Lista de exercícios de MAT / II

Tamanho: px
Começar a partir da página:

Download "Lista de exercícios de MAT / II"

Transcrição

1 1 Lista de exercícios de MAT / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, Converta os seguintes números da forma binária para a forma decimal:y 1 = 1111; y 2 = ; y 3 =, 111; y 4 =, Converta os seguintes números da forma decimal para sua forma na base quatro:z 1 = 5268; z 2 = 2, 5; z 3 = ; z 4 =, Seja o SPF dado por F(1,4,-5,5). Dados os números x = 7237; y =, 2145; z = 2, 585, efetue as seguintes operações: w 1 = x + y + z; w 2 = x y z; w 3 = x y ; w 4 = xy z ; w 5 = x y z 5. Dê um argumento convincente para justificar que, se o número fracionário N tem representação finita na base 2 com k dígitos, então sua representação na base 1 também é finita com k dígitos. 6. Seja f(x) = cos(x), tomando x = π e h 1 = π 4, temos que f (π) =. Utitlizando a aproximação gerada derivada por diferença centrada calcule f (π), 932. Calcule o erro de truncamento e compare-o com a estimativa do erro. Faça h 2 = π 8 e h 3 = π 16, em cada caso calcule as aproximações para f (π), os erros de truncamento e compare com as estimativas do erro. 7. Encontre o maior intervalo em que um número q deve se encontrar para aproximar x 4 com erro relativo no máximo de Seja o sistema de ponto flutuante dado por F (6, 6, 6, 6). Quantos números reais podem ser representados de forma exata? Verifique se sua matrícula, escrita de traz para frente, tem representação neste sistema. 9. Localize graficamente as raízes das equações a seguir: a) 4 cos(x) e 2x = ; b) x 2 tan(x) = ; c) 1 x ln(x) = ; d) 2x 3x = 1. Exercícios do livro-texto a partir da página 1: 2,3,4,6,11,12,16,17,18,19, Aplique o método da Bisseção e da Posição Falsa para calcular a raiz positiva de x 3 15 = com ɛ <, 1, partindo do intervalo [2, ; 3, ]. 12. Aplique o método da Bisseção para resolver: a) e x x 3x 2 = ; b) x 3 + cos x = obtendo os extremos do intervalo inicial a e b graficamente. x ξ <, 1, onde ξ é a raiz exata. Encontre um resultado x tal que 13. Dadas as funções: a)f(x) = x 3 + 3x 1; b)f(x) = x 2 sin x pesquisar a existência de raízes reais e isolá-las em intervalos. 14. A fórmula x n+1 = 2x n Ax 2 n é candidata para se determinar o inverso de um número A. Mostre que se a fórmula converge, então converge para 1 A e determine os limites da estimativa inicial x para que isso aconteça. Teste suas conclusões para: A = 9 e x =, 1; e A = 9 e x = 1,.

2 2 15. Mostre que x 3 2x 5 sin(x) = tem apenas uma raiz real e determine seu valor correto até 5 casas decimais usando o método de Newton, com no máximo 1 iterações. 16. Mostre que a fórmula para determinar a raiz cúbica de Q, é um caso especial do método de Newton. x n+1 = 1 3 (2x n + Q x 2 n ), n =, 1, Aplique o método do exercício anterior para calcular a raiz cúbica de 2 com precisão de 1 2 usando o erro relativo e calculando o valor inicial através de gráfico. 18. A equação x 3 2x 1 = possui apenas uma raiz positiva. (a) Em qual dos intervalos seguintes deve estar a raiz:[, 1], [1, 2], [2, 3]? Por quê? (b) Se quiséssemos pesquisar as raízes negativas usando intervalos de amplitude 1 2, até o valor 2, em quais intervalos seriam encontradas tais raízes? (c) Obtenha a menor raiz negativa (em módulo). usando o método das secantes. Trabalhar com arredondamento para 3 casas decimais e no máximo 1 iterações. 19. Calcular a raiz de 2x 3 cos(x + 1) 3 =, pertencente ao intervalo [ 1, 2], com precisão de,1 usando o método da bisseção com no máximo 15 passos. Verifique quantos passos no mínimo são necessários para ter uma precisão de Determinar a maior raiz de.5x 3.4x 2 + 3sex(x) = com precisão de,5 usando o método da bisseção com no máximo 15 passos. Para calcular o intervalo inicial use um método gráfico. 21. Localize graficamente as raízes da equação do execício 1. Use o método de Newton para calcular uma aproximação, com 8 casas decimais corretas, para cada raiz localizada. 22. Resolva o exercício 2 usando o método de Newton com 7 casas decimais corretas e no máximo 1 passos. 23. Calcular as duas raízes de sen(x) e x 2x = usando o método de Newton, com a precisão de x n+1 x n 1 5 e no máximo 1 passos. 24. Resolva os exercícios anteriores usando os métodos da Secante e da Posição Falsa, quando possível for, com precisão de, Determine as possibilidades para o número de raízes positivas para os polinômios abaixo: (a) p 5 (x) = 2x 5 3x 4 4x 3 + x + 1 (b) p 5 (x) = 4x 5 x 3 + 4x 2 x 1 (c) p 7 (x) = x Determine as possibilidades para o número de raízes negativas para os polinômios do exercício anterior. 27. Nos exercício anterior localize os zeros dos polinômios no plano complexo. Depois, usando o método de Newton encontre as raízes reais.

3 3 28. Localize os zeros do polinômio p(x) = x x Usando o método de Newton, encontre as quatro raízes de p(x) = não-nulas com precisão de 6 casas decimais. 29. A raiz de uma função pode ser aproximada pela raiz do seu polinômio interpolador. Use uma parábola para determinar a raiz da função tabelada abaixo: x f(x),8421,99,141 -,757 -, Use uma cúbica para determinar uma aproximação para a única raiz positiva da equação 4 cos x e x =. 31. Dados valores tabelados da variável dependente y em função da variável x, frequentemente pretendese achar o valor de x da variável independente correspondente ao valor y dado. Isto é conhecido como interpolação inversa. A partir da tabela abaixo, determine a raiz de f(x) usando interpolação inversa sobre 3 pontos: x,7 1, 1,2 1,5 1,6 f(x) -2,57-2, -1,23,63, Sabe-se que f(x) = 5x 3 3x 2 + 2x 2 tem um zero no intervalo [; 1]. Usando interpolação inversa sobre uma tabela de 4 pontos, determine, aproximadamente, esse zero. 33. Uma maneira de se calcular a derivada de uma função em um ponto x, quando não se conhece a expressão analítica da mesma, é usar uma tabela para formar um polinômio que aproxime a função, derivar então esse polinômio e avaliar sua derivada em x = x. Dada a tabela abaixo, calcule f (, 5) usando um polinômio interpolador de grau 2: x,4,45,5,55,6 f(x) 1,51 1,49 1,47 1,44 1, Suspeita-se que a tabela abaixo represente um polinômio cúbico. Como testar esse fato? justifique a sua resposta. x -3, -2, -1,, 1, 2, f(x) -9,, 1,, 3, 16, 35. Qual deve ser o valor de h, se queremos obter ln x, com 3 casas decimais corretas para x 1, através de interpolação linear usando uma tabela para argumentos x i igualmente espaçados de h? 36. Dada uma função f(x), deseja-se calcular a integral de f(x) no intervalo [a; b]. Para isso podemos interpolar f(x) em n + 1 pontos por um polinômio de grau n e integrá-lo. Use esse método para estimar 1 x x 2 + 3x + 2 dx. com n = 4. Compare o resultado com seu valor exato que é ln Para cada um dos sistemas lineares seguintes, obtenha uma solução por um meio gráfico, se possível

4 4 for. Explique os resultados do ponto de vista geométrico. x 1 + 2x 2 = 3 x 1 + 2x 2 = 3 x 1 x 2 = 2x 1 + 4x 2 = 6 x 1 + 2x 2 = 3 2x 1 + 4x 2 = 6 2x 1 + x 2 + x 3 = 1 2x 1 + 4x 2 x 3 = Utilize a eliminação Gaussiana, com substituição retroativa e operações com arredondamento para quatro dígitos, para resolver os sistemas lineares a seguir: 2x 1 + 3x 2 + x 3 x 4 = 6, 9 x 1 + x 2 + 2x 3 + 4x 4 = 7, 12 x 1 + x 2 4x 3 + x 4 = 6, 6 2x 1 + 5x 2 + x 3 + 2x 4 = 14, 9 x 1 + x 2 + x 3 + x 4 = 1, 2 x 1 + x 2 + 5x 3 + 6x 4 = 12, 2 4x 1 5x 2 + x 3 2x 4 = 12, 3 4x 1 + 6x 2 + 2x 3 + x 4 = 2, Dê a fatoração LU de cada matriz do exercício anterior. 4. Resolver o sistema linear abaixo usando o MEG com pivoteamento completo, retendo, durante as eliminações, cinco algarismos após a vírgula:, 8754x 1 + 3, 81x 2 +, 9358x 3 + 1, 183x 4 =, , 4579x 1, 8758x 2 + 1, 1516x 3 4, 5148x 4 = 1, , 235x 1, 8473x 2 2, 3582x 3 + 1, 1419x 4 = 2, 578 2, 115x 1 + 8, 183x 2 1, 3232x 3 + 2, 1548x 4 = 6, Dê a fatoração LU de cada matriz do exercício anterior. 42. Resolver o sistema linear abaixo usando os métodos iterativos (Jacobi e Gauss-Seidel) com x () = [1; 3; 7; 8; 4; 1; 7] t e ɛ 1 3, retendo, durante os cálculos, cinco casas decimais: 1x 1 + x 2 + x 3 + x 4 + 3x 5 2x 6 = 6, 57 4x 1 2x 2 + 3x 3 + 2x 4 x 5 + 7x 6 = 68, 448 5x 1 3x 2 15x 3 x 4 4x 5 + x 6 = 112, 5 x 1 + x 2 + 2x 3 + 8x 4 x 5 + 2x 6 = 3, 968 x 1 + 2x 2 + x 3 + 3x 4 + 9x 5 x 6 = 2, 18 4x 1 + 3x 2 + x 3 + 2x 4 x x 6 = 1, Aproxime as seguintes integrais usando: a regra dos trapézios; as regras de Simpson; a quadratura gaussiana com n = 1.

5 5 1,5 x 4 dx, 1,6 1 2x x 2 4 dx, 1,5 x 2 1 ln(x) dx, π/2 x sin(x) dx 44. A regra dos trapézios aplicada a 2 f(x) dx dá o valor 4, e a regra 1 3 de Simpson dá o valor 2. Qual é o valor de f(1)? 45. A fórmula de quadratura 1 1 f(x) dx = c f( 1) + c 1 f() + c 2 f(1) é exata para polinômios de grau menor ou igual a 2. Determine c, c 1, c Aproxime as integrais do exercício 1 usando: a regra dos trapézios com n = 4; a regra 1 3 a regra 3 8 de Simpson com n = 6; de Simpson com n = Determine o número mínimo n de subintervalos para aproximar I = 2 e calcule a aproximação. Use a regra dos trapézios. Use a regra 1 3 Use a regra 3 8 de Simpson. de Simpson. 48. Aproxime a integral I = π/2 x sin(x) dx usando: a regra dos trapézios com n 1 = 2 e n 2 = 4; a regra 1 3 de Simpson com n 1 = 4 e n 2 = 6; a regra 3 8 de Simpson com n 1 = 6 e n 2 = 9. dx x+4 com precisão de 1 5 Em cada caso melhore a aproximação usando a Extrapolação de Richardson referente à regra. Compare com o valor exato da integral. 49. Calcule as aproximações para os valores das integrais abaixo usando Quadratura Gaussiana com dois pontos: (a) I = 2 4x x2 dx (b) I = 2 dx 1 x 5. Aplique o método de Euler para aproximar as soluções dos seguintes problemas de valor inicial: 1. y (t) = 1 + (t y) 2, 2 t 3, y(2) = 1, h =, 5 2. y (t) = 1 + y t, 1 t 2, y(1) = 2, h =, y (t) = cos(2t) + sin(3t), t 1, y() = 1, h =, As soluções exatas dos problemas anteriores são dadas abaixo respectivamente. Compare o erro verdadeiro com o limite de erro em cada passo. 1. y(t) = t t 2. y(t) = t ln(t) + 2t 3. y(t) = 1 2 sin(2t) 1 3 cos(3t) + 1 3

6 6 52. Aplique o método de Euler para aproximar as soluções dos seguintes problemas de valor inicial: 1. y (t) = t 2 + y 2, t 1, y() =, h =, y (t) = t y 2, t 1, y() = 1, h =, Por meio do Método das Diferenças Finitas, calcule y(, 25), para o problema de valor de contorno abaixo: y (x) 2y (x) + y(x) = y() = 1 y(1) = Compare com o resultado com a solução exata, achando o erro cometido.

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais

1.1 Revisão de teoremas do cálculo 1.

1.1 Revisão de teoremas do cálculo 1. LISTA DE EXERCÍCIOS Observação: De acordo ao exercício o aluno pode e deve conferir suas respostas com seus programas. 1.1 Revisão de teoremas do cálculo 1. 1 Mostre que cada uma das seguintes equações

Leia mais

Resolução de Sistemas de Equações Lineares

Resolução de Sistemas de Equações Lineares 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Resolução de Sistemas de Equações

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

2004/2005 PROBLEMAS. y 0.78 2.04 3.71 4.11 3.89. f(x) dx.

2004/2005 PROBLEMAS. y 0.78 2.04 3.71 4.11 3.89. f(x) dx. Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica /5 Integração Numérica PROBLEMAS Dados os seguintes pontos de uma função y = f(x) x y.78..7..89 determine um valor aproximado

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aulas 5 e 6 03/2014 Erros Aritmética no Computador A aritmética executada por uma calculadora ou computador é diferente daquela

Leia mais

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA 1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: CST em Sistemas de Telecomunicações, Tecnologia Nome da disciplina: Métodos Numéricos Código: INF065 Carga horária: 67 horas Semestre previsto: 3º Pré-requisito(s):

Leia mais

Erros numéricos por Mílton Procópio de Borba

Erros numéricos por Mílton Procópio de Borba Erros numéricos por Mílton Procópio de Borba 1. Alguns problemas ao fazermos contas no computador Os problemas a seguir foram analisados num Pentium, com a ajuda de pequenos programas feitos em QBasic.

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Exercícios de Cálculo Numérico 2S/2015 http://goo.gl/qo87d/

Exercícios de Cálculo Numérico 2S/2015 http://goo.gl/qo87d/ Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Prof. Ricardo Biloti (biloti@ime.unicamp.br) http://www.ime.unicamp.br/ biloti Exercícios de Cálculo Numérico

Leia mais

Funções reais de variável real

Funções reais de variável real Funções reais de variável real Função exponencial e função logarítmica 1. Determine a base de cada logaritmo. log a 36 = 2 (b) log a (25a) = 5 (c) log a 4 = 0.4 2. Considere x = log 10 2 e y = log 10 3.

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares DMPA IM UFRGS Cálculo Numérico Índice Sistema de Equações Lineares 1 Sistema de Equações Lineares 2 com pivoteamento parcial 3 Método de Jacobi Método Gauss-Seidel Sistema de Equações Lineares n equações

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Cálculo A. José Carlos de Souza Junior.

Cálculo A. José Carlos de Souza Junior. Cálculo A José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc_jc Universidade Federal de Alfenas - Instituto de Ciências Exatas Abril - 2014 O que é o GeoGebra? GeoGebra é um software

Leia mais

Roteiro para o Terceiro Laboratório de Cálculo Numérico /1

Roteiro para o Terceiro Laboratório de Cálculo Numérico /1 Roteiro para o Terceiro Laboratório de Cálculo Numérico - 2008/1 Prof. Dr. Waldeck Schützer June 23, 2008 DM/UFSCar Nesta terceira aula de laboratório, vamos utilizar o Octave para aproximar funções e

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

Fundamentos de Cálculo Numérico para Engenheiros

Fundamentos de Cálculo Numérico para Engenheiros Fundamentos de Cálculo Numérico para Engenheiros Régis S. De Quadros Álvaro L. De Bortoli Porto Alegre, dezembro de 2009. O entendimento da essência pode estimular a imaginação Álvaro De Bortoli FBN 361.985;

Leia mais

GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG.

GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Discente CPF Turma A2 Sala

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 6: Raízes de equaç~oes c 2009 FFCf 2 Capítulo 6: Raízes de equações 6.1 Isolamento de raízes 6.2 Método da bisseção 6.3 Métodos baseados em aproximação linear 6.4

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

Lista de Exercícios 6 Funções

Lista de Exercícios 6 Funções UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 6 Funções Ciências Exatas & Engenharias o Semestre de 06 Conceitos. Determine e justifique se a seguinte afirmação é verdadeira ou não para todas

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

Solução numérica de equações não-lineares

Solução numérica de equações não-lineares Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/ 21 Sumário

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa prova? Sim Não X

Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa prova? Sim Não X Disciplina: Cálculo 1 Identificação da Prova: Simulado Ex. Final Nota: Professor e Visto: Visto da Coordenação: Período: Data: Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2

Leia mais

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução Ministério da Ciência, Tecnologia e Ensino Superior Exame de Acesso ACFES Maiores de 23; Acesso Específico Matemática PROVA MODELO - proposta de resolução - INSTRUÇÕES - Deverá responder à prova na folha

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic Eng Biomédica e Bioengenharia-2009/2010 O problema geral da interpolação polinomial consiste em, dados n + 1 pontos (reais ou complexos) x

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 22 07/2014 Resolução Numérica de Equações Diferenciais Ordinárias Objetivo: Resolver Equações Diferenciais Ordinárias utilizando

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Algoritmos e Estruturas de Dados. Grupo 1

Algoritmos e Estruturas de Dados. Grupo 1 Licenciatura em Engenharia Electrotécnica e de Computadores Algoritmos e Estruturas de Dados Trabalho prático P1B 2003/04 2 o semestre Efectue as tarefas de programação descritas abaixo, usando a linguagem

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a,

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a, - SOLUÇÃO DE EQUAÇÕES NÃO LINEARES INTRODUÇÃO Um dos problemas que ocorrem mais reqüentemente em trabalhos cientíicos é calcular as raízes de equações da orma: () 0. A unção () pode ser um polinômio em

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Modelos Matemáticos: Uma Lista de Funções Essenciais

Modelos Matemáticos: Uma Lista de Funções Essenciais Modelos Matemáticos: Uma Lista de Funções Essenciais Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Um modelo matemático é a descrição matemática de um fenômeno do mundo real, como

Leia mais

Lista 0: Revisão Números Reais e Funções Elementares

Lista 0: Revisão Números Reais e Funções Elementares GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/ BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO DIFERENCIAL E INTEGRAL I Lista 0: Revisão

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Sistemas Lineares Comuns na engenharia (calculo de estruturas, redes elétricas, solução de equações diferenciais) Forma

Leia mais

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

NOTAÇÕES MATEMÁTICAS UTILIZADAS

NOTAÇÕES MATEMÁTICAS UTILIZADAS Prova de MTMÁTI - Modelo R R R + R + R R Q Q Z Z + Z N N f(x) f(a) log a sen α cos α tg α cotg α cossec α x n! NOTÇÕS MTMÁTIS UTILIZS - conjunto dos números reais - conjunto dos números reais não nulos

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

Matemática Computacional Colectânea de Exercícios

Matemática Computacional Colectânea de Exercícios DEPARTAMENTO DE ENGENHARIA MECÂNICA Matemática Computacional Colectânea de Exercícios Propostas de resolução Conceitos fundamentais Algoritmos básicos Gráficos ilustrativos Leonel Fernandes Miguel Matos

Leia mais

Módulo 4 Ajuste de Curvas

Módulo 4 Ajuste de Curvas Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma

Leia mais

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa 1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos

Leia mais

A computação aplicada à resolução de sistemas lineares

A computação aplicada à resolução de sistemas lineares Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Sistemas e Computação Programa de Educação Tutorial (PET) A computação aplicada à resolução de sistemas

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 9º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 9º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 9º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Identificar e dar exemplos de fenómenos aleatórios e deterministas, usando o vocabulário

Leia mais

ESTRUTURAS DE REPETIÇÃO - PARTE 1

ESTRUTURAS DE REPETIÇÃO - PARTE 1 AULA 15 ESTRUTURAS DE REPETIÇÃO - PARTE 1 15.1 O comando enquanto-faca- Considere o problema de escrever um algoritmo para ler um número inteiro positivo, n, e escrever todos os números inteiros de 1 a

Leia mais

Gabarito - Matemática - Grupos I e J

Gabarito - Matemática - Grupos I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor x O gráfico da função exponencial f, definida por f( x) = k a, foi construído utilizando-se o programa de geometria dinâmica gratuito GeoGebra (http://www.geogebra.org),

Leia mais

Testes e Exames Resolvidos de Análise Numérica e de Matemática Computacional

Testes e Exames Resolvidos de Análise Numérica e de Matemática Computacional Universidade do Algarve FCT - Dep. de Matemática Testes e Exames Resolvidos de Análise Numérica e de Matemática Computacional Celestino Coelho ccoelho@ualg.pt Conteúdo 1 Intro 1 001-00 3.1 1/11/001 -

Leia mais

Resolvendo Integrais pelo Método de

Resolvendo Integrais pelo Método de Capítulo Resolvendo Integrais pelo Método de Substituição. Métodos da substituição em integrais indefinidas O teorema fundamental do cálculo permite que se resolva rapidamente a integral b a f(x) dx, desde

Leia mais

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos DISTRIBUIÇÃO DE FREQÜÊNCIAS & INTERPOLAÇÃO LINEAR DA OGIVA 0. (AFRF-000) Utilize a tabela que se segue. Freqüências Acumuladas de Salários Anuais, em Milhares de Reais, da Cia. Alfa Classes de Salário

Leia mais

Regressão, Interpolação e Extrapolação Numéricas

Regressão, Interpolação e Extrapolação Numéricas , e Extrapolação Numéricas Departamento de Física Universidade Federal da Paraíba 29 de Maio de 2009, e Extrapolação Numéricas O problema Introdução Quem é quem Um problema muito comum na física é o de

Leia mais

Lista de Exercícios 2a

Lista de Exercícios 2a Lista de Exercícios 2a MAT 069 - Cálculo Numérico Prof. Dagoberto Adriano Rizzotto Justo 6 de Agosto de 203 Álgebra Linear. Encontre x e x 2 para os seguintes vetores: (a) x = [3 (b) x = [2 4 0 3/2] T

Leia mais

n i=1 &' ll i! #" $ % )( *

n i=1 &' ll i! # $ % )( * n 0 1 2 3 4 5 6 7 8 50 40 30 20 10 0 0 10 20 30 40 50 i=1 ll! #"$ % &' )(* i PARA ELIANE... Sumário 1 Sistemas Lineares 1 1.1 Introdução......................... 1 1.1.1 Solução de um sistema n n..........

Leia mais

Cálculo Numérico. Introdução. Prof. Jorge Cavalcanti twitter.com/jorgecav

Cálculo Numérico. Introdução. Prof. Jorge Cavalcanti twitter.com/jorgecav Universidade Federal do Vale do São Francisco Cálculo Numérico Introdução Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br twitter.com/jorgecav 1 Cálculo Numérico Plano de Ensino Objetivos Ementa

Leia mais

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos

Leia mais

CÁLCULO NUMÉRICO COM. i=1. Flaulles B.Bergamaschi

CÁLCULO NUMÉRICO COM. i=1. Flaulles B.Bergamaschi n CÁLCULO NUMÉRICO COM 0 1 2 3 4 5 6 7 8 50 40 30 20 10 0 0 10 20 30 40 50 i=1 Flaulles B.Bergamaschi PARA ELIANE... Sumário 1 Sistemas Lineares 1 1.1 Introdução......................... 1 1.1.1 Solução

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2 1. (Mackenzie 1996) A soma dos valores inteiros pertencentes ao domínio da função real definida por f(x) = x / x 3x a) 1. b). c) 3. d) - 1. e) -. é:. (Mackenzie 1996) Na desigualdade ser: (x 1) + x > k,

Leia mais

Lista de Exercícios Glossário Básico

Lista de Exercícios Glossário Básico Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8

Leia mais

PROFMAT P1 MA

PROFMAT P1 MA PROFMAT P1 MA 11 011 Questão 1. Um pequeno barco a vela, com 7 tripulantes, deve atravessar o oceano em 4 dias. Seu suprimento de água potável permite a cada pessoa dispor de 3,5 litros de água por dia

Leia mais

1 Determinantes, traços e o teorema espectral para operadores arbitrários

1 Determinantes, traços e o teorema espectral para operadores arbitrários Álgebra Linear e Aplicações - Lista para Segunda Prova Nestas notas, X, Y,... são espaços vetoriais sobre o mesmo corpo F {R, C}. Você pode supor que todos os espaços têm dimensão finita. (x, y) = (x,

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Aritmética de Ponto Fixo

Aritmética de Ponto Fixo Aritmética de Ponto Fixo Prof. Paulo Fernando Seixas Prof. Marcos Antônio Severo Mendes http://www.delt.ufmg.br/~elt/docs/dsp/ Representação Numérica DSP Ponto fixo Ponto flutuante 6 bits 3 bits 0 bits

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

MATRIZES DE REFERÊNCIA COMPETÊNCIAS E HABILIDADES QUE SERÃO AVALIADAS: ENSINO FUNDAMENTAL I ANOS INICIAIS

MATRIZES DE REFERÊNCIA COMPETÊNCIAS E HABILIDADES QUE SERÃO AVALIADAS: ENSINO FUNDAMENTAL I ANOS INICIAIS MATRIZES DE REFERÊNCIA COMPETÊNCIAS E HABILIDADES QUE SERÃO AVALIADAS: ENSINO FUNDAMENTAL I ANOS INICIAIS II. Implicações do Suporte, do Gênero e /ou do Enunciador na Compreensão do Texto Estabelecer relação

Leia mais

Resumo com exercícios resolvidos dos assuntos:

Resumo com exercícios resolvidos dos assuntos: www.engenhariafacil.weebly.com (0)- Considerações iniciais: Resumo com exercícios resolvidos dos assuntos: Máximos e mínimos absolutos e Multiplicador de Lagrange -Grande parte das funções não possui máximos

Leia mais