Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Tamanho: px
Começar a partir da página:

Download "Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho"

Transcrição

1 Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

2 Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

3 Introdução Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

4 Introdução Apresentação - Docente Aulas teóricas A. Ismael F. Vaz - aivaz@dps.uminho.pt Aula teórico-prática Senhorinha Teixeira st@dps.uminho.pt Horário de atendimento Quintas das 14h00 às 15h00 em Guimarães. Marcação por . A docente da TP terá o seu horário de atendimento. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

5 Introdução Apresentação - Docente Aulas teóricas A. Ismael F. Vaz - aivaz@dps.uminho.pt Aula teórico-prática Senhorinha Teixeira st@dps.uminho.pt Horário de atendimento Quintas das 14h00 às 15h00 em Guimarães. Marcação por . A docente da TP terá o seu horário de atendimento. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

6 Introdução Apresentação - Docente Aulas teóricas A. Ismael F. Vaz - aivaz@dps.uminho.pt Aula teórico-prática Senhorinha Teixeira st@dps.uminho.pt Horário de atendimento Quintas das 14h00 às 15h00 em Guimarães. Marcação por . A docente da TP terá o seu horário de atendimento. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

7 Introdução Apresentação - Disciplina Página da disciplina; Duas fichas T para resolver ao longo do semestre (3 valores - Sem consulta); Ficha (Exame) TP a realizar em Janeiro (17 valores - Consulta de formulário). Nota mínima de 7 (em 17 valores). A classificação final é: Fichas + Ficha TP (Exame). As notas dos anos anteriores obtidas nas fichas teóricas transitam para o corrente ano, mas tem de ser expressamente pedido pelo aluno. É obrigatória a presença em 2/3 das aulas TPs efectivas (1/3 de faltas atenção às justificações/estatutos). A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

8 Introdução Apresentação - Disciplina Página da disciplina; Duas fichas T para resolver ao longo do semestre (3 valores - Sem consulta); Ficha (Exame) TP a realizar em Janeiro (17 valores - Consulta de formulário). Nota mínima de 7 (em 17 valores). A classificação final é: Fichas + Ficha TP (Exame). As notas dos anos anteriores obtidas nas fichas teóricas transitam para o corrente ano, mas tem de ser expressamente pedido pelo aluno. É obrigatória a presença em 2/3 das aulas TPs efectivas (1/3 de faltas atenção às justificações/estatutos). A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

9 Introdução Apresentação - Disciplina Página da disciplina; Duas fichas T para resolver ao longo do semestre (3 valores - Sem consulta); Ficha (Exame) TP a realizar em Janeiro (17 valores - Consulta de formulário). Nota mínima de 7 (em 17 valores). A classificação final é: Fichas + Ficha TP (Exame). As notas dos anos anteriores obtidas nas fichas teóricas transitam para o corrente ano, mas tem de ser expressamente pedido pelo aluno. É obrigatória a presença em 2/3 das aulas TPs efectivas (1/3 de faltas atenção às justificações/estatutos). A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

10 Introdução Apresentação - Disciplina Página da disciplina; Duas fichas T para resolver ao longo do semestre (3 valores - Sem consulta); Ficha (Exame) TP a realizar em Janeiro (17 valores - Consulta de formulário). Nota mínima de 7 (em 17 valores). A classificação final é: Fichas + Ficha TP (Exame). As notas dos anos anteriores obtidas nas fichas teóricas transitam para o corrente ano, mas tem de ser expressamente pedido pelo aluno. É obrigatória a presença em 2/3 das aulas TPs efectivas (1/3 de faltas atenção às justificações/estatutos). A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

11 Introdução Apresentação - Disciplina Página da disciplina; Duas fichas T para resolver ao longo do semestre (3 valores - Sem consulta); Ficha (Exame) TP a realizar em Janeiro (17 valores - Consulta de formulário). Nota mínima de 7 (em 17 valores). A classificação final é: Fichas + Ficha TP (Exame). As notas dos anos anteriores obtidas nas fichas teóricas transitam para o corrente ano, mas tem de ser expressamente pedido pelo aluno. É obrigatória a presença em 2/3 das aulas TPs efectivas (1/3 de faltas atenção às justificações/estatutos). A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

12 Introdução Apresentação - Disciplina Página da disciplina; Duas fichas T para resolver ao longo do semestre (3 valores - Sem consulta); Ficha (Exame) TP a realizar em Janeiro (17 valores - Consulta de formulário). Nota mínima de 7 (em 17 valores). A classificação final é: Fichas + Ficha TP (Exame). As notas dos anos anteriores obtidas nas fichas teóricas transitam para o corrente ano, mas tem de ser expressamente pedido pelo aluno. É obrigatória a presença em 2/3 das aulas TPs efectivas (1/3 de faltas atenção às justificações/estatutos). A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

13 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

14 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

15 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

16 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

17 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

18 Introdução Material necessário e de apoio Calculadora científica; Folhas das fichas TPs; Papel e caneta; Livro de Computação Numérica; Software CoNum; Formulário e acetatos disponíveis na página; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

19 Introdução Motivação da disciplina Presente em todos os cursos de engenharia (aplicações em todas as áreas da engenharia); A disciplina de métodos numéricos dedica-se à resolução numérica de problemas matemáticos. Com o desenvolvimento dos computadores encontra-se direccionada para a implementação de algoritmos estáveis. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

20 Introdução Motivação da disciplina Presente em todos os cursos de engenharia (aplicações em todas as áreas da engenharia); A disciplina de métodos numéricos dedica-se à resolução numérica de problemas matemáticos. Com o desenvolvimento dos computadores encontra-se direccionada para a implementação de algoritmos estáveis. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

21 Introdução Controlo óptimo - Um exemplo Problema de optimização do processo semi-contínuo de produção de Etanol. O problema de optimização é: (t 0 = 0 e t f = 61.2 dias) max u(t) s.t. J(t f ) x 3 (t f )x 4 (t f ) dx 1 = g 1 x 1 u x 1 dt x 4 dx 2 = 10g 1 x 1 + u 150 x 2 dt x 4 dx 3 = g 2 x 1 u x 3 dt x 4 dx 4 = u dt 0 x 4 (t f ) u(t) 12 t [t 0, t f ] com ( ) ( ) x 2 g 1 = 1 + x 3 / x 2 ( ) ( ) 1 x 2 g 2 = 1 + x 3 / x 2 onde x 1, x 2 e x 3 são as concentrações da massa celular, substrato e produto (g/l), e x 4 é o volume (L). As condições iniciais são: x(t 0 ) = (1, 150, 0, 10) T. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

22 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

23 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

24 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

25 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

26 Introdução Abordagem para a resolução Grande exigência em termos numéricos; Grande exigência em termos de programação; Solução da equação diferencial com o CVODE (software em C); Problemas codificados em AMPL (linguagem de modelação); Algoritmo para optimização sem derivadas; A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

27 Introdução Programa detalhado Dia Matéria Apresentação da disciplina. Erros. Algarismos significativos. Fórmula fundamental dos erros. Erros de truncatura. Solução de equações não lineares. Método dos gráficos. Método da secante e sua convergência. Método de Newton e sua convergência. Critérios de paragem. Sistemas de equações lineares. Eliminação de Gauss com pivotagem parcial. Métodos iterativos de Gauss-Seidel e Jacobi. Sistemas de equações não lineares. Método de Newton. Miniteste 1. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

28 Introdução Programa detalhado Dia Matéria Interpolação polinomial. Diferenças divididas. Fórmula interpoladora de Newton. Erro da fórmula interpoladora de Newton. Splines lineares e cúbicas. Mínimos quadrados polinomiais e modelos lineares. Equações diferenciais com condições iniciais de 1 a. Sistemas de equações diferenciais de 1 a ordem. Equações diferenciais de ordem superior. Equações diferencias com condições fronteira. Integração numérica. Fórmulas simples e compostas do Trapézio, Simpson e 3/8. Miniteste 2. Revisões. Avaliação Ficha TP (exame). A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

29 Erros Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

30 Erros Formato de vírgula flutuante normalizado fl(x) = ±0.d 1 d 2...d k 10 e onde, 0.d 1 d 2... d k corresponde à mantissa, e e é o expoente. fl t (x) representa o valor de x em vírgula flutuante truncado e fl a (x) representa o valor de x em vírgula flutuante arredondado. Exemplo x = 2 3 fl t (x) = fl a (x) = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

31 Erros Formato de vírgula flutuante (norma IEEE-754, 32 bits) σ e + 64 d 1 d 2 d 3 d 4 d 5 d 6 1 bit 7 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits Exemplo x = = = ( ) σ e + 64 d 1 d 2 d 3 d 4 d 5 d 6 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

32 Erros Exemplo de programação A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

33 Erros Exemplo de programação A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

34 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

35 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

36 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

37 Erros Erros Seja x o valor exacto e x o seu valor aproximado, que será usado nos cálculos x x é o erro absoluto (normalmente não se pode calcular, porque x é desconhecido); x x δ x é o limite superior do erro absoluto; r x = x x x = δx x δx x é o erro relativo. Exemplo Pediu-se a duas pessoas para contarem laranjas de dois cestos. A primeira contou 980 laranjas num cesto de 1000 e a segunda contou 480 num cesto de 500. Apesar de cometerem o mesmo erro absoluto (δ 1 = 20 laranjas e δ 2 = 20 laranjas) a segunda cometeu um erro maior, visto que r 1 = = 0.02 e r 2 = = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

38 Erros Fórmula fundamental dos erros Dados n valores aproximados, x 1,..., x n, e os seus respectivos erros absolutos é possível calcular um majorante para o erro absoluto cometido quando se aplica uma função f, através da fórmula fundamental dos erros. δ f M x1 δ x1 + M x2 δ x M xn δ xn f onde max x I xi Mxi, com I = I x1 I xn I xi = [x i δ xi, x i + δ xi ] r f δ f f(x 1,..., x n ) e A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

39 Erros Exemplo Cálculo dos limites do erro absoluto e relativo do cálculo da função f(x) = x 1 x 2. Temos que f x 1 Mx1 = 1 e f x 2 Mx2 = 1, logo e δ f = δ x1 + δ x2 r f δ x 1 + δ x2 x 1 x 2 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

40 Erros Algarismos Significativos Casa decimais são as casas (algarismos) à direita da vírgula. Os algarismos significativos são aqueles em que temos confiança do seu valor. Exemplos: tem 1 algarismo significativo se δ = 0.05, 2 se δ = e 7 se δ = tem 7 casas decimais e 2 algarismos significativos (δ = ). Quando todas as casas decimais são significativas 0.2 é diferente de A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

41 Zeros de funções Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

42 Zeros de funções Forma geral do problema Pretende-se determinar x tal que f(x) = 0 Exemplo Temos x = como solução para e x + x = 0 Nota: uma equação não linear pode não ter solução, ou ter mais do que uma. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

43 Zeros de funções Métodos iterativos Uma sequência diz-se iterativa se é definida por uma função F independente de k e dependente de um ou vários elementos anteriores a ele, x k = F (x k 1, x k 2,... ) Aproximações iniciais Um método que se baseie numa sequência iterativa com k 1 elementos anteriores necessita também de k 1 valores iniciais. Exemplo x k = x k 1 + x k 2 Partindo de x 0 = 1 e x 1 = 1 temos x 2 = x 1 + x 0 = 2, x 3 = x 2 + x 1 = = 3, x 4 = x 3 + x 2 = = 5 gera uma sequência com os números de Fibonacci. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

44 Zeros de funções Convergência Uma sequência iterativa diz-se convergente quando Convergência superlinear lim x k = x k lim k + x x k+1 x = L ou lim x k k + x x k+1 x x k = 0 Convergência quadrática x x k+1 lim k + x x k 2 = L A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

45 Zeros de funções Critério de Paragem A sequência de aproximações pode ser infinita. Como se pretende obter uma aproximação à solução implementa-se um critério de paragem. Estimativa do erro relativo d k = x k+1 x k x k+1 ɛ 1 Valor da função f(x k+1 ) ɛ 2 Número máximo de iterações k n max A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

46 Zeros de funções Método dos gráficos Uma aproximação ao zero da função f(x) pode obter-se pela intersecção do gráfico de f(x) com o eixo dos xx; se f(x) = g(x) h(x) os zeros de f(x) são os pontos de intersecção de g(x) com h(x). O método dos gráficos é frequentemente usado para obtermos uma aproximação inicial para outros métodos mais precisos. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

47 Zeros de funções Exemplo f(x) = e x + x g(x) = e x h(x) = x g(x) 0.2 h(x) y f(x) x A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

48 Zeros de funções Método da bissecção Se f(x i )f(x s ) < 0 então existe um número ímpar de raízes de f(x) no intervalo [x i, x s ]. Aproxima-se da raiz calculando x k = x i+x s 2, k = 1, 2,... Considera-se o intervalo [x i, x k ] se f(x i )f(x k ) < 0 e faz-se x s x k ou [x k, x s ] se f(x k )f(x s ) < 0 e faz-se x i x k A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

49 Zeros de funções Interpretação gráfica (Bissecção) f(x) = e x + x f(x) xi xk+1 xk xs xs x A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

50 Zeros de funções Método da secante Método iterativo em que se fornece o x 1 e x 2 (a raiz não está necessariamente no intervalo [x 1, x 2 ]). O próximo valor é calculado pela seguinte fórmula (equação iterativa): x k+1 = x k (x k x k 1 )f(x k ), k = 2, 3,... f(x k ) f(x k 1 ) Zeros complexos: O método da secante também calcula zeros complexos, bastando para isso usar aritmética complexa. Convergência: A convergência do método da Secante depende do valor de M 2m ser pequeno. M é o max f (ξ) e m é o min f (η), onde ξ, η I. ɛ k+1 = f (ξ) 2f (η) ɛ k 1ɛ k A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

51 Zeros de funções Interpretação gráfica (Secante) f(x) = e x + x f(x) xk+2 xk+1 xk xk x A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

52 Zeros de funções Método de Newton Método iterativo em que se fornece o x 0. O próximo valor é calculado pela seguinte formula (equação iterativa): x k+1 = x k f(x k) f, k = 1, 2,... (x k ) Zeros complexos: O método de Newton também calcula zeros complexos, bastando para isso usar aritmética complexa. Convergência: A convergência do método de Newton depende do valor de M 2m ser pequeno. M é o max f (ξ) e m é o min f (η), onde ξ, η I. ɛ k+1 = f (ξ) 2f (η) ɛ2 k A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

53 Zeros de funções Interpretação gráfica (Newton) f(x) = e x + x f(x) xk+2 xk+1 xk x A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

54 Zeros de funções Principais propriedades Ambos possuem convergência local. Superlinear no caso do método da secante e quadrática no método de newton. O método da secante não usa derivadas. O método da secante e de Newton podem falhar quando o denominador da equação iterativa é próximo de zero, i.e., quando f(x k ) f(x k 1 ) ou f (x k ) 0. O método da secante e de Newton não convergem necessariamente para o zero mais próximo da aproximação inicial. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

55 Resolução de sistemas lineares Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

56 Resolução de sistemas lineares Forma geral do problema a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x a nn x n = b n É um sistema com n equações lineares nas n incógnitas, x 1, x 2,..., x n. O sistema pode ser escrito na forma matricial Ax = b a 11 a a 1n a 21 a a 2n... a n1 a n2... a nn x 1 x 2... x n = b 1 b 2... b n A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

57 Resolução de sistemas lineares Exemplo x 1 x 2 x 3 = É um sistema linear de dimensão 3 3. A matriz dos coeficientes A = R 3 3 e o vector b = (1, 1, 1) T R 3 é o vector dos termos independentes A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

58 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

59 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

60 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

61 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

62 Resolução de sistemas lineares Definições A característica de uma matriz A, c(a), é o número máximo de linhas paralelas, ou colunas, linearmente independentes que existem na matriz. Para que um sistema seja possível e determinado temos de ter c(a) = n. Caso contrário (c(a) < n) o sistema é indeterminado ou impossível. À matrix (A b) que se obtém ampliando A com a coluna do termo independente b chama-se matriz ampliada do sistema. Triangular superior (inferior): É uma matriz em que os elementos abaixo (acima) da diagonal principal são zeros. Tridiagonal: Matriz em que a ij = 0, se i j 2, i, j = 1,..., n. Uma matriz com muitos elementos nulos diz-se esparsa. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

63 Resolução de sistemas lineares Tipos de métodos Métodos directos e estáveis. Métodos que calculam a solução exacta do sistema ao fim de um número finito de operações elementares, caso não ocorram erros de arredondamento. Matrizes dos coeficientes densas e de pequena dimensão. Métodos iterativos. Métodos que definem uma sequência infinita de operações, determinando uma sequência de aproximações, cujo limite é a solução exacta do sistema. Matrizes dos coeficientes esparsas e de grande dimensão. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

64 Resolução de sistemas lineares Tipos de métodos Métodos directos e estáveis. Métodos que calculam a solução exacta do sistema ao fim de um número finito de operações elementares, caso não ocorram erros de arredondamento. Matrizes dos coeficientes densas e de pequena dimensão. Métodos iterativos. Métodos que definem uma sequência infinita de operações, determinando uma sequência de aproximações, cujo limite é a solução exacta do sistema. Matrizes dos coeficientes esparsas e de grande dimensão. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

65 Resolução de sistemas lineares Estabilidade numérica Considere-se o seguinte sistema linear: { x1 + x 2 = x 1 + x 2 = 2 cuja solução é x = (1, 1) T. Usando aritmética de três algarismos significativos e considerando o multiplicador igual a = , surge o sistema condensado { x 1 + x 2 = cuja solução é x = (0, 1) T!!! x 2 = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

66 Resolução de sistemas lineares Motivação - Continuação Se nas mesmas condições usarmos a pivotagem parcial temos { x 1 + x 2 = x 1 + x 2 = m = = cuja solução é x = (1, 1) T. { x1 + x 2 = 2 x 2 = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

67 Resolução de sistemas lineares Eliminação de Gauss com Pivotagem Parcial (EGPP) Corresponde a eliminação de Gauss, mas em que a linha usada na eliminação dos elementos da coluna das linhas seguintes é o maior em módulo. Exemplo: m 21 = 3 9 m 31 = 6 9 = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

68 Resolução de sistemas lineares Eliminação de Gauss com Pivotagem Parcial (EGPP) m 32 = = 0.1 = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

69 Resolução de sistemas lineares Substituição inversa Quando a matriz é triangular superior pode-se determinar a solução directamente, através da substituição inversa. Exemplo vem que x 3 = = 0.875, x ( 2) = = x 1 = 1 ( 9) = 0.5 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

70 Resolução de sistemas lineares Substituição directa Quando a matriz é triangular inferior pode-se determinar a solução directamente, através da substituição directa. Exemplo vem que x 1 = 2 1 = 2, x 2 = = 1 x 3 = ( 1) 1 = 0 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

71 Resolução de sistemas lineares Decomposição LU Da eliminação de Gauss com Pivotagem Parcial resulta Exemplo ( ) (A I ) (U J ) ( ) ( ) A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

72 Resolução de sistemas lineares Determinantes de Matrizes det(a) = ( 1) s n u ii onde u ii corresponde aos elementos da diagonal da matriz U e s é o número de trocas de linhas para obter a matriz U. Exemplo ( 1 2 det 2 1 ) ( = ( 1) det i=1 ) = ( 1) = 3 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

73 Resolução de sistemas lineares Cálculo da Inversa de Matrizes A matriz inversa de A (A 1 ) verifica AA 1 = I = A 1 A. O cálculo da matriz inversa reduz-se a resolução de n sistemas lineares da forma Ax j = e j, j = 1,..., n, em que os vectores independentes e j são as colunas da matriz identidade. O vector solução x j corresponde à coluna j da matriz inversa. Na prática resolve-se os n sistemas em simultâneo, i.e., resolve-se a equação (U J ) por substituição inversa. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

74 Resolução de sistemas lineares Cálculo da Inversa de Matrizes - Exemplo ( ) ( ) ( ) ( ) { x11 = = x 21 = = ( ) { x12 = 1 1 ( ) 2 = x 22 = = ( ) ( ) A inversa de é A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

75 Resolução de sistemas lineares Métodos iterativos Nos métodos iterativos a solução exacta só é obtida ao fim de uma sequência infinita de operações. O processo parte de uma aproximação inicial para a solução do sistema e usa uma equação iterativa da forma Mx (k+1) = Nx (k) + b, para k = 1, 2,... Os métodos em que M e N não dependem de k dizem-se estacionários. Os métodos de Jacobi e Gauss-Seidel são métodos estacionário. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

76 Resolução de sistemas lineares Método Iterativo Jacobi D matriz dos elementos da diagonal principal, L matriz dos simétricos dos elementos abaixo da diagonal principal e U matriz dos simétricos dos elementos acima da diagonal principal. O método de Jacobi usa a partição de A em D (L + U), i.e, M = D e N = L + U A equação iterativa fica Dx (k+1) = (L + U)x (k) + b ou x (k+1) = D 1 (L + U)x (k) + D 1 b A matriz iteração é C J = M 1 N = D 1 (L + U) A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

77 Resolução de sistemas lineares Método Iterativo Gauss-Seidel M = D L N = U A equação iterativa fica Mx (k+1) = Nx (k) + b ou x (k+1) = M 1 Nx (k) + M 1 b A matriz iteração é C GS = M 1 N = (D L) 1 U. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

78 Resolução de sistemas lineares Critério de Paragem Erro relativo na aproximação x (k+1) x (k) x (k+1) < ɛ 1 Resíduo Ax (k+1) b < ɛ 2 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

79 Resolução de sistemas lineares Convergência dos métodos iterativos Condições suficientes A simétrica e definida positiva = GS exibe convergência global; A é estrita e diagonalmente dominante = J e GS exibem convergência global; C p < 1, para qualquer normal p, = J e GS exibem convergência global; C é a matriz iteração de Jacobi ou Gauss-Seidel. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

80 Resolução de sistemas lineares Convergência dos métodos iterativos Condições suficientes A simétrica e definida positiva = GS exibe convergência global; A é estrita e diagonalmente dominante = J e GS exibem convergência global; C p < 1, para qualquer normal p, = J e GS exibem convergência global; C é a matriz iteração de Jacobi ou Gauss-Seidel. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

81 Resolução de sistemas lineares Convergência dos métodos iterativos Condições suficientes A simétrica e definida positiva = GS exibe convergência global; A é estrita e diagonalmente dominante = J e GS exibem convergência global; C p < 1, para qualquer normal p, = J e GS exibem convergência global; C é a matriz iteração de Jacobi ou Gauss-Seidel. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

82 Resolução de sistemas lineares Algumas definições Uma matriz A diz-se simétrica se A = A T. Uma matriz é definida positiva se d T Ad > 0, d 0. É equivalente a verificar que todos os determinante das sub-matrizes principais são maiores do que zero. Uma matriz A diz-se estrita e diagonalmente dominante se a ii > n a ij, i = 1,..., n j=1 j i A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

83 Resolução de sistemas lineares Algumas definições Uma matriz A diz-se simétrica se A = A T. Uma matriz é definida positiva se d T Ad > 0, d 0. É equivalente a verificar que todos os determinante das sub-matrizes principais são maiores do que zero. Uma matriz A diz-se estrita e diagonalmente dominante se a ii > n a ij, i = 1,..., n j=1 j i A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

84 Resolução de sistemas lineares Algumas definições Uma matriz A diz-se simétrica se A = A T. Uma matriz é definida positiva se d T Ad > 0, d 0. É equivalente a verificar que todos os determinante das sub-matrizes principais são maiores do que zero. Uma matriz A diz-se estrita e diagonalmente dominante se a ii > n a ij, i = 1,..., n j=1 j i A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

85 Resolução de sistemas lineares Exemplo - convergência de Gauss-Seidel Considere-se a seguinte matriz dos coeficientes de um sistema linear ( ) 3 1 A = 1 2 Como a A = A T a matriz é simétrica. ( ) 3 1 det( 3 ) = 3 > 0 det(a) = = 5 > Logo A é simétrica e definida positiva e o método de Gauss-Seidel converge. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

86 Resolução de sistemas lineares Exemplo - convergência de Jacobi Considere-se o seguinte sistema ( Como 1 2 a matriz dos coeficientes não é estrita e diagonalmente dominante e nada se pode concluir acerca da convergência do método de Jacobi. No entanto se trocarmos as linhas temos ( 3 1 ) e como 3 > 1 e 2 > 1 a matriz é estrita e diagonalmente dominante, logo o método de Jacobi converge. ) A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

87 Resolução de sistemas lineares Exemplo - convergência de Jacobi Considere-se a seguinte matriz dos coeficientes de um sistema linear ( ) 3 2 A = 3 1 Como 3 > 2, mas 1 3 a matriz dos coeficientes não é estrita e diagonalmente dominante e nada se pode concluir acerca da convergência do método de Jacobi. D = ( ) L = ( ) U = ( ) A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

88 Resolução de sistemas lineares Continuação ( ) ( C J = D (L + U) = ( ) = 3 0 ) Como C J = max{ , } = 3 1 e c J 1 = max{ 0 + 3, } = 3 1 nada se pode concluir acerca da convergência do método de Jacobi. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

89 Resolução de sistemas lineares Uma iteração do método de Gauss-Seidel Considere-se o seguinte sistema linear ( A = ), x (1) = (0, 0) T e ɛ 1 = ɛ = 0.1 ( ) 3 0 D = L = 0 2 Equação iterativa é ( ) U = ( ) (D L)x (k+1) = Ux (k) + b A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

90 Resolução de sistemas lineares Continuação 1 a iteração C.P. ( ) ( x (2) 0 1 = 0 0 ( x (2) x (1) x (2) = ) { ( ( ) ( 0 0 ) ( ) = ( 1 1 x (2) 1 = 1 3 = x (2) 2 = = ) ( 0 0 ) ) ) = = Como o critério não se verifica deve-se continuar com a próxima iteração. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

91 Resolução de sistemas não lineares Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

92 Resolução de sistemas não lineares Sistemas de equações não lineares Forma geral do problema f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0... f n (x 1, x 2,..., x n ) = 0 em que f = (f 1, f 2,..., f n ) T é um vector de funções pelo menos uma vez continuamente diferenciáveis. Pretende-se determinar um x = (x 1, x 2,..., x n) T tal que f(x ) = (0, 0,..., 0) T = 0. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

93 Resolução de sistemas não lineares Fórmula de Taylor a uma dimensão Se f : R R for l + 1 vezes diferenciável temos que f(x) = l k=0 f (k) (a) k! (x a) k + f (l+1) (ξ) (x a)l+1 (l + 1)! com ξ [a, x] e a função definida em torno de a. Exemplo: Valor da função em x (k+1) definido em torno de x (k). f(x (k+1) ) f(x (k) ) + f (x (k) )(x (k+1) x (k) ) ou seja, quando se pretende que f(x (k+1) ) = 0 vem x (k+1) = x (k) f(x(k) ) f (x (k) ) Eq. it. do método de Newton A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

94 Resolução de sistemas não lineares Fórmula de Taylor para dimensão n Se f : R n R n temos que f(x (k+1) ) f(x (k) )+ f 1 (x (k) ) f 1 (x (k) ) x 1 f 2 (x (k) ) f 2 (x (k) ) x 1 x 2... x f n(x (k) ) x 1 f n(x (k) ) x 2... f 1 (x (k) ) x n f 2 (x (k) ) x n f n(x (k) ) x n x (k+1) 1 x (k) 1 x (k+1) 2 x (k) 2 x (k+1) n... x (k) n e deduzindo a equação iterativa do método de Newton para sistemas de equações não lineares temos, J(x (k) ) (k) x = f(x (k) ), com x (k+1) = x (k) + (k) x em que J(x) é o Jacobiano da função. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

95 Resolução de sistemas não lineares Critério de paragem x (k+1) x (k) 2 x (k+1) = (k) x 2 2 x (k+1) ɛ 1 2 Se x (k+1) 2 é zero, ou próximo de zero, então o critério deve ser (k) x 2 ɛ 1 Número máximo de iterações. f(x (k+1) ) 2 ɛ 2 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

96 Resolução de sistemas não lineares Critério de paragem x (k+1) x (k) 2 x (k+1) = (k) x 2 2 x (k+1) ɛ 1 2 Se x (k+1) 2 é zero, ou próximo de zero, então o critério deve ser (k) x 2 ɛ 1 Número máximo de iterações. f(x (k+1) ) 2 ɛ 2 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

97 Resolução de sistemas não lineares Critério de paragem x (k+1) x (k) 2 x (k+1) = (k) x 2 2 x (k+1) ɛ 1 2 Se x (k+1) 2 é zero, ou próximo de zero, então o critério deve ser (k) x 2 ɛ 1 Número máximo de iterações. f(x (k+1) ) 2 ɛ 2 A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

98 Resolução de sistemas não lineares Um exemplo Considere-se o seguinte sistema não linear { 3x 2 + 2y 2 = 35 4x 2 3y 2 cujo Jacobiano é J(x, y) = = 24 ( 6x 4y 8x 6y ) Temos f(x, y) = ( 3x 2 + 2y x 2 3y 2 24 ) e a aproximação inicial é (x, y) (1) = (2.5, 2). Pretende-se determinar a solução com uma precisão de ɛ 1 = ɛ 2 = A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

99 Resolução de sistemas não lineares Continuação 1 a iteração ( ) J((x, y) (1) 15 8 ) = J(2.5, 2) = ( ) f((x, y) (1) 8.25 ) = f(2.5, 2) = 11 ( (1) (x,y) = ( ) ) ( ) ( e (x, y) (2) = (x, y) (1) + (1) (x,y) = (3.05, 2)T ) A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

100 Resolução de sistemas não lineares Continuação C.P. ( f (x, y) (2)) ( ) = = 1.21 ɛ 2 = 0.1 Como o critério não se verifica faz-se uma nova iteração. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

101 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

102 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

103 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

104 Resolução de sistemas não lineares Propriedades Convergência local quadrática. Determina a solução de um sistema linear numa única iteração. Inconveniente do cálculo do Jacobiano. (Também existe um método da secante para sistemas.) O método falha quando o Jacobiano é singular. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

105 Interpolação polinomial Conteúdo 1 Introdução 2 Erros 3 Zeros de funções 4 Resolução de sistemas lineares 5 Resolução de sistemas não lineares 6 Interpolação polinomial 7 Interpolação segmentada - Splines 8 Mínimos quadrados lineares 9 Equações diferenciais - Condições iniciais 10 Equações diferenciais - Condições Fronteira 11 Integração numérica A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

106 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

107 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

108 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

109 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

110 Interpolação polinomial Motivação Pretende-se determinar uma função aproximação que descreva o melhor possível o comportamento de um conjunto de pontos (x 0, f 0 ), (x 1, f 1 ),..., (x m, f m ). Este conjunto de pontos pode ter sido obtido de: observações de uma experiência (função desconhecida); uma função complexa cujo cálculo é difícil (função pode ser conhecida). A função aproximação server para: formular um modelo matemático que descreve o processo em causa; obter valores da função em pontos que são desconhecidos. Problema: Como implementar a função sin(x) num microcontrolador? A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

111 Interpolação polinomial Continuação Pretende-se então, dado um conjunto de pontos (x i, f i ), i = 1,..., m, determinar uma função aproximação p(x) que melhor descreve o comportamento dos dados, de acordo com uma certa medida. No nosso caso vamos apenas considerar funções aproximação polinomiais, i.e., p n (x) é um polinómio interpolador de grau n. Para construirmos o polinómio interpolador de Newton são necessárias as diferenças divididas. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

112 Interpolação polinomial Diferenças divididas com espaçamento não constante Considere-se uma função f(x) tabelada em m + 1 pontos x 0, x 1,..., x m não igualmente espaçados. Diferenças divididas de primeira ordem são onde f j = f(x j ). [x j, x j+1 ] = f j f j+1 x j x j+1 j = 0,..., m 1 A diferença dividida de primeira ordem corresponde ao declive da recta que passa em (x j, f j ) e (x j+1, f j+1 ). A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

113 Interpolação polinomial Continuação As diferenças divididas de segunda ordem são [x j, x j+1, x j+2 ] = [x j, x j+1 ] [x j+1, x j+2 ] x j x j+2, j = 0,..., m 2. As diferenças divididas de ordem n são [x j, x j+1,..., x j+n ] = [x j, x j+1,..., x j+n 1 ] [x j+1, x j+2,..., x j+n ] x j x j+n para j = 0,..., m n. A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

114 Interpolação polinomial Tabela das diferenças divididas 0 0 [x 0, x 1 ] x 1 f 1 [x 0, x 1, x 2 ] [x 1, x 2 ] [x 0, x 1, x 2, x 3 ] x 2 f 2 [x 1, x 2, x 3 ] [x 2, x 3 ] [x 1, x 2, x 3, x 4 ] x m 2 f m 2 [x m 3, x m 2, x m 1 ] [x m 2, x m 1 ] [x m 3, x m 2, x m 1, x m] x m 1 f m 1 [x m 2, x m 1, x m] [x m 1, x m] x m f m [x 0,..., x m 1, x m] A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

115 Interpolação polinomial Exemplo x i f i dd1 dd2 dd3 dd4 dd A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

116 Interpolação polinomial Propriedades das diferenças divididas Simétrica nos argumentos, i.e., é independente da ordem dos argumentos; Exemplo x i f i x i f i A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

117 Interpolação polinomial Propriedades das diferenças divididas Se f j = u j + v j para valores de x j, j = 0,..., m então a tabela das DD de f é igual à soma das tabelas das DD de u e v. Exemplo: f(x) = sin(x) + e x, u(x) = sin(x) e v(x) = e x. x i u i x i v i x i f i A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

118 Interpolação polinomial Propriedades das diferenças divididas A diferença dividida de cf(x), com c constante, é igual ao produto da diferença dividida de f(x) por c. Exemplo: f(x) = sin(x), cf(x) = 2 sin(x) x i f i x i 2f i A. Ismael F. Vaz (UMinho) MN I Eng. Mec. 2007/ / 198

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008 Métodos Numéricos C A. Ismael F. Vaz 1 1 Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho) MN C 2007/2008

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Métodos Numéricos C Apresentação da Disciplina

Métodos Numéricos C Apresentação da Disciplina Métodos Numéricos C Apresentação da Disciplina Isabel Espírito Santo Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho iapinho@dps.uminho.pt http://www.norg.uminho.pt/iapinho/

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Análise Numérica Licenciaturas em Engenharia Ambiente,Civil e Química I - Equações Não Lineares.

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 lineares Muitos problemas da Física, Matemática, Engenharia, Biologia, economia e outras ciências,

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo III Resolução Numérica de Sistemas de Equações Normas, Erros e Condicionamento.

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios o semestre de 009/00 - LEMat e MEQ Resolução de sistemas lineares. Inuência dos erros de arredondmento. Consideremos o sistema linear A x = b, onde 0 6 0 A = 0 6,

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17.

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17. 1 2011-02-08 13:00 2h Capítulo 1 Aritmética computacional 1.1 Erros absolutos e relativos 1.2 O polinómio de Taylor Resolução do exercício 1.3 2 2011-02-08 15:00 1h30m As aulas laboratoriais só começam

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

Resolução de Sistemas de Equações Lineares

Resolução de Sistemas de Equações Lineares 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Resolução de Sistemas de Equações

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B =

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B = Departamento de Matemática da Universidade de Coimbra Optimização Numérica Licenciatura em Matemática Ano lectivo 2006/2007 Folha 1 1. Considere as matrizes A = [ 1 1 1 2 ] e B = [ 1 3 1 2 (a) Verifique

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares DMPA IM UFRGS Cálculo Numérico Índice Sistema de Equações Lineares 1 Sistema de Equações Lineares 2 com pivoteamento parcial 3 Método de Jacobi Método Gauss-Seidel Sistema de Equações Lineares n equações

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 20 (09/11/15) Interpolação: Introdução Características Interpolação Linear: Introdução Características Exercícios

Leia mais

Capítulo 2 - Sistemas de Equações Lineares

Capítulo 2 - Sistemas de Equações Lineares Capítulo 2 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/ 21 Sumário

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)

Leia mais

DISTRIBUIÇÃO DA CARGA HORÁRIA TEÓRICA PRÁTICA TEO/PRAT OUTRAS NÚMERO MÁXIMO DE ALUNOS POR TURMA AULAS TEÓRICAS PRÁTICAS 80 40

DISTRIBUIÇÃO DA CARGA HORÁRIA TEÓRICA PRÁTICA TEO/PRAT OUTRAS NÚMERO MÁXIMO DE ALUNOS POR TURMA AULAS TEÓRICAS PRÁTICAS 80 40 unesp UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS UNIVERSITÁRIO DE BAURU FACULDADE DE CIÊNCIAS PLANO DE ENSINO 2008 UNIDADE UNIVERSITÁRIA: FACULDADE DE CIÊNCIAS CURSO: LICENCIATURA EM MATEMÁTICA HABILITAÇÃO:

Leia mais

Universidade Federal de Campina Grande

Universidade Federal de Campina Grande Universidade Federal de Campina Grande Departamento de Sistemas e Computação Disciplina: Métodos e Software Numéricos Prof.: José Eustáquio Rangel de Queiroz Práticas de Avaliação e Planejamento das Atividades

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Introdução. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil

TP062-Métodos Numéricos para Engenharia de Produção Introdução. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil TP062-Métodos Numéricos para Engenharia de Produção Introdução Prof. Volmir Wilhelm Curitiba, Paraná, Brasil TP062-Métodos Numéricos para Engenharia de Produção Ementa Matrizes. Sistemas lineares. Zeros

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic Eng Biomédica e Bioengenharia-2009/2010 O problema geral da interpolação polinomial consiste em, dados n + 1 pontos (reais ou complexos) x

Leia mais

2. Sistemas lineares

2. Sistemas lineares 2. Sistemas lineares 2.1 Conceitos fundamentais. 2.2 Sistemas triangulares. 2.3 Eliminação de Gauss. 2.4 Decomposição LU. 2.5 Decomposição de Cholesky. 2.6 Decomposição espectral. 2.7 Uso da decomposição.

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional Curso 4402 - Engenharia de Produção Ênfase Identificação Disciplina 0002029EM1 - Cálculo Numérico Computacional Docente(s) Adriana Cristina Cherri Nicola Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Aula 10 Sistemas Não-lineares e o Método de Newton.

Aula 10 Sistemas Não-lineares e o Método de Newton. Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

+ a 3. x 3. são números reais, que recebem o nome de coeficientes das incógnitas; x 1

+ a 3. x 3. são números reais, que recebem o nome de coeficientes das incógnitas; x 1 3.2 SISTEMA LINEAR Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a 3,..., a n são números reais, que recebem o nome de coeficientes

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ Cálculo Numérico S. C. Coutinho Provas e gabaritos Lembre-se: Nas provas não são aceitas respostas sem justicativa. Você

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção.

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção. 1 a) Mostre que f (x) = x cos x possui uma raiz no intervalo [0, 1]. b) Prove que essa raiz é única. c) Sem executar o método, preveja o número de iterações que o algoritmo da bissecção utilizaria para

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

Exercícios de Matemática Computacional

Exercícios de Matemática Computacional Exercícios de Matemática Computacional 1 Teoria dos erros 1.1 Representação de números reais 1. Os resultados aproximados da medição de uma ponte e de uma viga foram, respectivamente, 9999 cm e 9 cm. Se

Leia mais

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975?

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975? Cap. 4- Interpolação Numérica 4.1. Definições Censos de BH População em BH (Habitantes,5,,, 1,5, 1,, 5, 194 196 198 Ano Ano 195 196 197 198 1991 1996 1 No. habitantes 5.74 68.98 1.5. 1.78.855..161.91.71.8.56.75.444

Leia mais

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida Métodos Numéricos Interpolação / Aproximação Renato S. Silva, Regina C. Almeida Interpolação / Aproximação situação: uma fábrica despeja dejetos no leito de um rio; objetivo: determinar a quantidade de

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 04/2014 Sistemas de Equações Lineares Parte 2 FATORAÇÃO LU Cálculo Numérico 3/37 FATORAÇÃO LU Uma fatoração LU de uma dada

Leia mais

Capítulo 5 - Interpolação Polinomial

Capítulo 5 - Interpolação Polinomial Capítulo 5 - Interpolação Polinomial Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa

Leia mais

Capítulo 2 - Sistemas de Equações Lineares

Capítulo 2 - Sistemas de Equações Lineares Capítulo 2 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica Carlos

Leia mais

Resolução de sistemas de equações não-lineares: Método de Newton

Resolução de sistemas de equações não-lineares: Método de Newton Resolução de sistemas de equações não-lineares: Método de Newton Marina Andretta/Franklina Toledo ICMC-USP 24 de setembro de 202 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico

Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico Integração Numérica Maria Luísa Bambozzi de Oliveira SME0300 Cálculo Numérico 27 de Outubro, 2010 e 8 de Novembro, 2010 Introdução Nas últimas aulas: MMQ: aproximar função y = f (x) por uma função F(x),

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Observação: Esta lista abrange os três primeiros tópicos da ementa do curso, teoria dos erros, sistemas lineares, e zeros de funções. Ela abrange

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA 1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: CST em Sistemas de Telecomunicações, Tecnologia Nome da disciplina: Métodos Numéricos Código: INF065 Carga horária: 67 horas Semestre previsto: 3º Pré-requisito(s):

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Sistemas Lineares Comuns na engenharia (calculo de estruturas, redes elétricas, solução de equações diferenciais) Forma

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Capítulo 3 Sistemas de equações lineares Os sistemas de equações lineares fazem parte da descrição matemática dos mais diversos fenômenos em todas as áreas das ciências naturais e também são peça fundamental

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 25/26 Capítulo V Integração Numérica 1. Demonstre que na regra de integração do ponto médio

Leia mais

1 a Lista de Exercícios Prof a. Vanessa Rolnik. seguir e indique o tipo de erro quando a representação não for possível.

1 a Lista de Exercícios Prof a. Vanessa Rolnik. seguir e indique o tipo de erro quando a representação não for possível. Tópicos de Análise Numérica 1 a Lista de Exercícios Prof a. Vanessa Rolnik 1. Considere o sistema PF( 1, 3, -4, 4) de base 1, 3 dígitos na mantissa, menor expoente -4 e maior expoente 4.Quantos números

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Método de Jacobi Método iterativo: produz uma sequencia de soluções,,,, que aproximam a solução do sistema a partir de

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Matemática II - / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a

Leia mais

Sistemas Lineares. ( Aula 3 )

Sistemas Lineares. ( Aula 3 ) Sistemas Lineares ( Aula 3 ) Determinante Definição: Determinante Matriz quadrada é a que tem o mesmo número de linhas e de colunas (ou seja, é do tipo n x n). A toda matriz quadrada está associado um

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

Figura : Monitoria. Monitoria Cálculo Numérico

Figura : Monitoria. Monitoria Cálculo Numérico Monitoria Cálculo Numérico 207-02 NOME Email Dia / Horário Local Ana Sofia Nunez de Abreu nunez.asofia@gmail.com Sex. 0-2h D- Luiz Eduardo Xavier luizeduardosxavier@gmail.com Ter, 5-7h Lab Rafael Mendes

Leia mais

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO

Leia mais

Sistemas Lineares - Eliminação de Gauss

Sistemas Lineares - Eliminação de Gauss 1-28 Sistemas Lineares - Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-28

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS Maio 12, 2008 2 Contents 1. Complementos de Álgebra Linear 3 1.1. Determinantes 3 1.2. Valores e vectores próprios 5 2. Análise em

Leia mais

A computação aplicada à resolução de sistemas lineares

A computação aplicada à resolução de sistemas lineares Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Sistemas e Computação Programa de Educação Tutorial (PET) A computação aplicada à resolução de sistemas

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 10.425, de 19/04/2002 - D.O.U. de 22/04/2002 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 2012 Prof:

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

MÉTODOS NUMÉRICOS C. Mestrado de ciclo integrado em. Engenharia de COMUNICAÇÕES EXERCÍCIOS TEÓRICO-PRÁTICOS

MÉTODOS NUMÉRICOS C. Mestrado de ciclo integrado em. Engenharia de COMUNICAÇÕES EXERCÍCIOS TEÓRICO-PRÁTICOS MÉTODOS NUMÉRICOS C Mestrado de ciclo integrado em Engenharia de COMUNICAÇÕES EXERCÍCIOS TEÓRICO-PRÁTICOS Ano lectivo de 2007/2008 1 ERROS. SOLUÇÃO DE UMA EQUAÇÃO NÃO LINEAR. 1 1 Erros. Solução de uma

Leia mais

f(h) δ h p f(x + h) f(x) (x) = lim

f(h) δ h p f(x + h) f(x) (x) = lim Capítulo 6 Derivação numérica Nesta seção vamos desenvolver métodos para estimar a derivada de uma função f calculada em um ponto x, f (x, a partir de valores conecidos de f em pontos próximos ao ponto

Leia mais

Erros META OBJETIVOS. 2.1 Erros

Erros META OBJETIVOS. 2.1 Erros Erros META Conceituar o erro, as fontes e formas de expressar estes erros, propagação dos erros em operações aritméticas fórmula geral e problema inverso. OBJETIVOS Resolver problemas práticos de erros

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

Solução de Sistemas Lineares: Métodos Iterativos

Solução de Sistemas Lineares: Métodos Iterativos Capítulo 5 Solução de Sistemas Lineares: Métodos Iterativos 5.1 Introdução Ao lado dos métodos exatos para resolver sistemas lineares, existem os métodos iterativos os quais passamos a discutir agora.

Leia mais

Cálculo Numérico Noções básicas sobre erros

Cálculo Numérico Noções básicas sobre erros Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo

Leia mais

Introdução à Programação Aula 18 Método de eliminação de Gauss

Introdução à Programação Aula 18 Método de eliminação de Gauss Introdução à Programação Aula 18 Método de eliminação de Gauss Pedro Vasconcelos DCC/FCUP 2015 Pedro Vasconcelos (DCC/FCUP) Introdução à Programação Aula 18 Método de eliminação de Gauss 2015 1 / 23 Nesta

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Não Linear Aula 7: Programação Não-Linear - Funções de Várias variáveis Vector Gradiente; Matriz Hessiana; Conveidade de Funções e de Conjuntos; Condições óptimas de funções irrestritas; Método

Leia mais

1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35.

1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35. Computação Científica Folha Prática Computação Numérica 1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35 c) 192 d) 255 e) 347 f) 513

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

UFSC Matrizes. Prof. BAIANO

UFSC Matrizes. Prof. BAIANO UFSC Matrizes Prof. BAIANO Matrizes Classifique como Verdadeiro ou Falso ( F ) Uma matriz é dita retangular, quando o número de linhas é igual ao número de colunas. ( F ) A matriz identidade é aquela em

Leia mais

Cálculo Numérico Conceitos Básicos

Cálculo Numérico Conceitos Básicos Cálculo Numérico Conceitos Básicos Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ 1 Princípios usados

Leia mais

Método de eliminação de Gauss

Método de eliminação de Gauss Matrizes - Matemática II - 00/0 Método de eliminação de Gauss Seja A = [a ij ] uma matriz de tipo m n. a FASE - ELIMINAÇÃO DESCENDENTE Esta fase permite obter uma matriz em forma de escada a partir da

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto

Leia mais

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Marina Andretta/Franklina Toledo ICMC-USP 24 de março de 2015 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

decomposição de Cholesky.

decomposição de Cholesky. Decomposição LU e Cholesky Prof Doherty Andrade - DMA-UEM Sumário 1 Introdução 1 2 Método de Eliminação de Gauss 1 3 Decomposição LU 2 4 O método de Cholesky 5 5 O Algoritmo para a decomposição Cholesky

Leia mais