Prova de Admissão para o Mestrado em Matemática IME-USP

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007"

Transcrição

1 Prova de Admissão para o Mestrado em Matemática IME-USP A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está no final da prova. É permitido deixar questões em branco. O valor total da prova é de 20 pontos; cada questão correta vale 1 ponto e cada questão errada implica num desconto de 0,25 pontos. Boa Prova! Notações Utilizadas na Prova R denota o corpo dos números reais e N denota o conjunto dos números inteiros não negativos. R[X] denota o anel dos polinômios com coeficientes reais numa indeterminada X. Ker(T ) denota o núcleo de uma aplicação linear T e Im(f) denota a imagem de uma função f. V denota o dual de um espaço vetorial V, isto é, o espaço das aplicações lineares cujo domínio é V e o contra-domínio é o corpo de escalares. Uma função f é dita crescente (resp., decrescente) se x y implica f(x) f(y) (resp., f(x) f(y)); uma função que é crescente ou decrescente é dita monótona. Uma seqüência (x n ) n N é dita crescente (resp., decrescente ou monótona) se a função N n x n for crescente (resp., decrescente ou monótona).

2 2 Questão 1. Seja A = (a ij ) n n uma matriz real simétrica tal que: n n a ij x i x j 0, i=1 j=1 para todo x = (x 1,..., x n ) R n. Pode-se concluir que: (a) a ij 0, para todos i, j = 1,..., n; (b) a matriz A é invertível; (c) todos os autovalores de A são maiores do que zero; (d) se B, C são matrizes reais simétricas tais que B 2 = A e C 2 = A então B = C ou B = C; (e) existe uma matriz real simétrica B tal que B 2 = A. Questão 2. Seja T : R 2 R 2 um operador linear. Considere as seguintes afirmações: (I) não existem v R 2 não nulo e λ R tais que T (v) = λv; (II) existem a, b R com b 0 e uma base de R 2 relativamente à qual a matriz de T é ( ) a b b a ; (III) o polinômio característico de T não possui raízes reais. (a) (II) implica (I), mas (I) não implica (II); (b) (II) implica (III), mas (III) não implica (II); (c) todas as afirmações são equivalentes; (d) (III) implica (I), mas (I) não implica (III); (e) (I) e (III) são equivalentes, mas nenhuma delas é equivalente a (II). Questão 3. Seja f : R N uma função. Considere as seguintes afirmações: (I) se f é contínua então f é constante; (II) existe x R tal que, para todo y R, f(x) f(y); (III) existe x R tal que, para todo y R, f(x) f(y). (a) apenas as afirmações (II) e (III) são sempre verdadeiras; (b) apenas as afirmações (I) e (II) são sempre verdadeiras; (c) apenas as afirmações (I) e (III) são sempre verdadeiras; (d) todas as afirmações são sempre verdadeiras; (e) apenas a afirmação (I) é sempre verdadeira.

3 Questão 4. Considere a função f : ]0, + [ R definida por f(x) = x x, para todo x > 0. (a) f (x) = x x x 1, para todo x > 0; (b) f (x) = x x (1 + ln x), para todo x > 0; (c) f (x) = e x ln x, para todo x > 0; (d) f (x) = x x ln x, para todo x > 0; (e) f não é derivável. Questão 5. Sejam X um subconjunto de R e a R. Considere as seguintes afirmações: (I) para todo ε > 0, X ]a ε, a + ε[ ; (II) existe uma seqüência monótona em X que converge para a. (III) para todo ε > 0, o conjunto X ]a ε, a + ε[ possui um elemento diferente de a. (a) (I) e (II) são equivalentes e (III) implica ambas; (b) (III) implica (I), (II) implica (I), mas (I) não implica (II); (c) (III) é equivalente a (I); (d) todas as afirmações são equivalentes; (e) (II) é equivalente a (III). Questão 6. Seja T : R 2 R 2 o operador linear definido por: T (x, y) = ( y, x), para todos x, y R. O polinômio característico de T é: (a) X + 1; (b) X 2 + 1; (c) X 2 X + 1; (d) X 2 + X + 1; (e) X 2 1. Questão 7. Seja f : R R uma função de classe C 1 tal que f (x) = sen x x, para todo x > 0. Pode-se concluir que: (a) f(0) = 1; (b) f (x) = sen x x, para todo x R não nulo; (c) f(x) = cos x x, para todo x > 0; (d) a reta { (x, y) R 2 : y = f(0) + x } é tangente ao gráfico de f; (e) a função f é crescente no intervalo ]0, + [. 3

4 Questão 8. Sejam V um espaço vetorial real de dimensão finita munido de um produto interno, T : V V um operador linear e T : V V o operador transposto de T. Se (e i ) n i=1 é uma base ortonormal de V constituída por autovetores do operador T T, pode-se concluir que: (a) se T é um isomorfismo então ( T (e i ) ) n é uma base ortogonal de V ; i=1 (b) o operador linear T é diagonalizável; (c) se T é um isomorfismo então ( T (e i ) ) n é uma base ortonormal de V ; i=1 (d) a matriz de T com respeito à base (e i ) n i=1 é diagonal; (e) a matriz de T com respeito à base (e i ) n i=1 é diagonal. Questão 9. Seja X um subconjunto de R e assuma que todo subconjunto limitado e não vazio de X possua o seu supremo e o seu ínfimo em X. Pode-se concluir que: (a) X é conexo; (b) X = R ou X = ; (c) X não é aberto; (d) X possui um elemento máximo ou um elemento mínimo; (e) X é fechado. Questão 10. Sejam A um conjunto e F(A) o espaço vetorial real constituído por todas as funções a valores reais definidas em A. Sejam φ : A R uma função e T : F(A) F(A) o operador linear definido por T (f) = φf, para toda f F(A). Considere as seguintes afirmações: (I) o conjunto dos autovalores de T é igual à imagem de φ; (II) T é injetora se e somente se o conjunto φ 1 (0) é vazio; (III) existe um polinômio não nulo p R[X] tal que p(t ) = 0 se e somente se a imagem de φ é finita. (a) nenhuma das afirmações é sempre verdadeira; (b) todas as afirmações são sempre verdadeiras; (c) apenas a afirmação (II) é sempre verdadeira; (d) apenas as afirmações (I) e (II) são sempre verdadeiras; (e) apenas as afirmações (II) e (III) são sempre verdadeiras. 4

5 5 Questão 11. Seja f : R R uma função limitada. Pode-se afirmar que: (a) se f é de classe C então o limite lim x + f(x) existe; (b) f não é monótona; (c) existe uma seqüência de números reais (x n ) n N crescente e ilimitada tal que a seqüência ( f(x n ) ) seja convergente; n N (d) se f é contínua então o limite lim x + f(x) existe; (e) existem a, b R com a < b tais que a função f [a,b] seja Riemann integrável. Questão 12. Sejam V um espaço vetorial real de dimensão finita e T : V V um operador linear. Considere as seguintes afirmações: (I) T é diagonalizável; (II) existem números reais distintos λ 1,..., λ k tais que: (T λ 1 I) (T λ k I) = 0, onde I denota o operador identidade de V ; (III) as raízes complexas do polinômio característico de T são todas reais e todos os autovalores de T têm multiplicidade algébrica igual a 1. (a) (I) e (III) são equivalentes; (b) todas as afirmações são equivalentes; (c) (I) e (II) são equivalentes e (III) implica ambas; (d) (I) implica (II), mas (II) não implica (I); (e) (II) implica (I), mas (I) não implica (II). Questão 13. Seja (x n ) n N a seqüência tal que x 0 = 1 e x n+1 = 2x n + 1, para todo n N. Considere as seguintes afirmações: (I) x n = 2 n+1 1, para todo n N; (II) x n é ímpar, para todo n N; (III) x n = 2 n, para todo n N. (a) apenas a afirmação (II) é verdadeira; (b) nenhuma das afirmações é verdadeira; (c) todas as afirmações são verdadeiras; (d) apenas a afirmação (III) é verdadeira; (e) apenas as afirmações (I) e (II) são verdadeiras.

6 6 Questão 14. (a) existe um operador linear T : R 3 R 3 tal que Ker(T ) = Im(T ); (b) toda aplicação linear T : R 2 R 3 é injetora; (c) se T : R n R n é um operador linear então R n = Ker(T ) Im(T ); (d) toda aplicação linear T : R 3 R 2 é sobrejetora; (e) existe um operador linear T : R 2 R 2 tal que Ker(T ) = Im(T ). Questão 15. Seja T : R R uma função. Considerando R como um espaço vetorial real, assinale a alternativa correta: (a) T é um operador linear se e somente se o gráfico de T é uma reta; (b) T é um operador linear se e somente se existem números reais a, b tais que T (x) = ax + b, para todo x R; (c) se T é um operador linear então T é uma função crescente; (d) se T é um operador linear então T é uma função bijetora; (e) T é um operador linear se e somente se existe um número real a tal que T (x) = ax, para todo x R. Questão 16. Seja f : R R uma função de classe C e, para cada inteiro n 0, denote por f (n) a n-ésima derivada de f (sendo f (0) = f). Considere as seguintes afirmações: (I) existe c 0 tal que f (n) (0) c n n!, para todo n 1; (II) existe ε > 0 tal que a série f (n) (0) n=0 n! x n seja convergente para todo x ] ε, ε[; (III) existe ε > 0 tal que f(x) = f (n) (0) n=0 n! x n, para todo x ] ε, ε[. (a) (II) e (III) são equivalentes; (b) todas as afirmações são equivalentes; (c) (I) e (II) são equivalentes entre si, mas não são equivalentes a (III); (d) (I) implica (III); (e) (I) implica (II) e (II) implica (III).

7 Questão 17. Sejam V, W espaços vetoriais e T : V W, S : W V aplicações lineares. Denote por I V, I W os operadores identidade de V e de W, respectivamente. Considere as seguintes afirmações: (I) o operador I V + S T é injetor; (II) o operador I W + T S é injetor; (III) o operador I V + S T é sobrejetor; (IV) o operador I W + T S é sobrejetor. (a) todas as afirmações são equivalentes; (b) (I) é equivalente a (III) e (II) é equivalente a (IV); (c) (I) não é equivalente a (II); (d) (I) é equivalente a (II) e (III) é equivalente a (IV); (e) (III) não é equivalente a (IV). Questão 18. Sejam f : R R uma função contínua e S R um subconjunto fechado. Pode-se concluir que: (a) f 1 (S) não é um conjunto aberto; (b) f(s) é igual a uma união enumerável de subconjuntos fechados de R; (c) f(s) não é um conjunto aberto; (d) f(s) é um conjunto fechado; (e) f(s) é igual a uma união enumerável de intervalos. Questão 19. Considere as seguintes afirmações: (I) dada uma função f : R R R, existe uma função g : R R tal que para todo x R, existe y R tal que f(x, y) g(y); (II) existe uma função f : R R R tal que para toda função contínua g : R R existe x R tal que f(x, y) = g(y), para todo y R; (III) dada uma seqüência (f n ) n N de funções contínuas f n : R R, existe uma função contínua g : R R tal que f n g, para todo n N. (a) apenas a afirmação (III) é verdadeira; (b) apenas as afirmações (I) e (III) são verdadeiras; (c) todas as afirmações são verdadeiras; (d) apenas as afirmações (II) e (III) são verdadeiras; (e) nenhuma das afirmações é verdadeira. 7

8 Questão 20. Sejam V um espaço vetorial e B = (e i ) i I uma base de V. Para cada i I seja α i V o funcional linear tal que, para todo v V, α i (v) é igual à i-ésima coordenada de v na base B. Considere as seguintes afirmações: (I) a família (α i ) i I é linearmente independente; (II) o conjunto {α i : i I} gera o espaço dual V ; (III) a dimensão de V é finita. (a) a afirmação (I) é sempre verdadeira e as afirmações (II) e (III) são equivalentes; (b) a afirmação (I) é equivalente à afirmação (II); (c) a afirmação (I) é equivalente à afirmação (III); (d) a afirmação (I) implica a afirmação (II); (e) as afirmações (I) e (II) são sempre verdadeiras. 8

9 Prova de Admissão para o Mestrado em Matemática IME-USP A Nome: RG: Assinatura: Folha de Respostas 1 a b c d e 2 a b c d e 3 a b c d e 4 a b c d e 5 a b c d e 6 a b c d e 7 a b c d e 8 a b c d e 9 a b c d e 10 a b c d e 11 a b c d e 12 a b c d e 13 a b c d e 14 a b c d e 15 a b c d e 16 a b c d e 17 a b c d e 18 a b c d e 19 a b c d e 20 a b c d e

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

ÁLGEBRA LINEAR. Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo. Prof. Susie C. Keller ÁLGEBRA LINEAR Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo Prof. Susie C. Keller Núcleo de uma Definição: Chama-se núcleo de uma transformação linear T: V W ao conjunto

Leia mais

Prof. Márcio Nascimento. 22 de julho de 2015

Prof. Márcio Nascimento. 22 de julho de 2015 Núcleo e Imagem Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Linear

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Transformações Lineares 1 Definição e Exemplos 2 Núcleo e Imagem

Leia mais

Notas Para um Curso de Cálculo. Daniel V. Tausk

Notas Para um Curso de Cálculo. Daniel V. Tausk Notas Para um Curso de Cálculo Avançado Daniel V. Tausk Sumário Capítulo 1. Diferenciação... 1 1.1. Notação em Cálculo Diferencial... 1 1.2. Funções Diferenciáveis... 8 Exercícios para o Capítulo 1...

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

pontuação Discursiva 02 questões 15 pontos 30 pontos Múltipla escolha 25 questões 2,8 pontos 70 pontos

pontuação Discursiva 02 questões 15 pontos 30 pontos Múltipla escolha 25 questões 2,8 pontos 70 pontos Caderno de Provas CÁLCULO DIFERENCIAL E INTEGRAL E ÁLGEBRA LINEAR Edital Nº. 36/2011 REITORIA/IFRN 29 de janeiro de 2012 INSTRUÇÕES GERAIS PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul

Leia mais

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

2 Extensão do Produto Vetorial Sobre uma Álgebra Exterior

2 Extensão do Produto Vetorial Sobre uma Álgebra Exterior 2 Extensão do Produto Vetorial Sobre uma Álgebra Exterior Seja R 3 o espaço euclidiano tridimensional, chamamos de álgebra exterior de R 3 a álgebra Λ(R 3 ) gerada pela base canônica {e 1, e 2, e 3 } satisfazendo

Leia mais

Aula 9 Plano tangente, diferencial e gradiente

Aula 9 Plano tangente, diferencial e gradiente MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

Álgebra Linear Volume 2

Álgebra Linear Volume 2 MATEMÁTICA Graduação Álgebra Linear Volume 2 Luiz Manoel Figueiredo Marisa Ortegoza da Cunha Módulo Volume 3 2ª edição 2 Luiz Manoel Figueiredo Marisa Ortegoza da Cunha I SBN 85-7648 - 315-7 Álgebra Linear

Leia mais

Seleção 2015 - Edital N 15/2014

Seleção 2015 - Edital N 15/2014 Departamento de Áreas Acadêmicas II Curso de Especialização em Matemática Seleção 015 - Edital N 15/014 INSTRUÇÕES: 1. O horário da realização da prova é previsto de 14h00min até as 17h30min.. A prova

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Gobooks.com.br. PucQuePariu.com.br

Gobooks.com.br. PucQuePariu.com.br ÁLGEBRA LINEAR todos os conceitos, gráficos e fórmulas necessárias, em um só lugar. Gobooks.com.br PucQuePariu.com.br e te salvando de novo. Agora com o: RESUMO ÁLGEBRA LINEAR POR: Giovanni Tramontin 1.

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

(Versão 1/09) Mauro Patrão. UnB - Departamento de Matemática

(Versão 1/09) Mauro Patrão. UnB - Departamento de Matemática Cálculo 1 (Versão 1/09) Mauro Patrão UnB - Departamento de Matemática 2 É permitido copiar e distriuir cópias verbatim (completas e idênticas) deste livro, mas qualquer modificação do mesmo é proibida.

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL Cálculo Álgebra Linear Programação Computacional Metodologia Científica Realização: Fortaleza, Fevereiro/2012 UNIVERSIDADE

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição 90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em

Leia mais

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 1. Verdadeiro ou falso? Justifique suas respostas. (i) Existe uma transformação linear T : P 3 (R) M 2 (R) cuja matriz em relação

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUDESTE DE MINAS GERAIS CONCURSO PÚBLICO PARA PROVIMENTO DE CARGO EFETIVO DE DOCENTES ÁREA: Matemática - PROVA OBJETIVA - Câmpus

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto \por N(f) ou Ker (f).

Leia mais

Introdução à Topologia Resoluções de exercícios. Capítulo 1

Introdução à Topologia Resoluções de exercícios. Capítulo 1 Introdução à Topologia Resoluções de exercícios Exercício nº5 (alíneas 3. e 4.) Capítulo 1 É imediato, directamente a partir da definição, que, dados r, s Q, d p (r, s) e que d p (r, s) = se e só se r

Leia mais

TRANSFORMAÇÃO LINEAR. Álgebra Linear - Prof a Ana Paula

TRANSFORMAÇÃO LINEAR. Álgebra Linear - Prof a Ana Paula Álgebra Linear - Prof a na Paula TRNSFORMÇÃO LINER Definição: T é uma transformação do espaço vetorial V no espaço vetorial W, T : V W, se cada vetor v V tem um só vetor imagem w W, que será indicado por

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

Fundamentos de Matemática Elementar (MAT133)

Fundamentos de Matemática Elementar (MAT133) Fundamentos de Matemática Elementar (MAT133) Notas de aulas Maria Julieta Ventura Carvalho de Araújo (Colaboração: André Arbex Hallack) Março/2010 i Índice 1 Conjuntos 1 1.1 A noção de conjunto e alguns

Leia mais

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5.

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5. UFPB/PRAI/CCT/DME - CAMPUS II DISCIPLINA: Álgebra Linear ALUNO (A): 2 a LISTA DE EXERCÍCIOS 1 a PARTE: QUESTÕES TIPO VERDADEIRO OU FALSO COM JUSTI- FICATIVA. 1. O conjunto dos polinômios de grau m com

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

Revisão Extra UECE. 1. (Espcex- 2013) A figura a seguir apresenta o gráfico de um polinômio P(x) do 4º grau no intervalo 0,5. 1 0 no intervalo 0,5 é

Revisão Extra UECE. 1. (Espcex- 2013) A figura a seguir apresenta o gráfico de um polinômio P(x) do 4º grau no intervalo 0,5. 1 0 no intervalo 0,5 é 1. (Espce- 01) A figura a seguir apresenta o gráfico de um polinômio P() do º grau no intervalo 0,5. O número de raízes reais da equação a) 0 b) 1 c) d) e) P 1 0 no intervalo 0,5 é. (Ufrn 01) Considere,

Leia mais

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Aula 28 EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Prof. Ricardo C.L.F. Oliveira Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre

Leia mais

Prova Extramuro BOA PROVA! Respostas da Parte II

Prova Extramuro BOA PROVA! Respostas da Parte II Prova Extramuro Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento da pontuação total é da parte I (Perguntas dissertativas). BOA PROVA!

Leia mais

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas.

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas. PROVA EXTRAMUROS-MESTRADO - 2016 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) A parte I (duas questões dissertativas) corresponde a 25%

Leia mais

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo

Leia mais

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com;

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com; Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 26 GRUPOS DE PERMUTAÇÕES E ALGUMAS DE PROPOSIÇÕES Thiago Mariano Viana 1, Marco Antônio Travasso 2 & Antônio Carlos

Leia mais

Capítulo 7. Topologia Digital. 7.1 Conexidade

Capítulo 7. Topologia Digital. 7.1 Conexidade Capítulo 7 Topologia Digital A Topologia Digital estuda a aplicação das noções definidas em Topologia sobre imagens binárias. Neste capítulo vamos introduzir algumas noções básicas de Topologia Digital,

Leia mais

Controlabilidade e Observabilidade

Controlabilidade e Observabilidade IA536 - Teoria de Sistemas Lineares - FEEC/UNICAMP contr 1/18 Controlabilidade e Observabilidade Sfrag replacements R 1 R 2 + u C 1 C 2 R 3 y A tensão no capacitor C 2 não pode ser controlada pela entrada

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO EXERCÍCIOS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Primeira Lista de Exercícios - Professor: Equipe da Disciplina 1. Em R 3, sejam S 1

Leia mais

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1. Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador

Leia mais

TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga TRANSFORMAÇÕES LINEARES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Estudaremos um tipo especial de função, onde o domínio e o contradomínio são espaços vetoriais reais. Assim, tanto

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas.

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas. UniposRio - FÍSICA Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro 9 de novembro de 00 Nome (legível): Assinatura: Leia atentamente as oito (8) questões e responda nas folhas de

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna

Leia mais

ÁLGEBRA LINEAR ISBN 978-85-915683-0-7

ÁLGEBRA LINEAR ISBN 978-85-915683-0-7 . ÁLGEBRA LINEAR ISBN 978-85-915683-0-7 ROBERTO DE MARIA NUNES MENDES Professor do Departamento de Matemática e Estatística e do Programa de Pós-graduação em Engenharia Elétrica da PUCMINAS Belo Horizonte

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma escola paga, pelo aluguel anual do ginásiodeesportesdeumclubea,umataxa fixa de R$.000,00 e mais R$ 0,00 por aluno. Um clube B cobraria pelo aluguel anual de um ginásio equivalente

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

ESPAÇOS MUNIDOS DE PRODUTO INTERNO

ESPAÇOS MUNIDOS DE PRODUTO INTERNO ESPAÇOS MUNIDOS DE PRODUTO INTERNO Angelo Fernando Fiori 1 Bruna Larissa Cecco 2 Grazielli Vassoler 3 Resumo: O presente trabalho apresenta um estudo sobre os espaços vetoriais munidos de produto interno.

Leia mais

BOA PROVA! Respostas da Parte II

BOA PROVA! Respostas da Parte II Nome: Identidade (Passaporte: Assinatura: Instruções (i O tempo destinado a esta prova é de 5 horas. (ii 5 porcento da pontuação total é da parte I (Perguntas dissertativas. BOA PROVA! Respostas da Parte

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS GRUPO Educação adistância Caderno de Estudos EQUAÇÕES DIFERENCIAIS Prof. Ruy Piehowiak Editora UNIASSELVI 2012 NEAD Copyright Editora UNIASSELVI 2012 Elaboração: Prof. Ruy Piehowiak Revisão, Diagramação

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014. Lista 2 Funçoes

Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014. Lista 2 Funçoes Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 204 Lista 2 Funçoes Salvo seja indicado o contrário, todas as funções nesta lista de eercícios estão

Leia mais

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2 MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido

Leia mais

o conjunto das coberturas de dominós de uma superfície quadriculada S. Um caminho v 0 v 1...v n

o conjunto das coberturas de dominós de uma superfície quadriculada S. Um caminho v 0 v 1...v n efinições Preliminares Na introdução foi apresentado o conceito de superfície quadriculada bicolorida e balanceada. Os discos com buracos estão mergulhados em R, mas não necessariamente estão no plano

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Álgebra Linear, Sistemas Dinâmicos e Equações Diferenciais Ordinárias

Álgebra Linear, Sistemas Dinâmicos e Equações Diferenciais Ordinárias Apêndice D Álgebra Linear, Sistemas Dinâmicos e Equações Diferenciais Ordinárias D1 Álgebra Linear e Espaços Vetoriais de Dimensão Finita D11 Vetores e bases Definição: Espaços vetoriais são conjuntos

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões: Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho Questões: 01.(UNESP) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fixa de 0 C.

Leia mais

Sistemas Dinâmicos Discretos Lineares notas de aula Análise Linear. Isabel S. Labouriau

Sistemas Dinâmicos Discretos Lineares notas de aula Análise Linear. Isabel S. Labouriau Sistemas Dinâmicos Discretos Lineares notas de aula Análise Linear Isabel S. Labouriau Novembro de 1991 Índice 1 Introdução, definições e exemplos 2 1.1 exemplo: transformação linear em R..............

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ Prova de seleção ao Mestrado e/ou Programa de Verão Programas: ICMC-USP, UFAL, UFRJ Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

Elementos de Matemática Discreta

Elementos de Matemática Discreta Elementos de Matemática Discreta Prof. Marcus Vinícius Midena Ramos Universidade Federal do Vale do São Francisco 9 de junho de 2013 marcus.ramos@univasf.edu.br www.univasf.edu.br/~marcus.ramos Marcus

Leia mais

Texto de Aprofundamento / Apoio Conceito de Função

Texto de Aprofundamento / Apoio Conceito de Função Texto de Aprofundamento / Apoio Conceito de Função Texto baseado no material preparado por Ângela Patricia Spilimbergo, Cleusa Jucela Meller Auth e Lecir Dalabrida da Universidade Regional do Noroeste

Leia mais

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Programação não linear para que serve? A programação linear tem a função objectivo e os constrangimentos lineares. O que nem sempre acontece na realidade,

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011 PROVAS DE MATEMÁTICA DO VESTIBULAR-0 DA MACKENZIE Profa. Maria Antônia Gouveia. //0 QUESTÃO N o 9 Turma N o de alunos Média das notas obtidas A 0,0 B 0,0 C 0,0 D 0,0 A tabela acima refere-se a uma prova

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

MM805- Tópicos de Análise I. Blue Sky Catástrofe em Sistemas Dinâmicos Reversíveis e Hamiltonianos

MM805- Tópicos de Análise I. Blue Sky Catástrofe em Sistemas Dinâmicos Reversíveis e Hamiltonianos MM805- Tópicos de Análise I Blue Sky Catástrofe em Sistemas Dinâmicos Reversíveis e Hamiltonianos Luiz Fernando da Silva Gouveia-RA:153130 Prof. Dr. Ricardo Miranda Martins MM805A - 2s/2014 1. Introdução

Leia mais