Trabalho Computacional. A(h) = V h + 2 V π h, (1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Trabalho Computacional. A(h) = V h + 2 V π h, (1)"

Transcrição

1 Unidade de Ensino de Matemática Aplicada e Análise Numérica Departamento de Matemática/Instituto Superior Técnico Matemática Computacional (Mestrado em Engenharia Física Tecnológica) 2014/2015 Trabalho Computacional I Numa refinaria será instalado um tanque cilíndrico, com base de raio r e altura h. Admite-se que a espessura do tanque é negligenciável e que a sua superfície superior é aberta. 1) Pretende-se minimizar a área do cilindro, ou seja, a área da sua base mais a área da parede lateral. Sabe-se que há apenas três possibilidades para escolher o volume V de líquido a introduzir no tanque até este estar completamente cheio, conforme os dados na segunda coluna da Tabela 1. (a) Levando em consideração que V pode escrever-se em função de r e h, mostre que a soma A das áreas da base e da parede lateral do cilindro se pode exprimir em função de h como onde se supõe que V é dado. A(h) = V h + 2 V π h, (1) (b) A partir da função A(h) dada em (1), e efectuando cálculos exactos, determine para cada valor de V, dado na Tabela 1, a altura h e a respectiva área mínima pretendida A min, completando as terceira e quarta colunas da referida tabela. Em cada caso diga, justificando, se o valor mínimo que calculou é único. Os valores exactos de h e A min, que calculou, serão posteriormente aproximados mediante aplicação de métodos numéricos especificados adiante. 2) Para cada um dos valores de V da Tabela 1, considere um método iterativo gerado pela função iteradora V g(h) = π h. (2) (a) Mostre graficamente que num certo intervalo [a, b], que deverá escolher, a função g possui um único ponto fixo. (b) É ou não verdade que cada um dos valores de h que calculou analiticamente em 1(b) é ponto fixo da função g? (c) Para cada intervalo [a, b] que considerou na alínea 2 (a) e para a função g em (2), são válidas as hipóteses que conhece do teorema do ponto fixo? Justifique. (d) Respectivamente para V = 2000, V = 5000 e V = 10000, como classifica o ponto fixo de g (como atractor, repulsor ou neutro)? Justifique. (e) Para cada valor de V da Tabela 1 e para os valores iniciais respectivamente h (0) = 15 e h (0) = 40, efectue 5 iterações do processo h (k+1) = g(h (k) ). Os resultados numéricos que obteve estão de acordo com o que se espera teoricamente? Justifique.

2 Tanque V (m 3 ) h A min A 2000 B 5000 C Tabela 1: 3 (a) Para cada valor de V da Tabela 1, aproxime o respectivo valor de h associado a A min, usando uma função iteradora para a qual possa garantir convergência supralinear e monótona. Justifique a escolha que fizer referindo condições que lhe permitam garantir esse tipo de convergência. Em cada caso, diga quantos algarismos significativos possui a aproximação mais precisa que obtiver para a respectiva área A min. 3 (b) Sendo (h (k) ) k 0 a sucessão de iteradas que, em cada caso, considerou na alínea anterior e p a respectiva ordem de convergência, obtenha uma tabela dos quocientes h (k+2) h (k+1) (h (k+1) h (k) ) p, k = 0,..., 3 Há alguma relação entre os valores numéricos que obteve para os quocientes e a constante assimptotica de convergência k do método iterativo que adoptou? Justifique. II 1) Seja z (a, b) um zero de uma função f C 2 ([a, b]) tal que f(a) < 0, f(b) > 0, f (x) > 0, f (x) > 0 x [a, b], (3) e considere o método de Newton-Fourier para a aproximação numérica de z: x 0 = b, y 0 = a, x n+1 = x n f(x n) f (x n ), y n+1 = y n f(y n),, n = 0, 1,... f (x n ) (a) Prove que x n > x n+1 > z, n 0, i.e. mostre que a sucessão {x n } é monótona decrescente e inferiormente limitada por z (b) Prove que y n < y n+1 < z, n 0, i.e. mostre que a sucessão {y n } é monótona crescente e superiormente limitada por z. (c) Conclua que lim x n = z, n lim y n = z. n

3 2) Considere a função f(x) = ln(1 + 2 e 2x ) + 2 x. (a) Prove que a equação f(x) = 0 tem um e um só zero real, z ( 1, 0 ). f (x) > 0, f (x) > 0 x R. Mostre ainda que (b) Aproxime z pelo método de Newton-Fourier. Considere x 0 = 0, y 0 = 1 e utilize o critério de paragem x n y n (c) Analise, com base nos resultados obtidos, a ordem de convergência da sucessão {d n } em que d n = x n y n. 3) Tente aproximar as quatro raízes reais de f(x) = x 2 2 sin (2π x) + 1 pelo método de Newton- Fourier. Observe que o método deve ser modificado caso as condições (3) não sejam satisfeitas. III Conhecidas as coordenadas S i = (x i, y i, z i ), para i = 1,..., 4, de quatro satélites, bem como as distâncias d i entre cada satélite e um ponto P = (x, y, z) na superfície da Terra, sabe-se que através de um sistema GPS podem ser obtidas aproximações das coordenadas de P. Suponha que para determinados satélites são dadas as coordenadas de S i e os tempos t i de trânsito do sinal entre cada satélite e um receptor GPS colocado em P, conforme os dados nas tabelas 2 e 3. Sendo. a norma euclidiana, as coordenadas x, y, z do ponto P podem ser obtidas resolvendo o sistema de equações S 1 P 2 = d 2 1 S 2 P 2 = d 2 2 S 3 P 2 = d 2 3 S 4 P 2 = d 2 4. Designando por c a velocidade da luz e por δ certa correcção (desconhecida) a adicionar aos tempos de trânsito, o sistema anterior pode ser escrito na forma 1, (x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 = c 2 (t 1 + δ) 2 (x x 2 ) 2 + (y y 2 ) 2 + (z z 2 ) 2 = c 2 (t 2 + δ) 2 (x x 3 ) 2 + (y y 3 ) 2 + (z z 3 ) 2 = c 2 (t 3 + δ) 2 (x x 4 ) 2 + (y y 4 ) 2 + (z z 4 ) 2 = c 2 (t 4 + δ) 2. Fazendo c = m/s e utilizando os dados tabelados, pretende-se determinar as coordenadas de um ponto P bem como o parâmetro δ satisfando o sistema (4). Sabe-se que X (0) = (x (0), y (0), z (0), δ (0) ) = ( , , , 1/2), embora grosseiramente, aproxima a solução do sistema (4) para os dados. (4) 1 Ver por exemplo, G. Nord, D. Jabon, and J. Nord, The global positioning system and the implicit function theorem, SIAM Rev. 40, 3, , 1998.

4 S i x i (m) y i (m) z i (m) S S S S Tabela 2: Coordenadas de 4 satélites. S i t i (seg) S S S S Tabela 3: Tempos observados para cada satélite (dados com 10 algarismos significativos). (a) A partir do ponto X (0) anteriormente considerado, obtenha as matrizes M e b do sistema linear M a = b (5) que lhe permitem calcular a aproximação X (1) da solução do sistema (4) mediante aplicação do método de Newton para sistemas não lineares. (b) Diga, justificando, se poderá aproximar a solução do sistema (5) aplicando o método de Gauss- Seidel. No caso afirmativo, calcule uma aproximação da solução do sistema M a = b, com erro não superior a (fixando uma norma que deverá especificar). (c) Tome para vector X (1) a aproximação da solução a que obteve na alínea anterior (ou considere X (0), no caso da resposta à alínea anterior ser negativa). A partir de X (1) efectue 5 iterações do método de Newton. Numa tabela inscreva os valores das coordenadas x, y, z e do parâmetro δ calculados, bem como o valor de F (x, y, z, δ) 2, sendo F : R 4 R 4 a função que considerou e cujos zeros são solução do sistema (4). IV 1) Numa experiência foi usado um tubo circular (de 16 cm de diâmetro) onde se fez circular um fluido viscoso (de densidade ρ = 1.2 kg m 3 ). Determinou-se a velocidade v do fluido em pontos situados a uma distância r do eixo do tubo. Os valores das observações efectuadas encontram-se na Tabela 4. r (cm) v (m/s) Tabela 4: Observações de velocidade v e raio r.

5 (a) Desenhe o gráfico G contendo os pontos tabelados (ListPlot). (b) Sobreponha em G o gráfico do polinómio interpolador dos valores tabelados. (c) Idem considerando a melhor aproximação de mínimos quadrados dos valores tabelados, por funções aproximantes do tipo g(x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 cosh(x) + a 5 cosh(2 x) + a 6 cosh(3 x) + a 7 cosh(4 x). Pode garantir que tal melhor aproximação é única? Justifique. (d) Diga, justificando, qual dos modelos referidos em (b) ou (c) adoptaria, no caso de desejar estimar valores da velocidade v para valores de r, com 0 < r < 8, que não constem da Tabela 4. 2) O fluxo de massa m do fluido através do tubo da referida experiência pode ser calculado através do integral definido m = R 0 2πρ v r dr. (a) Usando os valores tabelados, aplique uma das regras de Newton-Cotes para aproximar o respectivo escoamento, exprimindo o resultado em kg s 1. (b) Explique a razão para a escolha que fizer do método de quadratura que utilizou na alínea anterior. V Num processo químico envolvendo três reagentes A, B e C, as respectivas concentrações c A, c B e c C satisfazem o problema de valor inicial d c A (t) = 10 c A (t) c C (t) + c B (t) d c B (t) d c C (t) onde c A (0) = 10, c B (0) = 20 e c C (0) = 30. = 10 c A (t) c C (t) c B (t) 0 t 1 = 10 c A (t) c C (t) + c B (t) 2 c C (t), (a) Para o passo constante h, escreva as equações às diferenças do método de Taylor de segunda ordem aplicado ao sistema diferencial dado. (b) Faça h = Utilize as expressões que obteve na alínea anterior num programa que produza uma tabela de aproximações das concentrações de cada reagente, desde t = 0 a t = (c) Que significado atribui à frase o método numérico em causa possui ordem de convergência 2?

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

Problemas sobre Sistemas Não Lineares

Problemas sobre Sistemas Não Lineares Mestrado Integrado em Engenharia Electrotécnica e de Computadores Controlo em Espaço de Estados Problemas sobre Sistemas Não Lineares Organizada por J. Miranda Lemos 0 J. M. Lemos IST P. (Construção do

Leia mais

Vibrações Mecânicas. Vibração Livre Sistemas com 1 GL. Ramiro Brito Willmersdorf ramiro@willmersdorf.net

Vibrações Mecânicas. Vibração Livre Sistemas com 1 GL. Ramiro Brito Willmersdorf ramiro@willmersdorf.net Vibrações Mecânicas Vibração Livre Sistemas com 1 GL Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2015.1 Introdução Modelo 1

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Para determinarmos um valor aproximado das raízes de uma equação não linear, convém notar inicialmente

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Análise de Regressão Linear Simples e Múltipla

Análise de Regressão Linear Simples e Múltipla Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Variáveis, Expressões, Atribuição, Matrizes, Comandos de Desvio

Variáveis, Expressões, Atribuição, Matrizes, Comandos de Desvio Programação de Computadores I UFOP DECOM 2013 2 Exercícios de Revisão Variáveis, Expressões, Atribuição, Matrizes, Comandos de Desvio Sumário 1 Testes de Compreensão 1 2 Variáveis, Expressões, Atribuição,

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

Verificação e Validação em CFD

Verificação e Validação em CFD Erro de arredondamento. Erro iterativo. Erro de discretização. As três componentes do erro numérico têm comportamentos diferentes com o aumento do número de graus de liberdade (refinamento da malha). Erro

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

Introdução aos Modelos Biomatemáticos - aulas

Introdução aos Modelos Biomatemáticos - aulas Introdução aos Modelos Biomatemáticos - aulas Teórico-Práticas Mestrado em BBC, 2008/2009 1 Capítulo 1 Nos exercícios 1) e 2) suponha que o crescimento é exponencial. 1. Entre 1700 e 1800 a população humana

Leia mais

Trabalho Computacional II

Trabalho Computacional II Matemática Experimental 1 Licenciatura em Matemática Aplicada e Computação, 1 ō ano 2008/09 Departamento de Matemática Instituto Superior Técnico Lisboa Trabalho Computacional II Data limite de entrega:

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

INSTITUTO SUPERIOR DE GESTÃO

INSTITUTO SUPERIOR DE GESTÃO INSTITUTO SUPERIOR DE GESTÃO INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR (Exercícios) ( Texto revisto para o ano lectivo 1- ) António Carlos Morais da Silva Professor de I.O. / ISG Recomendações 1.

Leia mais

Indicações para a elaboração do trabalho a realizar em horário extra lectivo

Indicações para a elaboração do trabalho a realizar em horário extra lectivo Instituto Politécnico de Viseu Escola Superior de Tecnologia Curso: Eng a Mecânica e G. I. Ano: 1 o Semestre: 2 o Ano Lectivo: 2005/2006 Indicações para a elaboração do trabalho a realizar em horário extra

Leia mais

Métodos Numéricos 2010-11. Exame 11/07/11

Métodos Numéricos 2010-11. Exame 11/07/11 ESCOLA SUPERIOR DE BIOTECNOLOGIA Métodos Numéricos 2010-11 Exame 11/07/11 Parte Teórica Duração: 30 minutos Atenção: Teste sem consulta. Não é permitido o uso da máquina de calcular. Não esquecer de indicar

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Anderson Luiz B. de Souza Livro texto - Capítulo 14 - Seção 14.7 Encontrando extremos absolutos Determine o máximo e mínimo absolutos das funções

Leia mais

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I. Fluido Perfeito

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I. Fluido Perfeito Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I Fluido Perfeito 1. Considere o escoamento bidimensional, irrotacional e incompressível definido pelo potencial φ = a) Mostre que φ satisfaz

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática A 12.º Ano de Escolaridade Prova 635/2.ª Fase 11 Páginas Duração da Prova: 150 minutos. Tolerância:

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

(Exames Nacionais 2002)

(Exames Nacionais 2002) (Exames Nacionais 2002) 105. Na figura estão representadas, num referencial o.n. xoy: parte do gráfico de uma função f, de domínio R +, definida por f(x)=1+2lnx; a recta r, tangente ao gráfico de f no

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

Escoamentos Internos

Escoamentos Internos Escoamentos Internos Escoamento Interno Perfil de velocidades e transição laminar/turbulenta Perfil de temperaturas Perda de carga em tubulações Determinação da perda de carga distribuída Determinação

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

Sistema de ponto flutuante

Sistema de ponto flutuante Exemplo: FP(,4,,A) e FP(,4,,T) Sistema de ponto flutuante FP( b, p, q,_) = FP(, 4,, _ ) base 4 dígitos na mantissa dígitos no expoente A=Arredondamento T=Truncatura x ± =± m b t x =± d 1d d d 4 dígitos

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Alguns apontamentos da história da Análise Numérica

Alguns apontamentos da história da Análise Numérica Análise Numérica 1 Âmbito da Análise Numérica Determinar boas soluções aproximadas num tempo computacional razoável? Slide 1 Porquê? Porque em muitos problemas matemáticos e respectivas aplicações práticas

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

3.1. Classifique: 3.1.1. o tipo de movimento da formiga. 3.1.2. o tipo de movimento da barata.

3.1. Classifique: 3.1.1. o tipo de movimento da formiga. 3.1.2. o tipo de movimento da barata. Escola Secundária Vitorino Nemésio Segundo teste de avaliação de conhecimentos de Física e Química A Componente de Física 11º Ano de Escolaridade Turma C 10 de Dezembro de 2008 Nome: Nº Classificação:

Leia mais

GNUPLOT Uma breve introdução

GNUPLOT Uma breve introdução GNUPLOT Uma breve introdução O GNUPLOT é um programa para traçado de gráficos bi e tridimensionais distribuído livremente na Internet. Ele está disponível para plataformas Linux, Windows e outras do mundo

Leia mais

Departamento de Engenharia Sanitária e Ambiental - Faculdade de Engenharia Universidade Federal de Juiz de Fora Mecânica dos Fluidos Prática

Departamento de Engenharia Sanitária e Ambiental - Faculdade de Engenharia Universidade Federal de Juiz de Fora Mecânica dos Fluidos Prática Aula prática n o 1 1.1. Tema: Medida de viscosidade dinâmica Fluido é uma substância que, quando submetida a uma tensão de cisalhamento, deforma-se continuamente, independente da grandeza dessa tensão.

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

Escola Básica e Secundária de Velas

Escola Básica e Secundária de Velas Escola Básica e Secundária de Velas Planificação Anual do 12º Ano Matemática A Ano letivo 2015 /2016 1º Período 2º Período 3º Período Nº DE BLOCOS PREVISTOS 39 32 24 Apresentação 0,5 1º Período 2º Período

Leia mais

Matemática Básica - 08. Função Logarítmica

Matemática Básica - 08. Função Logarítmica Matemática Básica Função Logarítmica 08 Versão: Provisória 0. Introdução Quando calculamos as equações exponenciais, o método usado consistia em reduzirmos os dois termos da equação à mesma base, como

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

Controlo Em Espaço de Estados. Exame

Controlo Em Espaço de Estados. Exame Mestrado Integrado em Engenharia Electrotécnica e de Computadores Controlo Em Espaço de Estados 4/5 Eame 9 de Junho de 5, 5h horas salas F, F Duração horas Não é permitida consulta nem uso de calculadoras

Leia mais

Márcio Dinis do Nascimento de Jesus

Márcio Dinis do Nascimento de Jesus Márcio Dinis do Nascimento de Jesus Trabalho 3 Modelação Matemática usando o software Modellus Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2013 2 Modelação Matemática

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais Programa novo implementado em 2005/2006 PROVA 615/16 Págs. Duração da prova: 120 minutos

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/11 Págs. Duração da prova: 150

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

GRADUAÇÃO EM ENGENHARIA

GRADUAÇÃO EM ENGENHARIA GRADUAÇÃO EM ENGENHARIA EMENTAS DAS DISCIPLINAS DO CICLO BÁSICO 1º BIMESTRE INTRODUÇÃO À ENGENHARIA 40 horas Fundamentos da Engenharia e Suas Grandes Áreas; Inovação e Desenvolvimento de Produto; O Modo

Leia mais

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto:

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto: Matemática O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas ( x, y) dados abaixo x y 0 5 m 8 6 4 7 k Podemos concluir que o valor de k m é: A 5,5 B 6,5 C 7,5 D 8,5

Leia mais

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado. Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica

Leia mais

Sexta Lista - Fontes de Campo Magnético

Sexta Lista - Fontes de Campo Magnético Sexta Lista - Fontes de Campo Magnético FGE211 - Física III Sumário A Lei de Biot-Savart afirma que o campo magnético d B em um certo ponto devido a um elemento de comprimento d l que carrega consigo uma

Leia mais

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Nome: 2ª série: n o Professor: Luiz Mário Data: / / 2015. ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Orientações: - Este estudo dirigido poderá ser usado para revisar a matéria que será cobrada

Leia mais

Velocidade, Aceleração e Outras Taxas de

Velocidade, Aceleração e Outras Taxas de Capítulo 11 Velocidade, Aceleração e Outras Taxas de Variação 11.1 Introdução Até aqui entendemos a derivada de uma função como a inclinação da reta tangente ao seu gráfico. Veremos a seguir que o conceito

Leia mais

ESPAÇOS QUOCIENTES DANIEL SMANIA. [x] := {y X t.q. x y}.

ESPAÇOS QUOCIENTES DANIEL SMANIA. [x] := {y X t.q. x y}. ESPAÇOS QUOCIENTES DANIEL SMANIA 1. Relações de equivalência Seja uma relação de equivalência sobre um conjunto X, isto é, uma rel ção binária que satisfaz as seguintes propriedades i. (Prop. Reflexiva.)

Leia mais

1 Sistemas de Controle e Princípio do Máximo

1 Sistemas de Controle e Princípio do Máximo Sistemas de Controle & Controle Ótimo & Princípio do Máximo Lúcio Fassarella (215) 1 Sistemas de Controle e Princípio do Máximo Essencialmente, sistemas de controle são sistemas dinâmicos cuja evolução

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241 Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,

Leia mais

Programação. Folha Prática 4. Lab. 4. Departamento de Informática Universidade da Beira Interior Portugal. Copyright 2010 All rights reserved.

Programação. Folha Prática 4. Lab. 4. Departamento de Informática Universidade da Beira Interior Portugal. Copyright 2010 All rights reserved. Programação Folha Prática 4 Lab. 4 Departamento de Informática Universidade da Beira Interior Portugal Copyright 2010 All rights reserved. LAB. 4 4ª semana DESENHO E CONSTRUÇÃO DE ALGORITMOS 1. Revisão

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUDESTE DE MINAS GERAIS CONCURSO PÚBLICO PARA PROVIMENTO DE CARGO EFETIVO DE DOCENTES ÁREA: Matemática - PROVA OBJETIVA - Câmpus

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

LISTA 2. 4. y = e 2 x + y 1, y(0) = 1

LISTA 2. 4. y = e 2 x + y 1, y(0) = 1 MAT 01167 Equações Diferenciais LISTA Resolva: 1. x y y = x sen x. y + y tan x = x sen x cos x, y0) =. x + 1) dy dx x y = 1 4. y = e x + y 1, y0) = 1 5. x y + x + x + ) dy dx = 0 ) x 6. Resolva a equação

Leia mais

CURSO DE CÁLCULO INTEGRAIS

CURSO DE CÁLCULO INTEGRAIS CURSO DE CÁLCULO MÓDULO 4 INTEGRAIS SUMÁRIO Unidade 1- Integrais 1.1- Introdução 1.2- Integral Indefinida 1.3- Propriedades da Integral Indefinida 1.4- Algumas Integrais Imediatas 1.5- Exercícios para

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR - INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA Utilize as informações a seguir para as questões e. Uma estação de trens é constituída

Leia mais

Universidade da Beira Interior Departamento de Matemática. Fábrica 1 Fábrica 2 Fábrica 3 Mina 1 45 80 140 Mina 2 70 145 95

Universidade da Beira Interior Departamento de Matemática. Fábrica 1 Fábrica 2 Fábrica 3 Mina 1 45 80 140 Mina 2 70 145 95 Universidade da Beira Interior Departamento de Matemática INVESTIGAÇÃO OPERACIONAL Ano lectivo: 2008/2009; Curso: Economia Ficha de exercícios nº5: Problema de Transportes e Problema de Afectação. 1. Uma

Leia mais

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics DINÂMICA DOS FLUIDOS COMPUTACIONAL CFD = Computational Fluid Dynamics 1 Problemas de engenharia Métodos analíticos Métodos experimentais Métodos numéricos 2 Problemas de engenharia FENÔMENO REAL (Observado

Leia mais

FÍSICA CADERNO DE QUESTÕES

FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

Matemática A. Fevereiro de 2010

Matemática A. Fevereiro de 2010 Matemática A Fevereiro de 2010 Matemática A Itens 10.º Ano de Escolaridade No Teste intermédio, que se irá realizar no dia 5 de Maio de 2010, os itens de grau de dificuldade mais elevado poderão ser adaptações

Leia mais

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein)

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein) Escola Básica Integrada c/ Jardim de Infância da Malagueira Teste de Avaliação Matemática 9ºB Nome: Nº: Data: 4 3 11 Classificação: A prof: O Enc. Educação: Se A é o sucesso, então é igual a X mais Y mais

Leia mais

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB. MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),

Leia mais

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein)

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein) Escola Básica Integrada c/ Jardim de Infância da Malagueira Teste de Avaliação Matemática 9ºB Nome: Nº: Data: 4 3 11 Classificação: A prof: O Enc. Educação: Se A é o sucesso, então é igual a X mais Y mais

Leia mais

f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana

f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Resolução de equações A resolução de equações (encontrar o valor de x ) é um dos problemas mais básicos e antigos da Matemática, motivado desde sempre por

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Processamento de Sinal e Ôndulas. Mestrado em Matemática e Computação. Colectânea de Exercícios (com a utilizaçao do Mathematica)

Processamento de Sinal e Ôndulas. Mestrado em Matemática e Computação. Colectânea de Exercícios (com a utilizaçao do Mathematica) Processamento de Sinal e Ôndulas Mestrado em Matemática e Computação Colectânea de Exercícios (com a utilizaçao do Mathematica) Maria Joana Soares MMC processamento de sinal e ôndulas 2010/2011 departamento

Leia mais