Aula 2 - Cálculo Numérico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 2 - Cálculo Numérico"

Transcrição

1 Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41

2 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação numérica Notação F(β, t, m, M) Mudança de Base Arredondamento em Ponto flutuante Operações em Ponto flutuante Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 2 / 41

3 Erros De modo geral o processo de solução de um problema físico é representado por: Problema Físico Modelo Matemático Solução Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 3 / 41

4 Erro na fase de modelagem Modelagem Para o estudo do movimento de um corpo sujeito a uma aceleração constante, tem-se a seguinte equação: S = S 0 + v 0 t at2 Determinar a altura de um edifício com apenas uma bolinha de metal, um cronômetro e a fórmula? Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 4 / 41

5 Erro na fase de modelagem Modelagem Supondo que a bolinha demora 3 segundos para atingir o solo, sendo lançada do topo do edifício, temos: S = S =44.1m. O resultado é confiável? Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 5 / 41

6 de truncamento Erros Truncamento Surge do truncamento de expressões matemáticas em um número finito de passos. Surge cada vez se substitui um processo matemático infinito por um processo finito ou discreto. Ex: Em uma série de Taylor S(x) = a n x n, temos uma função f n=1 definida por f (x) = e x para x = 1. Ela expressa por: e x =1 + x + x2 2! + x3 3! xn n! +..., então e 1 = ! + 1 3! n! +... Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 6 / 41

7 de truncamento Erros Truncamento Surge do truncamento de expressões matemáticas em um número finito de passos. Surge cada vez se substitui um processo matemático infinito por um processo finito ou discreto. Ex: Em uma série de Taylor S(x) = a n x n, temos uma função f n=1 definida por f (x) = e x para x = 1. Ela expressa por: e x =1 + x + x2 2! + x3 3! xn n! +..., então e 1 = ! + 1 3! n! +... Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 6 / 41

8 de truncamento Erros Truncamento Surge do truncamento de expressões matemáticas em um número finito de passos. Surge cada vez se substitui um processo matemático infinito por um processo finito ou discreto. Ex: Em uma série de Taylor S(x) = a n x n, temos uma função f n=1 definida por f (x) = e x para x = 1. Ela expressa por: e x =1 + x + x2 2! + x3 3! xn n! +..., então e 1 = ! + 1 3! n! +... Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 6 / 41

9 de truncamento Erros Truncamento Desejando-se calcular o valor de e 1 utilizando-se os sete primeiros termos da série, tem-se: e ! + 1 3! + 1 4! + 1 5! + 1 6! + 1 7! e Há um erro de truncamento, pois dos infinitos termos da série foram considerados apenas os sete primeiros. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 7 / 41

10 Representação numérica Representação de um número inteiro Dado um número inteiro n 0, ele possui uma única representação: n = ±(n k n k+1... n 1 n 0 ) = ±(n 0 β 0 + n 1 β n k β k ), onde os n i, i = 0, 1,..., k são inteiros satisfazendo 0 n i < β e n k 0. Exemplo: Na base β = 10, o número 1997 é representado por: 1997 = e é armazenado como n 3 n 2 n 1 n 0. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 8 / 41

11 Representação numérica Representação de um número inteiro Dado um número inteiro n 0, ele possui uma única representação: n = ±(n k n k+1... n 1 n 0 ) = ±(n 0 β 0 + n 1 β n k β k ), onde os n i, i = 0, 1,..., k são inteiros satisfazendo 0 n i < β e n k 0. Exemplo: Na base β = 10, o número 1997 é representado por: 1997 = e é armazenado como n 3 n 2 n 1 n 0. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 8 / 41

12 Representação numérica Representação de um número real Representação em Ponto Fixo. Usado no passado, em máquinas antigas. Dado um número inteiro x 0, ele é representado em ponto fixo por: x = ± n x i β i, i=k onde k e n são inteiros satisfazendo k < n e, usualmente, k 0 e n > 0 e os x i são inteiros satisfazendo 0 x i < β. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 9 / 41

13 Representação numérica Representação de um número real Representação em Ponto Fixo. Usado no passado, em máquinas antigas. Dado um número inteiro x 0, ele é representado em ponto fixo por: x = ± n x i β i, i=k onde k e n são inteiros satisfazendo k < n e, usualmente, k 0 e n > 0 e os x i são inteiros satisfazendo 0 x i < β. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 9 / 41

14 Representação numérica Representação de um número real Representação em Ponto Fixo. Usado no passado, em máquinas antigas. Dado um número inteiro x 0, ele é representado em ponto fixo por: x = ± n x i β i, i=k onde k e n são inteiros satisfazendo k < n e, usualmente, k 0 e n > 0 e os x i são inteiros satisfazendo 0 x i < β. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 9 / 41

15 Representação numérica Representação de um número real Representação em Ponto Fixo. Exemplo: Na base β = 10, o número é representado por: = 2 x i β i i= 3 = = e é armazenado como x 3 x 2 x 1 x 0.x 1 x 2. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 10 / 41

16 Representação numérica Representação de um número real Representação em Ponto Flutuante. Mais flexível que a representação em ponto fixo, é universalmente utilizada nos dias atuais. Dado um número real x 0, ele é representado em ponto flutuante por: x = ±d β e, onde β é a base do sistema de numeração, d é a mantissa e e é o expoente. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 11 / 41

17 Representação numérica Representação de um número real Representação em Ponto Flutuante. Mais flexível que a representação em ponto fixo, é universalmente utilizada nos dias atuais. Dado um número real x 0, ele é representado em ponto flutuante por: x = ±d β e, onde β é a base do sistema de numeração, d é a mantissa e e é o expoente. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 11 / 41

18 Representação numérica Representação de um número real Representação em Ponto Flutuante. Mais flexível que a representação em ponto fixo, é universalmente utilizada nos dias atuais. Dado um número real x 0, ele é representado em ponto flutuante por: x = ±d β e, onde β é a base do sistema de numeração, d é a mantissa e e é o expoente. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 11 / 41

19 Representação numérica Representação de um número real A mantissa é um número em ponto fixo, isto é: d = n d i β i, i=k onde, frequentemente, nos grandes computadores, k = 1, tal que se x 0, então d 1 0; 0 d i < β, i = 1,2,... t, com t sendo a quantidade de dígitos significativos ou precisão do sistema, β 1 d < 1 e m e M. d 1 0 caracteriza o sistema de números em ponto flutuante normalizado O número zero pertence a qualquer sistema e é representado com mantissa igual a zero e e = m. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 12 / 41

20 Representação numérica Representação de um número real A mantissa é um número em ponto fixo, isto é: d = n d i β i, i=k onde, frequentemente, nos grandes computadores, k = 1, tal que se x 0, então d 1 0; 0 d i < β, i = 1,2,... t, com t sendo a quantidade de dígitos significativos ou precisão do sistema, β 1 d < 1 e m e M. d 1 0 caracteriza o sistema de números em ponto flutuante normalizado O número zero pertence a qualquer sistema e é representado com mantissa igual a zero e e = m. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 12 / 41

21 Representação numérica Representação de um número real A mantissa é um número em ponto fixo, isto é: d = n d i β i, i=k onde, frequentemente, nos grandes computadores, k = 1, tal que se x 0, então d 1 0; 0 d i < β, i = 1,2,... t, com t sendo a quantidade de dígitos significativos ou precisão do sistema, β 1 d < 1 e m e M. d 1 0 caracteriza o sistema de números em ponto flutuante normalizado O número zero pertence a qualquer sistema e é representado com mantissa igual a zero e e = m. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 12 / 41

22 Representação numérica Representação de um número real Exemplo 1. Escrever os números: x 1 = 0.35, x 2 = 5.712, x 3 = , x 4 = e x 5 = , onde todos estão na base β = 10, em ponto flutuante na forma normalizada. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 13 / 41

23 Representação numérica Representação de um número real Exemplo 1. Solução: 0.35 =( ) 10 0 = , = ( ) 10 1 = , =( ) 10 1 = , Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 14 / 41

24 Representação numérica Representação de um número real Exemplo 1. Solução: 0.35 =( ) 10 0 = , = ( ) 10 1 = , =( ) 10 1 = , Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 14 / 41

25 Representação numérica Representação de um número real Exemplo 1. Solução: 0.35 =( ) 10 0 = , = ( ) 10 1 = , =( ) 10 1 = , Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 14 / 41

26 Representação numérica Representação de um número real Exemplo 1. Solução: =( ) 10 4 = , =( ) 10 3 = Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 15 / 41

27 Representação numérica Representação de um número real Exemplo 1. Solução: =( ) 10 4 = , =( ) 10 3 = Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 15 / 41

28 Notação F(β, t, m, M) Notação F(β, t, m, M) Usada para representar um sistema de números em ponto flutuante normalizado, na base β, com dígitos t significativos e com limites de expoentes m e M. Um número em F(β, t, m, M) será representado por: onde d 1 0 e m e M. ±0.d 1 d 2... d t β e, Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 16 / 41

29 Notação F(β, t, m, M) Notação F(β, t, m, M) Usada para representar um sistema de números em ponto flutuante normalizado, na base β, com dígitos t significativos e com limites de expoentes m e M. Um número em F(β, t, m, M) será representado por: onde d 1 0 e m e M. ±0.d 1 d 2... d t β e, Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 16 / 41

30 Notação F(β, t, m, M) Notação F(β, t, m, M) Exemplo 2: Considere o sistema F(10, 3, 2, 2). Represente neste sistema os números do Exemplo 1. Solução: Neste sistema, um número será representado por: onde 2 e 2. ±0.d 1 d 2 d 3 β e, Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 17 / 41

31 Notação F(β, t, m, M) Notação F(β, t, m, M) Exemplo 2: Considere o sistema F(10, 3, 2, 2). Represente neste sistema os números do Exemplo 1. Solução: Neste sistema, um número será representado por: onde 2 e 2. ±0.d 1 d 2 d 3 β e, Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 17 / 41

32 Notação F(β, t, m, M) Notação F(β, t, m, M) Assim: E o resto? 0.35 = , = , = = , o expoente é maior que 2, causando overflow = , o expoente é menor que -2, causando underflow. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 18 / 41

33 Notação F(β, t, m, M) Notação F(β, t, m, M) Assim: E o resto? 0.35 = , = , = = , o expoente é maior que 2, causando overflow = , o expoente é menor que -2, causando underflow. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 18 / 41

34 Notação F(β, t, m, M) Notação F(β, t, m, M) Assim: E o resto? 0.35 = , = , = = , o expoente é maior que 2, causando overflow = , o expoente é menor que -2, causando underflow. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 18 / 41

35 Notação F(β, t, m, M) Exercícios 1 Considere o sistema F(10, 4, 4, 4). Represente neste sistema os números: x 1 = , x 2 = , x 3 =125.64, x 4 = , x 5 = Represente no sistema F(10, 3, 1, 3) os números do exercício 1. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 19 / 41

36 Mudança de Base Exemplos de mudança de base 1101 da base 2 para a base = = =13. Logo: (1101) 2 = (13) 10. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 20 / 41

37 Exemplos de mudança de base Mudança de Base da base 2 para a base = = =0.75. Logo: (0.110) 2 = (0.75) 10. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 21 / 41

38 Mudança de Base Exemplos de mudança de base 13 da base 10 para a base Logo: (13) 10 = (1101) 2. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 22 / 41

39 Mudança de Base Exemplos de mudança de base 0.75 da base 10 para a base = = =0.00 Logo: (0.75) 10 = (0.110) 2. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 23 / 41

40 Mudança de Base Exemplos de mudança de base 3.8 da base 10 para a base 2 Primeiro a parte inteira, temos (3) 10 = (11) 2 Parte decimal temos: = = = = =... Logo: (3.8) 10 = ( ) 2. Portanto, o número (3.8) 10 não tem representação exata na base 2. O que isso significa? E outras bases? Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 24 / 41

41 Mudança de Base Exemplos de mudança de base 3.8 da base 10 para a base 2 Primeiro a parte inteira, temos (3) 10 = (11) 2 Parte decimal temos: = = = = =... Logo: (3.8) 10 = ( ) 2. Portanto, o número (3.8) 10 não tem representação exata na base 2. O que isso significa? E outras bases? Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 24 / 41

42 Mudança de Base Exemplos de mudança de base 3.8 da base 10 para a base 2 Primeiro a parte inteira, temos (3) 10 = (11) 2 Parte decimal temos: = = = = =... Logo: (3.8) 10 = ( ) 2. Portanto, o número (3.8) 10 não tem representação exata na base 2. O que isso significa? E outras bases? Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 24 / 41

43 Mudança de Base Exemplos de mudança de base Dado o número da base 4, representá-lo na base 3 Primeiro muda-se para a base = = = = 2 4 = 0.5 Logo, (12.20) 4 = (6.5) 10. Agora precisamos mudar da base 10 para a base 3. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 25 / 41

44 Mudança de Base Exemplos de mudança de base Dado o número da base 4, representá-lo na base 3 Primeiro muda-se para a base = = = = 2 4 = 0.5 Logo, (12.20) 4 = (6.5) 10. Agora precisamos mudar da base 10 para a base 3. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 25 / 41

45 Mudança de Base Exemplos de mudança de base Dado o número da base 4, representá-lo na base 3 Primeiro muda-se para a base = = = = 2 4 = 0.5 Logo, (12.20) 4 = (6.5) 10. Agora precisamos mudar da base 10 para a base 3. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 25 / 41

46 Mudança de Base Exemplos de mudança de base Dado o número da base 4, representá-lo na base 3 Temos então: = = =... Assim: (6.5) 10 = ( ) 3. Observe que o número dado na base 4 tem representção exata na base 10, mas não na base 3. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 26 / 41

47 Mudança de Base Exercícios 3 Considere os seguintes números: x 1 = 34, x 2 = e x 3 = que estão na base 10. Escreva-os na base 2. 3 Considere os seguintes números: x 1 = , x 2 = e x 3 = que estão na base 2. Escreva-os na base Considere os seguintes números: x 1 = 33, x 2 = e x 3 = que estão na base 4. Escreva-os na base 5. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 27 / 41

48 Arredondamento em Ponto flutuante Arredondamento em Ponto flutuante Definição: Arredondar um número x, por um outro com um número menor de dígitos significativos, consiste em encontrar um número x, pertencente ao sistema de numeração, tal que x x seja o menor possível. Exemplo: Calcular o quociente entre 15 e 7. Solução: Temos 3 representações possíveis: x 1 = 15 7, x 2 = 2 1 7, x 3 = Suponha agora que só dispomos de 4 dígitos para representar esse quociente. Dai, 15 7 = ou 15 7 = 2.143? Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 28 / 41

49 Arredondamento em Ponto flutuante Arredondamento em Ponto flutuante Temos x 3 = e x 3 = Logo, representa a melhor aproximação para Dado x, seja x sua representação em F(β, t, m, M) adotando arredondamento. Se x = 0 então x = 0. Se x 0, então escolhemos s e e tais que: x = s β e onde β 1 (1 1 2 β t) s < β t. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 29 / 41

50 Arredondamento em Ponto flutuante Arredondamento em Ponto flutuante Se e está fora do intervalo [ m, M] não temos condições de representar o número no sistema. Se e [ m, M], calculamos: s β 1 = 0.d 1 d 2... d t d t+1... e truncamos em t dígitos. Assim o arredondamento será: x = (sinalx)(0.d 1 d 2... d t ) β e. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 30 / 41

51 Arredondamento em Ponto flutuante Arredondamento em Ponto flutuante Exemplo: Considerando o sistema F(10, 3, 5, 5). Represente nesse sistema os números: x 1 = , x 2 = , x 3 = , x 4 = e x 5 = Primeiro os valores permitidos para s. Para β = 10 e t = 3 temos: Logo: 10 1 ( ) s < , s < Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 31 / 41

52 Arredondamento em Ponto flutuante Arredondamento em Ponto flutuante Para x 1 = , obtemos: x 1 = , s = = , x 1 = Para x 2 = , obtemos: x 2 = , s = = , x 2 = Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 32 / 41

53 Arredondamento em Ponto flutuante Arredondamento em Ponto flutuante Para x 1 = , obtemos: x 1 = , s = = , x 1 = Para x 2 = , obtemos: x 2 = , s = = , x 2 = Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 32 / 41

54 Arredondamento em Ponto flutuante Arredondamento em Ponto flutuante Para x 3 = , obtemos: x 3 = , s = = , x 3 = Para x 4 = , obtemos: x 4 = Overflow! Para x 5 = , obtemos: x 5 = Underflow! Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 33 / 41

55 Arredondamento em Ponto flutuante Arredondamento em Ponto flutuante Para x 3 = , obtemos: x 3 = , s = = , x 3 = Para x 4 = , obtemos: x 4 = Overflow! Para x 5 = , obtemos: x 5 = Underflow! Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 33 / 41

56 Exercícios Erros Arredondamento em Ponto flutuante 5 Considere o sistema F(10, 4, 4, 4). Qual o intervalo para s nesse caso? Represente os números do exemplo anterior nesse sistema. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 34 / 41

57 Operações em Ponto flutuante Operações em Ponto flutuante Considerando β = 10 e 3 dígitos significativos. Efetue as operações indicadas: ( ) e ( ), obtemos: ( ) = = 19.7, ( ) = = Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 35 / 41

58 Operações em Ponto flutuante Operações em Ponto flutuante Considerando β = 10 e 3 dígitos significativos. Efetue as operações indicadas: e , obtemos: = = 7.19, = = ( ) e , obtemos: 3.18 ( ) = = 52.3, = = Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 36 / 41

59 Operações em Ponto flutuante Operações em Ponto flutuante Considerando β = 10 e 3 dígitos significativos. Efetue as operações indicadas: e , obtemos: = = 7.19, = = ( ) e , obtemos: 3.18 ( ) = = 52.3, = = Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 36 / 41

60 Operações em Ponto flutuante Operações em Ponto flutuante Avaliar o polinômio P(x) = x 3 6x 2 + 4x 0.1, no ponto 5.24 e comparar com o resultado exato. Para se obter o resultado exato considere todos os dígitos de sua calculadora, sem usar arredondamento. Assim: P(5.24) = = (exato). Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 37 / 41

61 Operações em Ponto flutuante Operações em Ponto flutuante Avaliar o polinômio P(x) = x 3 6x 2 + 4x 0.1, no ponto 5.24 e comparar com o resultado exato. Para se obter o resultado exato considere todos os dígitos de sua calculadora, sem usar arredondamento. Assim: P(5.24) = = (exato). Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 37 / 41

62 Operações em Ponto flutuante Operações em Ponto flutuante Agora, usando arredondamento a cada operação efetuada, obtemos: Solução: P(5.24) = = = 0.10 (somando da esquerda para a direita) = 0.00 (somando da direita para a esquerda) E se separarmos o x, mudaria a solução? Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 38 / 41

63 Operações em Ponto flutuante Operações em Ponto flutuante Agora, usando arredondamento a cada operação efetuada, obtemos: Solução: P(5.24) = = = 0.10 (somando da esquerda para a direita) = 0.00 (somando da direita para a esquerda) E se separarmos o x, mudaria a solução? Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 38 / 41

64 Exercícios Erros Operações em Ponto flutuante 6 Considere o sistema F(10, 3, 5, 5). Efetue as operações indicadas: i)( ) e ( ) ii) e Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 39 / 41

65 Exercícios Erros Operações em Ponto flutuante 7 Seja: x = (9.617) Calcule x usando todos os algarismos da sua calculadora, sem efetuar arredondamento. Calcule x considerando o sistema F(10, 3, 4, 3). Faça arredondamento a cada operação efetuada. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 40 / 41

66 Exercícios Erros Operações em Ponto flutuante 8 Seja P(x) = 2.3x 3 0.6x x 2.2: Calcule P(1.61) usando todos os algarismos da sua calculadora, sem efetuar arredondamento. Calcule P(1.61) considerando o sistema F(10, 3, 4, 3). Faça arredondamento a cada operação efetuada. Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 41 / 41

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Cálculo Numérico / Métodos Numéricos. Representação de números em computadores Mudança de base 14:05

Cálculo Numérico / Métodos Numéricos. Representação de números em computadores Mudança de base 14:05 Cálculo Numérico / Métodos Numéricos Representação de números em computadores Mudança de base 14:05 Computadores são "binários" Por que 0 ou 1? 0 ou 1 - "fácil" de obter um sistema físico Transistores

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. josineys@inf.ufpr.br Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 3 (10/08/15) Aritmética de ponto flutuante Representação de ponto flutuante Normalização Binária Decimal Situações

Leia mais

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula

Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula Aritmética de Ponto Flutuante e Noções de Erro Sumário 1 Introdução 2 Sistemas de Numeração 3 Representação de Números Inteiros no Computador 4 Representação de Números Reais no Computador 5 Operações

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional Matemática Computacional 2) Erros de arredondamento Carlos Alberto Alonso Sanches Erros de representação e de cálculo Tipos de erros Erro inerente: sempre presente na incerteza das medidas experimentais

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Representando Instruções no Computador

Representando Instruções no Computador Representando Instruções no Computador Humanos aprenderam a pensar na base 10 Números podem ser representados em qualquer base Números mantidos no hardware como série de sinais eletrônicos altos e baixos

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

Noções Básicas de Erros

Noções Básicas de Erros Noções Básicas de Erros PROF. ALIRIO SANTOS DE SÁ ALIRIOSA@UFBA.BR MATERIAL ADAPTADA DOS SLIDES DA DISCIPLINA DE CÁLCULO NUMÉRICO DOS PROFESSORES BRUNO QUEIROZ, JOSÉ QUEIROZ E MARCELO BARROS (UFCG). DISPONÍVEL

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica Carlos Balsa Métodos Numéricos

Leia mais

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante.

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica

Leia mais

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante Capítulo SETE Números em Ponto Fixo e Ponto Flutuante 7.1 Números em ponto fixo Observação inicial: os termos ponto fixo e ponto flutuante são traduções diretas dos termos ingleses fixed point e floating

Leia mais

Noções Básicas Sobre Erros

Noções Básicas Sobre Erros Noções Básicas Sobre Erros Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) I Representação dos números, aritmética de ponto flutuante e erros em máquinas

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

Sistema de ponto flutuante

Sistema de ponto flutuante Exemplo: FP(,4,,A) e FP(,4,,T) Sistema de ponto flutuante FP( b, p, q,_) = FP(, 4,, _ ) base 4 dígitos na mantissa dígitos no expoente A=Arredondamento T=Truncatura x ± =± m b t x =± d 1d d d 4 dígitos

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

Aritmética de Ponto Flutuante

Aritmética de Ponto Flutuante Aritmética de Ponto Flutuante Entre 1970 e 1980 um grupo formado por cientistas e engenheiros de diferentes empresas de computação realizou um trabalho intenso na tentativa de encontrar um padrão de representação

Leia mais

Capítulo 1 Erros e representação numérica

Capítulo 1 Erros e representação numérica Capítulo 1 Erros e representação numérica Objetivos Esperamos que ao final desta aula, você seja capaz de: Pré-requisitos Identificar as fases de modelagem e os possíveis erros nelas cometidos; Compreender

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE. Prof. Dr. Daniel Caetano 2012-1

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE. Prof. Dr. Daniel Caetano 2012-1 ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE Prof. Dr. Daniel Caetano 2012-1 Objetivos Compreender o que é notação em ponto flutuante Compreender a

Leia mais

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos Aula 9 Introdução à Computação Ponto Flutuante Ponto Flutuante Precisamos de uma maneira para representar Números com frações, por exemplo, 3,1416 Números muito pequenos, por exemplo, 0,00000001 Números

Leia mais

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução O que é cálculo numérico? Corresponde a um conjunto

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

Sistemas de Numeração (Aula Extra)

Sistemas de Numeração (Aula Extra) Sistemas de Numeração (Aula Extra) Sistemas de diferentes bases Álgebra Booleana Roberta Lima Gomes - LPRM/DI/UFES Sistemas de Programação I Eng. Elétrica 27/2 Sistemas de Numeração Um sistema de numeração

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Aritmética de Números Inteiros Representação de Números

Leia mais

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Representação de grandeza com sinal O bit mais significativo representa o sinal: 0 (indica um número

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Unidade 5: Sistemas de Representação

Unidade 5: Sistemas de Representação Arquitetura e Organização de Computadores Atualização: 9/8/ Unidade 5: Sistemas de Representação Números de Ponto Flutuante IEEE 754/8 e Caracteres ASCII Prof. Daniel Caetano Objetivo: Compreender a representação

Leia mais

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação COMPUTAÇÕES NUMÉRICAS.0 Representação O sistema de numeração decimal é o mais usado pelo homem nos dias de hoje. O número 0 tem papel fundamental, é chamado de base do sistema. Os símbolos 0,,, 3, 4, 5,

Leia mais

Computador HIPO. Inicialmente vamos apresentar as unidades fundamentais de um computador:

Computador HIPO. Inicialmente vamos apresentar as unidades fundamentais de um computador: Computador HIPO Para introduzirmos as noções básicas de como funciona um computador, empregaremos um modelo imaginário (hipotético) que denominaremos de computador hipo. O funcionamento desse modelo tem

Leia mais

Capítulo 1. Introdução. 1.1 Sistemas numéricos

Capítulo 1. Introdução. 1.1 Sistemas numéricos EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 1 Introdução O objetivo desta disciplina é discutir e aplicar técnicas e métodos numéricos para a resolução de problemas

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Sistemas de Numeração

Sistemas de Numeração Sistemas de Numeração Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes Sistemas de Numeração Prover símbolos e convenções

Leia mais

A declaração de uma variável vel define o seu tipo. O tipo do dado define como ele será: Armazenado na memória. Manipulado pela ULA.

A declaração de uma variável vel define o seu tipo. O tipo do dado define como ele será: Armazenado na memória. Manipulado pela ULA. Representação de Dados Tipos de dados: Caracteres (letras, números n e símbolos). s Lógicos. Inteiros. Ponto flutuante: Notações decimais: BCD. A declaração de uma variável vel define o seu tipo. O tipo

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Linguagem C: variáveis, operadores, entrada/saída. Prof. Críston Algoritmos e Programação

Linguagem C: variáveis, operadores, entrada/saída. Prof. Críston Algoritmos e Programação Linguagem C: variáveis, operadores, entrada/saída Prof. Críston Algoritmos e Programação Linguagem C Linguagem de uso geral (qualquer tipo de aplicação) Uma das linguagens mais utilizadas Foi utilizada

Leia mais

A FÓRMULA DE CONVERSÃO ENTRE AS UNIDADES É: F = 1.8 C + 32.0

A FÓRMULA DE CONVERSÃO ENTRE AS UNIDADES É: F = 1.8 C + 32.0 UTILIZANDO NOSSA MÁQUINA HIPOTÉTICA VAMOS CONSTRUIR UM PROGRAMA PARA CONVERTER VALORES DE UMA UNIDADE PARA OUTRA. O NOSSO PROGRAMA RECEBE UM VALOR NUMÉRICO QUE CORRESPONDE A UMA TEMPERATURA EM GRAUS CELSIUS

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Sumário. 1 ALGORITMOS BÁSICOS 2 1.1 PrecisãodeMáquina... 2 1.2 AlgorítmosBásicos... 3

Sumário. 1 ALGORITMOS BÁSICOS 2 1.1 PrecisãodeMáquina... 2 1.2 AlgorítmosBásicos... 3 CÁLCULO NUMÉRICO Prof. Dr Rogério de Aguiar Departamento de Matemática CCT-UDESC-JOINVILLE Email: dma2ra@joinville.udesc.br Home Page: www2.joinville.udesc.br/ ~dma2ra/ Joinville, 16 de Fevereiro de 2009

Leia mais

Organização e Arquitetura de Computadores. Aula 10 Ponto Flutuante Parte I. 2002 Juliana F. Camapum Wanderley

Organização e Arquitetura de Computadores. Aula 10 Ponto Flutuante Parte I. 2002 Juliana F. Camapum Wanderley Organização e Arquitetura de Computadores Aula 10 Ponto Flutuante Parte I 2002 Juliana F. Camapum Wanderley http://www.cic.unb.br/docentes/juliana/cursos/oac OAC Ponto Flutuante Parte I - 1 Panorama Números

Leia mais

Ambos têm os algarismos 7854 seguidos, a potência de dez apenas moverá a vírgula, que não afeta a quantidade de algarismos significativos.

Ambos têm os algarismos 7854 seguidos, a potência de dez apenas moverá a vírgula, que não afeta a quantidade de algarismos significativos. ALGARISMOS SIGNIFICATIVOS Os algarismos significativos são os algarismos que têm importância na exatidão de um número, por exemplo, o número 2,67 tem três algarismos significativos. Se expressarmos o número

Leia mais

Aula 6 Aritmética Computacional

Aula 6 Aritmética Computacional Aula 6 Aritmética Computacional Introdução à Computação ADS - IFBA Representação de Números Inteiros Vírgula fixa (Fixed Point) Ponto Flutuante Para todos, a quantidade de valores possíveis depende do

Leia mais

Projeto e Desenvolvimento de Algoritmos

Projeto e Desenvolvimento de Algoritmos Projeto e Desenvolvimento de Algoritmos Variáveis Adriano Cruz e Jonas Knopman Índice Objetivos Introdução Modelo de Memória Armazenamento de Dados Numéricos Dados Inteiros Dados Reais Armazenamento de

Leia mais

Operações com números racionais decimais

Operações com números racionais decimais Divisão 1º: Divisão exata Operações com números racionais decimais Considere a seguinte divisão: 1,4 : 0,05 Transformando em frações decimais, temos: Método prático 1º) Igualamos o números de casas decimais,

Leia mais

Aula 2 Sistemas de Numeração (Revisão)

Aula 2 Sistemas de Numeração (Revisão) Aula 2 Sistemas de Numeração (Revisão) Anderson L. S. Moreira anderson.moreira@recife.ifpe.edu.br http://dase.ifpe.edu.br/~alsm 1 O que fazer com essa apresentação 2 Agenda Breve revisão da aula anterior

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte III) Prof.a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Medidas e Incertezas

Medidas e Incertezas Medidas e Incertezas O que é medição? É o processo empírico e objetivo de designação de números a propriedades de objetos ou eventos do mundo real de forma a descreve-los. Outra forma de explicar este

Leia mais

Algoritmos DCC 119. Introdução e Conceitos Básicos

Algoritmos DCC 119. Introdução e Conceitos Básicos Algoritmos DCC 119 Introdução e Conceitos Básicos Sumário Sistemas de Numeração Sistemas Computacionais Estrutura de um Computador Digital Sistemas Operacionais Algoritmo Introdução Formas de representação

Leia mais

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE

Prof. Luís Caldas Sistemas de Numeração e Transformação de Base NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE NUMERAÇÃO, BASE NUMÉRICA E TRANSFORMAÇÃO DE UMA BASE Os números são na verdade coeficientes de uma determinada base numérica e podem ser representados como números assinalados, não assinalados, em complemento

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS 2 O que são e Por que se usam algarismos significativos? O valor 1,00 não é igual a 1? Do ponto de vista matemático, sim. Mas sempre que se façam medições

Leia mais

Primeiro roteiro de exercícios no Scilab Cálculo Numérico

Primeiro roteiro de exercícios no Scilab Cálculo Numérico Primeiro roteiro de exercícios no Scilab Cálculo Numérico Rodrigo Fresneda 13 de fevereiro de 2012 Guia para respostas: Responda a todas as questões que estão em negrito ao longo do roteiro. Inclua sempre

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Notas da disciplina Cálculo Numérico

Notas da disciplina Cálculo Numérico Notas da disciplina Cálculo Numérico Leonardo F. Guidi 7 de outubro de 2015 Instituto de Matemática Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves, 9500 Porto Alegre - RS 2 Sumário 1 Representação

Leia mais

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases...

Índice de conteúdos. Índice de conteúdos. Capítulo 2. Representação de Números e Erros...1. 1.Representação de números em diferentes bases... Índice de conteúdos Índice de conteúdos Capítulo 2. Representação de Números e Erros...1 1.Representação de números em diferentes bases...1 1.1.Representação de números inteiros e conversões de base...1

Leia mais

Aritmética com Maple:

Aritmética com Maple: Aritmética com Maple: Capítulo 3 Objetivos: 1. Estudar os tipos de dados numéricos disponíveis no Maple 2. Estudar as operações ariméticas disponíveis no Maple 3. Apresentar as funções de uso mais frequente

Leia mais

Alguns apontamentos da história da Análise Numérica

Alguns apontamentos da história da Análise Numérica Análise Numérica 1 Âmbito da Análise Numérica Determinar boas soluções aproximadas num tempo computacional razoável? Slide 1 Porquê? Porque em muitos problemas matemáticos e respectivas aplicações práticas

Leia mais

Sistemas de Vírgula Flutuante

Sistemas de Vírgula Flutuante Luiz C. G. Lopes Departamento de Matemática e Engenharias Universidade da Madeira MAT 2 05 2007/08 Definição. Diz-se que um número real x R\{0} é um número de vírgula flutuante normalizado se forem verificadas

Leia mais

Eduardo Camponogara Eugênio de Bona Castelan Neto

Eduardo Camponogara Eugênio de Bona Castelan Neto UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE AUTOMAÇÃO E SISTEMAS CÁLCULO NUMÉRICO PARA CONTROLE E AUTOMAÇÃO Versão preliminar Eduardo Camponogara Eugênio de Bona Castelan Neto Florianópolis,

Leia mais

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Unidade 3 Função Logarítmica Definição de aritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Definição de Logaritmo de um número Suponha que certo medicamento,

Leia mais

Critérios de Avaliação. Sobre a Disciplina. Por que estudar Arquitetura? SIM NÃO 20/04/2011. 02 provas. 01 trabalho

Critérios de Avaliação. Sobre a Disciplina. Por que estudar Arquitetura? SIM NÃO 20/04/2011. 02 provas. 01 trabalho Profa. Mariana Monteiro Universidade Estadual do Norte do Paraná Campus Luiz Meneghel Curso: Sistemas de Informação 3º Semestre mariana@uenp.edu.br Ementa Introdução à matéria Sistemas Numéricos Histórico/Gerações

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA

UNIVERSIDADE ESTADUAL PAULISTA Número de ponto flutuante com precisão estendida 1 unesp UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA MECÂNICA CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA

Leia mais

ARITMÉTICA. 1. Constantes Operadores e Funções

ARITMÉTICA. 1. Constantes Operadores e Funções ARITMÉTICA Neste capítulo, estudamos os tipos de dados numéricos disponíveis no Maple, assim como as operações aritméticas. Paralelamente apresentamos as funções de uso mais freqüente. 1. Constantes Operadores

Leia mais

Matemática Básica - 08. Função Logarítmica

Matemática Básica - 08. Função Logarítmica Matemática Básica Função Logarítmica 08 Versão: Provisória 0. Introdução Quando calculamos as equações exponenciais, o método usado consistia em reduzirmos os dois termos da equação à mesma base, como

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Sistema de Numeração Prof Daves Martins Msc Computação de Alto Desempenho Email: daves.martins@ifsudestemg.edu.br Sistemas Numéricos Principais sistemas numéricos: Decimal 0,

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

Arquitetura de Computadores

Arquitetura de Computadores Arquitetura de Computadores Prof. Fábio M. Costa Instituto de Informática UFG 1S/2004 Representação de Dados e Aritimética Computacional Roteiro Números inteiros sinalizados e nãosinalizados Operações

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Introdução aos Sistemas Computacionais

Introdução aos Sistemas Computacionais GUIÃO DE Introdução aos Sistemas Computacionais de Dulce Domingos e Teresa Chambel DI-FCUL GU ISC 01 11 Outubro 001 Departamento de Informática Faculdade de Ciências da Universidade de Lisboa Campo Grande,

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 Este é o 6º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

Juros Simples, Compostos, e Contínuos

Juros Simples, Compostos, e Contínuos Juros Simples, Compostos, e Contínuos Conceito Principal Juros são o preço pago pelo benefício do empréstimo de dinheiro por um certo período de tempo. Tipicamente, a taxa de juros é expressa como uma

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Sistemas de Computação

Sistemas de Computação Sistemas de Computação Ponto Flutuante Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 26 de abril de 2010 Haroldo Gambini Santos Sistemas de Computação 1/18 Seção 1 Introdução 2 O Padrão

Leia mais

Singularidades de Funções de Variáveis Complexas

Singularidades de Funções de Variáveis Complexas Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

Uma e.d.o. de segunda ordem é da forma

Uma e.d.o. de segunda ordem é da forma Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

Gráficos de funções em calculadoras e com lápis e papel (*)

Gráficos de funções em calculadoras e com lápis e papel (*) Rafael Domingos G Luís Universidade da Madeira/Escola Básica /3 São Roque Departamento de Matemática Gráficos de funções em calculadoras e com lápis e papel (*) A difusão de calculadoras gráficas tem levado

Leia mais

Introdução à Física Computacional

Introdução à Física Computacional Introdução à Física Computacional Apostila preparada para a disciplina de Modelos Computacionais da Física I, ministrada para o Curso de Licenciatura em Física do Departamento de Física, Instituto de Física

Leia mais

Cálculo Numérico - Mat 215. Prof. Dirceu Melo. Prof. Dirceu Melo - MAT215

Cálculo Numérico - Mat 215. Prof. Dirceu Melo. Prof. Dirceu Melo - MAT215 Cálculo Numérico - Mat 215 Prof. Dirceu Melo Prof. Dirceu Melo - MAT215 1 1ª AULA Introdução Sistemas Decimal e Binário Conversão de Sistemas de base Sistema Aritmético de Ponto Flutuante INTRODUÇÃO 3

Leia mais