Campinas, Editora da Unicamp, 2000 [3] CAMPOS Filho,FF Algorítmos Numéricos [4] SPERANTIO,D,MENDES,JT,SILVA,LHM Cálculo Numérico São Paulo, Prentice Hall, 2003 [5] BURDEN,RL,FAIRES,JD Análise Numérica São Paulo, Pioneira Thomson Learning, 2003

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte

Leia mais

Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial

Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial.. Departamento de Matemática Universidade da Beira Interior Matemática Computacional - Capítulo 6 Questão 6.1 Questão

Leia mais

de Interpolação Polinomial

de Interpolação Polinomial Capítulo 10 Aproximação de Funções: Métodos de Interpolação Polinomial 101 Introdução A aproximação de funções por polinômios é uma das idéias mais antigas da análise numérica, e ainda uma das mais usadas

Leia mais

Resolução de Sistemas de Equações Lineares

Resolução de Sistemas de Equações Lineares 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Resolução de Sistemas de Equações

Leia mais

Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia. diogo

Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia.  diogo Interpolação Diogo Pinheiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia de Computação e Automação http://wwwdcaufrnbr/ diogo 1 Introdução

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 20 (09/11/15) Interpolação: Introdução Características Interpolação Linear: Introdução Características Exercícios

Leia mais

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975?

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975? Cap. 4- Interpolação Numérica 4.1. Definições Censos de BH População em BH (Habitantes,5,,, 1,5, 1,, 5, 194 196 198 Ano Ano 195 196 197 198 1991 1996 1 No. habitantes 5.74 68.98 1.5. 1.78.855..161.91.71.8.56.75.444

Leia mais

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3]. 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução

Leia mais

Interpolação polinomial

Interpolação polinomial Quarto roteiro de exercícios no Scilab Cálculo Numérico Rodrigo Fresneda 8 de abril de 0 Guia para respostas: Entregue suas respostas às tarefas contidas no roteiro de cada uma das quatro atividades, incluindo

Leia mais

1 a Lista de Exercícios Prof a. Vanessa Rolnik. seguir e indique o tipo de erro quando a representação não for possível.

1 a Lista de Exercícios Prof a. Vanessa Rolnik. seguir e indique o tipo de erro quando a representação não for possível. Tópicos de Análise Numérica 1 a Lista de Exercícios Prof a. Vanessa Rolnik 1. Considere o sistema PF( 1, 3, -4, 4) de base 1, 3 dígitos na mantissa, menor expoente -4 e maior expoente 4.Quantos números

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Análise Numérica Licenciaturas em Engenharia Ambiente,Civil e Química I - Equações Não Lineares.

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida Métodos Numéricos Interpolação / Aproximação Renato S. Silva, Regina C. Almeida Interpolação / Aproximação situação: uma fábrica despeja dejetos no leito de um rio; objetivo: determinar a quantidade de

Leia mais

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Integração numérica: Fórmulas de Newton-Cotes.

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Integração numérica: Fórmulas de Newton-Cotes. Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 5- Integração numérica: Fórmulas de Newton-Cotes. Objetivo: Apresentar o método de integração numérica baseado nas fórmulas

Leia mais

Capítulo 5 - Interpolação Polinomial

Capítulo 5 - Interpolação Polinomial Capítulo 5 - Interpolação Polinomial Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa

Leia mais

Autores: Interpolação por Spline Cúbica e Método de Integração de Simpson para Cálculo de Campo Magnético PLANO BÁSICO: MÉTODOS NUMÉRICOS

Autores: Interpolação por Spline Cúbica e Método de Integração de Simpson para Cálculo de Campo Magnético PLANO BÁSICO: MÉTODOS NUMÉRICOS UNIVERSIDADE FEDERAL DO CEARÁ - UFC CENTRO DE TECNOLOGIA CT DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE PROGRAMA DE EDUCAÇÃO TUTORIAL - PET PLANO BÁSICO: MÉTODOS NUMÉRICOS Interpolação por Spline Cúbica e

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ Cálculo Numérico S. C. Coutinho Provas e gabaritos Lembre-se: Nas provas não são aceitas respostas sem justicativa. Você

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic Eng Biomédica e Bioengenharia-2009/2010 O problema geral da interpolação polinomial consiste em, dados n + 1 pontos (reais ou complexos) x

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não

Leia mais

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0. Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,

Leia mais

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO

Leia mais

Método de Newton para polinômios

Método de Newton para polinômios Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.

Leia mais

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof. Cícero Thiago / Prof. Marcelo Aula 10 Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Seja P(x) um polinômio

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional Curso 4402 - Engenharia de Produção Ênfase Identificação Disciplina 0002029EM1 - Cálculo Numérico Computacional Docente(s) Adriana Cristina Cherri Nicola Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Polinômios de Taylor Aula 24 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Os polinômios

Leia mais

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2 Zeros de Polinômios Iguer Luis Domini dos Santos, Geraldo Nunes Silva 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP, Brazil, iguerluis@hotmail.com 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP,Brazil,

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico

Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico Integração Numérica Maria Luísa Bambozzi de Oliveira SME0300 Cálculo Numérico 27 de Outubro, 2010 e 8 de Novembro, 2010 Introdução Nas últimas aulas: MMQ: aproximar função y = f (x) por uma função F(x),

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

Ajuste de Curvas. Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia.

Ajuste de Curvas. Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia. Ajuste de Curvas Diogo Pinheiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia de Computação e Automação http://wwwdcaufrnbr/ 1 Introdução

Leia mais

f(h) δ h p f(x + h) f(x) (x) = lim

f(h) δ h p f(x + h) f(x) (x) = lim Capítulo 6 Derivação numérica Nesta seção vamos desenvolver métodos para estimar a derivada de uma função f calculada em um ponto x, f (x, a partir de valores conecidos de f em pontos próximos ao ponto

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario EQUAÇÕES DIFERENCIAIS ORDINÁRIAS MÉTODO DE EULER MÉTODOS DE SÉRIES DE TAYLOR MÉTODOS DE RUNGE KUTTA EQUAÇÕES DIFERENCIAIS

Leia mais

Prof. MSc. David Roza José 1/46

Prof. MSc. David Roza José 1/46 1/46 Interpolação Polinomial Objetivos: Compreender que calcular coeficiente de polinômios com sistemas de equações é um problema mal condicionado; Saber como avaliar coeficientes e interpolar com as funções

Leia mais

Interpolação Polinomial

Interpolação Polinomial Cálculo Numérico Interpolação Polinomial Parte I Pro. Jorge Cavalcanti jorge.cavalcanti@univas.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG www.dsc.ucg.edu.br/~cnum/ Interpolação

Leia mais

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares sobre Funções Polinomiais R R 2 4 Definição do Polinômio de Taylor

Leia mais

Modelagem Computacional. Parte 3 2

Modelagem Computacional. Parte 3 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 3 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 4] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

DISTRIBUIÇÃO DA CARGA HORÁRIA TEÓRICA PRÁTICA TEO/PRAT OUTRAS NÚMERO MÁXIMO DE ALUNOS POR TURMA AULAS TEÓRICAS PRÁTICAS 80 40

DISTRIBUIÇÃO DA CARGA HORÁRIA TEÓRICA PRÁTICA TEO/PRAT OUTRAS NÚMERO MÁXIMO DE ALUNOS POR TURMA AULAS TEÓRICAS PRÁTICAS 80 40 unesp UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS UNIVERSITÁRIO DE BAURU FACULDADE DE CIÊNCIAS PLANO DE ENSINO 2008 UNIDADE UNIVERSITÁRIA: FACULDADE DE CIÊNCIAS CURSO: LICENCIATURA EM MATEMÁTICA HABILITAÇÃO:

Leia mais

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA RAIZES Necessidade de determinar um número E tal que f( )=0 Equações Algébricas de 1º,2º,algumas de 3º,4º graus e algumas transcendentes podem ter

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 7: Equaç~oes diferenciais ordinárias c 2009 FFCf 2 Capítulo 7: Equações diferenciais ordinárias 7.1 Solução numérica de EDO 7.2 Métodos de Runge-Kutta 7.3 Métodos

Leia mais

f(x) = 1 + 2x + 3x 2.

f(x) = 1 + 2x + 3x 2. Interpolação e ajuste não-segmentados 1 Introdução O problema geral da interpolação pode ser denido da seguinte forma: Seja F uma família de funções f : D E e {(x i, y i )} N i1 um conjunto de pares ordenados

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar

Leia mais

Diferenças finitas e o polinômio interpolador de Lagrange

Diferenças finitas e o polinômio interpolador de Lagrange Diferenças finitas e o polinômio interpolador de Lagrange Cícero Thiago B. Magalhães 19 de janeiro de 014 1 Diferenças finitas Seja P(x) um polinômio de grau m. Defina +1 P(n) = P(n +1) P(n), 1, com 1

Leia mais

Aula 1 - Cálculo Numérico

Aula 1 - Cálculo Numérico Aula 1 - Cálculo Numérico Conceitos básicos Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 1 - Cálculo Numérico 1 / 25 Sumário Sumário 1 Sumário 2 Motivação 3 Plano de ensino 4

Leia mais

Módulo 2: Métodos Numéricos. Splines

Módulo 2: Métodos Numéricos. Splines Módulo 2: Métodos Numéricos Interpolação Splines 1. Interpolação Estimativa de uma grandeza com base em valores conhecidos em torno do ponto de estimativa. Procedimento: 1 Determinar uma função (normalmente

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

Cálculo Numérico. Introdução. Prof. Jorge Cavalcanti twitter.com/jorgecav

Cálculo Numérico. Introdução. Prof. Jorge Cavalcanti twitter.com/jorgecav Universidade Federal do Vale do São Francisco Cálculo Numérico Introdução Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br twitter.com/jorgecav 1 Cálculo Numérico Plano de Ensino Objetivos Ementa

Leia mais

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção.

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção. 1 a) Mostre que f (x) = x cos x possui uma raiz no intervalo [0, 1]. b) Prove que essa raiz é única. c) Sem executar o método, preveja o número de iterações que o algoritmo da bissecção utilizaria para

Leia mais

Prof. MSc. David Roza José 1/33

Prof. MSc. David Roza José 1/33 1/33 Fórmulas de Integração Numérica Objetivos: Entender que as fórmulas de Newton-Cotes são baseadas na estratégia de substituir uma função complicada ou dados tabulados por um polinômio que seja fácil

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números

Leia mais

Aula 10 Sistemas Não-lineares e o Método de Newton.

Aula 10 Sistemas Não-lineares e o Método de Newton. Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Prof. MSc. David Roza José 1/37

Prof. MSc. David Roza José 1/37 1/37 Métodos Abertos Objetivos: Reconhecer as diferenças entre os métodos intervalados e abertos para a localização de raízes; Compreender o método da iteração de ponto-fixo e avaliar suas características

Leia mais

Método dos Mínimos Quadrados

Método dos Mínimos Quadrados Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Método dos Mínimos Quadrados Objectivos: Estimação de valores pelo método dos mínimos quadrados. PROBLEMAS 1 Determine

Leia mais

3. Equações Algébricas

3. Equações Algébricas 3. Equações Algébricas 3.1 Introdução Em muitos problemas de Ciência e Engenharia há necessidade de se determinar um número ξ para o qual um número ξ para o qual uma função f(x) seja zero, ou seja, f(ξ)

Leia mais

Erros META OBJETIVOS. 2.1 Erros

Erros META OBJETIVOS. 2.1 Erros Erros META Conceituar o erro, as fontes e formas de expressar estes erros, propagação dos erros em operações aritméticas fórmula geral e problema inverso. OBJETIVOS Resolver problemas práticos de erros

Leia mais

étodos uméricos DERIVAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos DERIVAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos DERIVAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções 1: Mostre que a função f(x) = x 2 4x + cos x possui exatamente duas raízes: α 1 [0, 1.8] e α 2 [3, 5]. Considere as funções:

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG.

GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Discente CPF Turma A2 Sala

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 11 Sistemas de Equações não-lineares SISTEMAS NÃO-LINEARES Cálculo Numérico 3/39 SISTEMA NÃO LINEAR Vamos considerar o problema

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

Substituição Simples.

Substituição Simples. MÓDULO - AULA 17 Aula 17 Técnicas de Integração Substituição Simples. Objetivo Mostrar como usar a técnica de integração chamada substituição simples. Motivação - O Teorema Fundamental, mais uma vez...

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Integração Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 1 Introdução Calcular integrais é uma tarefa rotineira em engenharia,

Leia mais

Exercícios de Matemática Computacional

Exercícios de Matemática Computacional Exercícios de Matemática Computacional 1 Teoria dos erros 1.1 Representação de números reais 1. Os resultados aproximados da medição de uma ponte e de uma viga foram, respectivamente, 9999 cm e 9 cm. Se

Leia mais

Roteiro para o Terceiro Laboratório de Cálculo Numérico /1

Roteiro para o Terceiro Laboratório de Cálculo Numérico /1 Roteiro para o Terceiro Laboratório de Cálculo Numérico - 2008/1 Prof. Dr. Waldeck Schützer June 23, 2008 DM/UFSCar Nesta terceira aula de laboratório, vamos utilizar o Octave para aproximar funções e

Leia mais

Algoritmos e Estruturas de Dados. Grupo 1

Algoritmos e Estruturas de Dados. Grupo 1 Licenciatura em Engenharia Electrotécnica e de Computadores Algoritmos e Estruturas de Dados Trabalho prático P1B 2003/04 2 o semestre Efectue as tarefas de programação descritas abaixo, usando a linguagem

Leia mais

Exemplo 7.1 A seguinte tabela relaciona o calor específico (c) daágua e a temperatura (T )em

Exemplo 7.1 A seguinte tabela relaciona o calor específico (c) daágua e a temperatura (T )em Capítulo 7 71 Introdução Freqüentemente, deparamo-nos com um conjunto discreto de valores de uma função que podem ser dados na forma de tabela ou de um conjunto de medidas Estes valores, na verdade, representam

Leia mais

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação

Leia mais

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA Marlon Luiz Dal Pasquale Junior, UNESPAR/FECILCAM, jr.marlon@hotmail.com Solange Regina dos Santos (OR), UNESPAR/FECILCAM, solaregina@fecilcam.br

Leia mais

Resolver equações: como e para quê? (reflexões e reminiscências)

Resolver equações: como e para quê? (reflexões e reminiscências) Resolver equações: como e para quê? (reflexões e reminiscências) Instituto Nacional de Matemática Pura e Aplicada Resolver equações para quê? No mundo real: Para resolver problemas concretos. Para descobrir

Leia mais

1.1 Conceitos Básicos

1.1 Conceitos Básicos 1 Zeros de Funções 1.1 Conceitos Básicos Muito frequentemente precisamos determinar um valor ɛ para o qual o valor de alguma função é igual a zero, ou seja: f(ɛ) = 0. Exemplo 1.1 Suponha que certo produto

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais