Expansão linear e geradores

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Expansão linear e geradores"

Transcrição

1 Espaços Vectoriais - ALGA - 004/05 4 Expansão linear e geradores Se u ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u ; u ; :::; u n e outros não. O conjunto de todas as combinações lineares de um determinado de conjunto de vectores forma um subespaço vectorial de V : Teorema: Se u ; u ; :::; u n são vectores de um espaço vectorial real V; então:. O conjunto W de todas as possíveis combinações lineares de u ; u ; :::; u n é um subespaço vectorial de V:. W é o "menor" subespaço de V que contém u ; u ; :::; u n ; querendo isto dizer que, se W 0 é outro subespaço vectorial de V que contenha u ; u ; :::; u n ; então W W 0 : De nição: Seja V um espaço vectorial real e u ; u ; :::; u n vectores de V. O subespaço W de nido no teorema anterior, isto é, o subespaço W = f u + u + ::: + n u n : ; ; :::; n Rg chama-se expansão linear dos vectores u ; u ; :::; u n ou subespaço vectorial gerado pelos vectores u ; u ; :::; u n e representa-se por hu ; u ; :::; u n i. Os vectores u ; u ; :::; u n dizem-se um sistema de geradores de W: Observação Quando se coloca um sistema de vectores (eventualmente só com um vector) entre os símbolos h i passa-se a ter o subespaço vectorial gerado por esses vectores, que, não sendo o subespaço nulo, é in nito.. R = h(; 0; 0) ; (0; ; 0) ; (0; 0; )i, ou seja, os vectores (; 0; 0) ; (0; ; 0) e (0; 0; ) formam um sistema de geradores para o espaço vectorial R :. Mais geralmente, o sistema [(; 0; 0; :::; 0) ; (0; ; 0; :::; 0) ; (0; 0; ; :::; 0) ; :::; (0; 0; 0; :::; )] de n vectores de R n é um sistema de geradores de R n.. O subespaço vectorial de R ; F = f(x ; x ; x ) R : x x = 0 e x x = 0g é gerado por ; ; ; isto é, F = ; ; : Para calcular este gerador, basta encontrar ( x a solução geral, em R x = 0, do sistema de equações x x = 0 : 4. O subespaço vectorial de R 4 ; F = f(x ; x ; x ; x 4 ) R 4 : x x = 0 e x x = 0g, é gerado por ; ; ; 0 e (0; 0; 0; ) isto é, F = ; ; ; 0 ; (0; 0; 0; ) : Para calcular estes geradores, basta encontrar a solução geral, em R 4, do sistema de equações ( x x = 0 x x = 0 :

2 Espaços Vectoriais - ALGA - 004/ Os polinómios ; x; x ; : : : ; x n formam um sistema de geradores para R n [n] :. Para (0; 0; ; 0) e (0; 0; 0; ) em R ; veri ca-se que h(0; 0; ; 0) ; (0; 0; 0; )i = () = f (0; 0; ; 0) + (0; 0; 0; ) : ; Rg = () = (x ; x ; x ; x 4 ) R 4 : x = x = 0 : () Observações:. As expressões (), () e () do exemplo 5 mostram diferentes formas de representar um subespaço vectorial.. Um subespaço vectorial admite muitos sistemas de geradores diferentes. Temos, por exemplo, ou F = R = h(; 0; 0) ; (0; ; 0) ; (0; 0; )i = h(; ; ) ; (0; ; ) ; (0; 0; )i ; ; = h(; ; )i = h(; ; ) ; (0; 0; 0)i = ; ; ; (; ; ) ; (0; 0; 0) :. Um espaço vectorial que admita um número nito de geradores diz-se nitamente gerado. 4. Nem todos os espaços vectoriais são nitamente gerados. Dos espaços estudados até agora, nem R [x] ; nem F (R) são nitamente gerados. Bases e dimensão de um espaço vectorial Seja V um espaço vectorial real, F um subespaço de V e u ; u ; :::; u k sistema de vectores [u ; u ; :::; u k ] é uma base de F se: vectores de F: O (i) F = hu ; u ; :::; u k i ; (ii) o sistema [u ; u ; :::; u k ] é linearmente independente. Uma base de um espaço vectorial é, portanto, um sistema linearmente independente de geradores do espaço.. O sistema de geradores de R n [(; 0; 0; :::; 0) ; (0; ; 0; :::; 0) ; (0; 0; ; :::; 0) ; :::; (0; 0; 0; :::; )] é linearmente independente, pelo que forma uma base de R n ; que tem o nome particular de base canónica de R n. Concretamente, em R a base canónica é [(; 0) ; (0; )] e em R a base canónica é [(; 0; 0) ; (0; ; 0) ; (0; 0; )] :

3 Espaços Vectoriais - ALGA - 004/ O sistema de vectores [(; ; ) ; (0; ; ) ; (0; 0; )] de R é uma base de R : ::: 0 0 ::: 0 ::: 0 0 ::: 0. O sistema ; :::; ; :::; ; :::; de 0 ::: 0 0 ::: 0 ::: 0 0 ::: m n vectores de M mn (R) é uma base de M mn (R) ; que tem o nome particular de base canónica de M mn (R). 4. O sistema de geradores de R n [x] formado pelos polinómios ; x; x ; : : : ; x n é linearmente independente, pelo que é uma base de R n [x] ; que tem o nome particular de base canónica de R n [x] : 5. O subespaço vectorial de R ; F = f(x ; x ; x ) R : x x = 0 e x x = 0g tem como base, por exemplo, o sistema de vectores ; ;.. O sistema de vectores ; ; ; (; ; ) ; (0; 0; 0) é um sistema de geradores de F = f(x ; x ; x ) R : x x = 0 e x x = 0g mas não é uma sua base porque não é linearmente independente.. O subespaço vectorial de R 4 ; F = f(x ; x ; x ; x 4 ) R 4 : x x = 0 e x x = 0g, tem como base, por exemplo, o sistema de vectores ; ; ; 0 ; (0; 0; 0; ) : Os seguintes dois teoremas são fundamentais quando se estudam espaços vectoriais nitamente gerados. Teorema: Qualquer espaço vectorial nitamente gerado tem uma base. Observação: Tendo um sistema de geradores de um espaço vectorial nitamente gerado, para obter uma base basta retirar do sistema de geradores os vectores que "estragam" a independência linear. Isto faz-se identi cando no sistema os vectores que se podem escrever como combinação linear dos restantes e retirando-os até se obter um sistema de geradores linearmente independente. Teorema: Num espaço vectorial nitamente gerado todos as bases têm o mesmo número de vectores. A partir do teorema anterior de ne-se dimensão de um espaço vectorial nitamente gerado V como sendo o número de vectores de uma base e representa-se esse número por dim (V ). Para calcular a dimensão de um espaço vectorial é su ciente encontrar uma sua base e contar o número de vectores que aí guram. Considera-se que o espaço vectorial nulo tem dimensão 0.

4 Espaços Vectoriais - ALGA - 004/ Para n N; o espaço vectorial R n tem uma base com n vectores (por exemplo, a base canónica), logo dim (R n ) = n.. Para m; n N, o espaço vectorial M mn (R) tem uma base com m n vectores (por exemplo, a base canónica), logo dim (M mn (R)) = m n.. Para n N; o espaço vectorial R n [n] tem uma base com n + vectores (por exemplo, a base canónica), logo dim (R n [n]) = n + : 4. A dimensão do subespaço vectorial de R ; F = ; ; é. 5. A dimensão do subespaço vectorial de R 4 ; F = ; ; ; 0 ; (0; 0; 0; ) é :. Se A e uma matriz de ordem n; um seu valor próprio e U o subespaço próprio associado ao valor próprio ; então dim (U ) é a multiplicidade geométrica de.. A dimensão do espaço nulo de uma matriz A mn é dada pelo grau de indeterminação do sistema AX = 0; que é n car (A) : Saber a dimensão de um espaço vectorial permite tirar conclusões práticas importantes: Proposição: Seja V um espaço vectorial real de dimensão n. Então:. Qualquer sistema de vectores de V com mais de n vectores é linearmente dependente.. Qualquer sistema linearmente independente com n vectores é uma base de V.. Qualquer sistema de geradores de V com n vectores é uma base de V. Pode-se ainda relacionar a dimensão de um espaço vectorial com a dimensão dos seus subespaços vectoriais: Proposição:. Se V é um espaço vectorial de dimensão n e F é um seu subespaço vectorial, então F é também nitamente gerado e dim (F ) dim (V ).. Se V é um espaço vectorial de dimensão n e F é um seu subespaço vectorial tal que dim (F ) = dim (V ), então F = V.

5 Espaços Vectoriais - ALGA - 004/05 50 Coordenadas de um vector relativamente a uma base Se V é um espaço vectorial e B = [u ; u ; : : : ; u n ] é uma base de V; cada vector de V escreve- -se de forma única como combinação linear dos vectores de B; isto é, cada vector de v V escreve-se de modo único na forma v = a u + a u + + a n u n ; com a ; a ; : : : ; a n R. Aos coe cientes a ; a ; : : : ; a n desta combinação linear chamam-se coordenadas do vector v relativamente à base B: Como estas coordenadas são únicas, xando uma base de um espaço vectorial, pode-se "identi car" cada vector do espaço com o n-uplo das suas coordenadas, isto é, com um vector de R n : Isso pode-se representar, por exemplo, na forma: v! (a ; a ; : : : ; a n ) B. O vector (; ; ) tem coordenadas ; ; relativamente à base canónica de R.. O mesmo vector (; ; ) tem coordenadas (; 0; ) B relativamente à base B = [(; ; ) ; (0; ; ) ; (0; 0; )] de R :. Ainda o mesmo vector (; ; ) ; considerado agora como elemento do subespaço F = f(x ; x ; x ) R : x x = 0 e x x = 0g ; tem coordenadas () B relativamente à base B = de F: 4. O 5 vector tem coordenadas (; 4 " # 5; 4; ) B relativamente à base B = ; ; ; de M (R). 5. O vector 5 x + x tem coordenadas (5; ; 0; ) B relativamente à base [; x; x ; x ] de R [x] : Utilização de matrizes no estudo de espaços vectoriais As linhas de uma matriz do tipo m n podem ser identi cadas com vectores de R n : Quando se efectua uma operação elementar de tipo II ou III sobre as linhas de uma matriz substitui- -se uma linha por uma combinação linear de linhas. Quando, no decorrer do método de eliminação de Gauss uma linha é anulada, signi ca que essa linha é combinação linear das restantes, ou seja, que o sistema de vectores formado pelas linhas da matriz é linearmente dependente. Sendo u ; : : : ; u k um sistema de vectores de vectores de R n ; pode-se formar a matriz A do tipo k n cujas linhas são esses vectores. Calculando a característica dessa matriz pode-se concluir que:

6 Espaços Vectoriais - ALGA - 004/05 5 (i) Se car (A) < k; o sistema de vectores [u ; : : : ; u k ] é linearmente dependente. (ii) Se car (A) = k; o sistema de vectores [u ; : : : ; u k ] é linearmente independente. (iii) Se car (A) = t, t k; então t é a dimensão do subespaço vectorial gerado por u ; : : : ; u k, isto é dim hu ; : : : ; u k i = car (A) : (iv) Quando a matriz A está em forma de escada, as linhas que não foram anuladas correspondem a vectores de uma base de hu ; : : : ; u k i :. Considere-se o sistema [(; ; ; ) ; (; ; ; ) ; ( ; ; ; )] de R 4 : Forma-se a matriz de tipo 4; A = 4 5 : Aplicando o método de eliminação de Gauss a A chega-se à forma de escada A 0 = : Pode-se então concluir: (i) O sistema [(; ; ; ) ; (; ; ; ) ; ( ; ; ; )] é linearmente dependente. (ii) dim h(; ; ; ) ; (; ; ; ) ; ( ; ; ; )i = (iii) Uma base para o subespaço h(; ; ; ) ; (; ; ; ) ; ( ; ; ; )i é formada pelos vectores (; ; ; ) e (; ; ; ) :. Considere-se o sistema [(; ; ) ; (; ; 4) ; (0; 0; )] de R : Forma-se a matriz de tipo ; A = : Aplicando o método de eliminação de Gauss a A tem-se A = ! 4 L L +L ! 4 L!L (i) O sistema [(; ; ) ; (; ; 4) ; (0; 0; )] é linearmente dependente. (ii) dim h(; ; ; ) ; (; ; ; ) ; ( ; ; ; )i = 5 : Pode-se então concluir: (iii) Uma base para o subespaço h(; ; ) ; (; ; 4) ; (0; 0; )i é formada pelos vectores (; ; ) ; (0; 0; ) ; que são os vectores correspondentes às linhas da matriz que não foram anuladas durante o método de eliminação. Este método pode ser utilizado para vectores que não pertençam a R n ; desde que sejam vectores de um espaço nitamente gerado. Para isso xa-se uma base do espaço (sempre que possível uma base canónica, para facilitar os cálculos) e determinam-se as coordenadas, relativamente a essa base, dos vectores com os quais se está a trabalhar. Essas coordenadas correspondem a vectores de R n (sendo n a dimensão do espaço), com os quais se pode, então formar uma matriz e aplicar o procedimento descrito atrás.

7 Espaços Vectoriais - ALGA - 004/05 5. Considere-se o sistema [ + x + x + x ; x + x + x ; + x + x x ] de R [x] : Estes vectores, relativamente à base canónica de R [x] ; B = [; x; x ; x ] ; têm coordenadas: + x + x + x! (; ; ; ) B x + x + x! (; ; ; ) B + x + x x! ( ; ; ; ) B Identi cadas as coordenadas, forma-se a matriz A = 4 5 ; que admite, como vimos atrás, a forma de escada A 0 = : Pode-se então concluir que: (i) O sistema [ + x + x + x ; x + x + x ; + x + x x ] é linearmente dependente. (ii) dim h + x + x + x ; x + x + x ; + x + x x i = : (iii) Uma base para o subespaço h + x + x + x ; x + x + x ; + x + x x i pode ser formada pelos vectores + x + x + x e x + x + x : " #. Considere-se o sistema ; ; de M (R) : Estes vectores, relativamente à base canónica B de M (R) ; têm coordenadas:! (; ; ; ) B ;! (; ; ; ) B e! ( ; ; ; ) B Seguindo o procedimento anterior pode-se concluir que: " # (i) O sistema ; ; é linearmente dependente. * + (ii) dim ; ; = : * + (iii) Uma base para o subespaço ; ; pode ser formada pelos vectores e :

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 Expansão linear e geradores Se u 1 ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u 1 ; u ;

Leia mais

Aula 5 - Matemática (Gestão e Marketing)

Aula 5 - Matemática (Gestão e Marketing) ISCTE, Escola de Gestão Aula 5 - Matemática (Gestão e Marketing) Diana Aldea Mendes 29 de Outubro de 2008 Espaços Vectoriais Definição (vector): Chama-se vector edesigna-sepor v um objecto matemático caracterizado

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

A ideia de coordenatização (2/2)

A ideia de coordenatização (2/2) 8 a : aula (1h) 12/10/2010 a ideia de coordenatização (2/2) 8-1 Instituto Superior Técnico 2010/11 1 o semestre Álgebra Linear 1 o ano das Lics. em Engenharia Informática e de Computadores A ideia de coordenatização

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

4 Sistemas de Equações Lineares

4 Sistemas de Equações Lineares Nova School of Business and Economics Apontamentos Álgebra Linear 4 Sistemas de Equações Lineares 1 Definição Rank ou característica de uma matriz ( ) Número máximo de linhas de que formam um conjunto

Leia mais

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Capítulo 6 Espaços vectoriais com produto interno ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Definição e propriedades Seja V um espaço vectorial real. Chama-se

Leia mais

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Formulação A programação linear lida com problemas nos quais uma função objectivo linear deve ser optimizada (maximizada ou minimizada)

Leia mais

Aulas Teóricas e de Problemas de Álgebra Linear

Aulas Teóricas e de Problemas de Álgebra Linear Aulas Teóricas e de Problemas de Álgebra Linear Nuno Martins Departamento de Matemática Instituto Superior Técnico Maio de Índice Parte I (Aulas teóricas e chas de exercícios) Matrizes e sistemas de equações

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das

Leia mais

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \.

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV1 &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV Å 1Ro}HV *HUDLV Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. [\ [\ É fácil verificar

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são

Leia mais

TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga TRANSFORMAÇÕES LINEARES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Estudaremos um tipo especial de função, onde o domínio e o contradomínio são espaços vetoriais reais. Assim, tanto

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Códigos Lineares CAPÍTULO 4

Códigos Lineares CAPÍTULO 4 CAPÍTULO 4 Códigos Lineares 1. Definição, pârametros e peso mínimo Seja F q o corpo de ordem q. Portanto, pelo Teorema 3.24, q = p m para algum primo p e inteiro positivo m. Definição 4.1. Um código linear

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais Espaços Vectoriais - Matemática II - 2004/05 40 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

4 a LISTA DE EXERCÍCIOS Valores Próprios e Vectores Próprios Álgebra Linear - 1 o Semestre - 2013/2014 LEE, LEGI, LEIC-TP, LETI

4 a LISTA DE EXERCÍCIOS Valores Próprios e Vectores Próprios Álgebra Linear - 1 o Semestre - 2013/2014 LEE, LEGI, LEIC-TP, LETI 4 a LISTA DE EXERCÍCIOS Valores Próprios e Vectores Próprios Álgebra Linear - 1 o Semestre - 2013/2014 LEE, LEGI, LEIC-TP, LETI Problema 1 Considere a matriz A = 1 0 0 0 2 1 2 0 3 Diga quais dos seguintes

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I. Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO

E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO Dizemos que uma equação é linear, ou de primeiro grau, em certa incógnita, se o maior expoente desta variável for igual a um. Ela será quadrática, ou

Leia mais

2. O número de vectores da base de L construída na alínea anterior é a soma do número de vectores das bases de M e N.

2. O número de vectores da base de L construída na alínea anterior é a soma do número de vectores das bases de M e N. 2.4. PROJECÇÕES 2. dim(l)=dim(m)+dim(n) Demonstração. Se L=M N, qualquer vector x L se pode escrever de forma única como a soma de um vector x M M e outro vector x N N. 1. Dada uma base de M, x M pode

Leia mais

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5.

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5. UFPB/PRAI/CCT/DME - CAMPUS II DISCIPLINA: Álgebra Linear ALUNO (A): 2 a LISTA DE EXERCÍCIOS 1 a PARTE: QUESTÕES TIPO VERDADEIRO OU FALSO COM JUSTI- FICATIVA. 1. O conjunto dos polinômios de grau m com

Leia mais

Códigos Reed-Solomon CAPÍTULO 9

Códigos Reed-Solomon CAPÍTULO 9 CAPÍTULO 9 Códigos Reed-Solomon Um dos problemas na Teoria de Códigos é determinar a distância mínima de um dado código. Tratando-se de códigos cíclicos, por vezes conseguimos controlar a distância mínima

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark LERCI LEGI LEE o semestre 23/4 - semana de 23-2-8. Diga justificando quais dos seguintes ternos

Leia mais

1 Base de um Espaço Vetorial

1 Base de um Espaço Vetorial Disciplina: Anéis e Corpos Professor: Fernando Torres Membros do grupo: Blas Melendez Caraballo (ra143857), Leonardo Soriani Alves (ra115465), Osmar Rogério Reis Severiano (ra134333) Ramon Códamo Braga

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

QUESTÕES DE ESCOLHA MÚLTIPLA

QUESTÕES DE ESCOLHA MÚLTIPLA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 9/ TÓPICOSDERESOLUÇÃODO o TESTE(DIURNO) QUESTÕES DE ESCOLHA MÚLTIPLA. [,]SejamAeB duas matrizes

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos I. Conjuntos 1. Introdução e notações 1.1. Relação de pertença 1.2. Modos de representar um conjunto 1.3. Classificação de conjuntos quanto ao número de elementos 1.4. Noção de correspondência 2. Relações

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Departamento de Matemática para a Ciência e Tecnologia Universidade do Minho 2005/2006 Engenharia e Gestão Industrial Engenharia Electrónica Industrial e de Computadores

Leia mais

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9 Ex. 4.1 As palavras código são c 0 = [0 0 0 0 0 0 0], c 1 = [0 0 0 1 1 0 1], c 2 = [0 0 1 1 0 1 0], c 3 = [0 0 1 0 1 1 1], c 4 = [0 1 1 0 1 0 0], c 5 = [0 1 1 1 0 0 1], c 6 = [0 1 0 1 1 1 0], c 7 = [0

Leia mais

5 Circuitos Equivalentes

5 Circuitos Equivalentes 5 Circuitos Equivalentes 5.1 Circuitos Equivalentes Nos capítulos anteriores já se apresentaram diversos exemplos de circuitos equivalentes, por exemplo, resistências em série e em paralelo ou a chamada

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Professora Graciela Moro Exercícios sobre Matrizes, Determinantes e Sistemas

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais

Resolução dos Exercícios 8 e 10 da lista 7.

Resolução dos Exercícios 8 e 10 da lista 7. Resolução dos Exercícios 8 e 10 da lista 7. 8) Seja T : R 3 R 3 a transformação linear tal que T (e 3 ) = 3e 1 + e 2 2e 3, T (e 2 + e 3 ) = e 1, T (e 1 + e 2 + e 3 ) = e 2 + e 3, a) Calcule T (2e 1 e 2

Leia mais

CAPÍTULO 4. A Produção de Significados para a Noção de Base: Um Estudo de Caso

CAPÍTULO 4. A Produção de Significados para a Noção de Base: Um Estudo de Caso CAPÍTULO 4 A Produção de Significados para a Noção de Base: Um Estudo de Caso 77 4. Um Estudo Preliminar Na primeira fase de elaboração das atividades do estudo de caso, tentamos reunir alguns elementos

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

M : ( ( é um LVRPRUILVPR M -1 : ( ( também é um LVRPRUILVPR.

M : ( ( é um LVRPRUILVPR M -1 : ( ( também é um LVRPRUILVPR. &DStWXOR±$SOLFDo}HV/LQHDUHV47 Å (VSDoRV,VRPRUIRV Sejam ( e ( dois espaços vectoriais sobre. Dizemos que ( e ( são LVRPRUIRV se H[LVWLUXPLVRPRUILVPR M : ( ( e escrevemos, (! ( Por eemplo, o espaço dos vectores

Leia mais

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados Capítulo 3 Cálculo Vetorial O objetivo deste capítulo é o estudo de vetores de um ponto de vista geométrico e analítico. De acordo com a necessidade, a abordagem do assunto será formal ou informal. O estudo

Leia mais

INTRODUÇÃO AOS MÉTODOS FACTORIAIS

INTRODUÇÃO AOS MÉTODOS FACTORIAIS Capítulo II INTRODUÇÃO AOS MÉTODOS FACTORIAIS A Análise Factorial de Correspondências é uma técnica simples do ponto de vista matemático e computacional. Porém, devido ao elevado suporte geométrico desta

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

CAPÍTULO 2. Grafos e Redes

CAPÍTULO 2. Grafos e Redes CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC SEMANA DE MATEMÁTICA - OFICINA DE GEOMETRIA PROFESSORAS: Jurema Lindote Botelho e Eurivalda Ribeiro Santana

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC SEMANA DE MATEMÁTICA - OFICINA DE GEOMETRIA PROFESSORAS: Jurema Lindote Botelho e Eurivalda Ribeiro Santana UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC SEMANA DE MATEMÁTICA - OFICINA DE GEOMETRIA PROFESSORAS: Jurema Lindote Botelho e Eurivalda Ribeiro Santana ATIVIDADE 1 TRANSLAÇÃO 1. Considere, na figura a seguir,

Leia mais

Apontamentos das Aulas Teóricas de Álgebra Linear. LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec. Nuno Martins. Departamento de Matemática

Apontamentos das Aulas Teóricas de Álgebra Linear. LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec. Nuno Martins. Departamento de Matemática Apontamentos das Aulas Teóricas de Álgebra Linear para LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec Nuno Martins Departamento de Matemática Instituto Superior Técnico Fevereiro de 0 Índice Sistemas de

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

2.2 Subespaços Vetoriais

2.2 Subespaços Vetoriais 32 CAPÍTULO 2. ESPAÇOS VETORIAIS 2.2 Subespaços Vetoriais Sejam V um espaço vetorial sobre R e W um subconjunto de V. Dizemos que W é um subespaço (vetorial) de V se as seguintes condições são satisfeitas:

Leia mais

Bem, produto interno serve para determinar ângulos e distâncias entre vetores e é representado por produto interno de v com w).

Bem, produto interno serve para determinar ângulos e distâncias entre vetores e é representado por produto interno de v com w). Produto Interno INTRODUÇÃO Galera, vamos aprender agora as definições e as aplicações de Produto Interno. Essa matéria não é difícil, mas para ter segurança nela é necessário que o aluno tenha certa bagagem

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

Prof. Márcio Nascimento. 22 de julho de 2015

Prof. Márcio Nascimento. 22 de julho de 2015 Núcleo e Imagem Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Linear

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto \por N(f) ou Ker (f).

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites EXERCÍCIOS & COMPLEMENTOS 3. FORMAS INDETERMINADAS 0 0 0 0 OPERAÇÕES COM OS SÍMBOLOS + = = ( ) = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k =

Leia mais

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Marília Brasil Xavier REITORA Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odivaldo Teixeira Lopes ARTE FINAL DA CAPA Odivaldo Teixeira

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares ALGA- / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b

Leia mais

2 Matrizes. 3 Definição Soma de duas matrizes, e ( ) 4 Propriedades Propriedades da soma de matrizes ( )

2 Matrizes. 3 Definição Soma de duas matrizes, e ( ) 4 Propriedades Propriedades da soma de matrizes ( ) Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Matriz ( ) Conjunto de elementos dispostos em linhas e colunas. Ex.: 0 1 é uma matriz com 2 linhas e 3 colunas. 2 Definição

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace Resumo Sinais e Sistemas Transformada de aplace lco@ist.utl.pt Instituto Superior Técnico Definição da transformada de aplace. Região de convergência. Propriedades da transformada de aplace. Sistemas caracterizados

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

Seqüências, Limite e Continuidade

Seqüências, Limite e Continuidade Módulo Seqüências, Limite e Continuidade A partir deste momento, passaremos a estudar seqüência, ites e continuidade de uma função real. Leia com atenção, caso tenha dúvidas busque indicadas e também junto

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Capítulo 1 Matrizes e Determinantes 11 Generalidades Iremos usar K para designar IR conjunto dos números reais C conjunto dos números complexos Deste modo, chamaremos números ou escalares aos elementos

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

Álgebra Linear Resumo das aulas teóricas e práticas Paulo R. Pinto http://www.math.ist.utl.pt/ ppinto/ Lisboa, Novembro de 2011

Álgebra Linear Resumo das aulas teóricas e práticas Paulo R. Pinto http://www.math.ist.utl.pt/ ppinto/ Lisboa, Novembro de 2011 Álgebra Linear Resumo das aulas teóricas e práticas Paulo R Pinto http://wwwmathistutlpt/ ppinto/ Lisboa, Novembro de 2011 Conteúdo 1 Matrizes e sistemas lineares 1 11 Álgebra das Matrizes 1 12 Operações

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

5 Transformações Lineares e Matrizes

5 Transformações Lineares e Matrizes Nova School of Business and Economics Prática Álgebra Linear 5 Transformações Lineares e Matrizes 1 Definição Função de em Aplicação que faz corresponder a cada elemento de um conjunto (domínio), denominado

Leia mais

Avaliação e programa de Álgebra Linear

Avaliação e programa de Álgebra Linear Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (

Leia mais

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos? Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de

Leia mais

Espaços Vectoriais. Espaços Vectoriais

Espaços Vectoriais. Espaços Vectoriais Espaços Vectoriais Espaço vectorial sobre um corpo V - conjunto não vazio de objectos, chamados vectores F - conjunto de escalares, com estrutura de corpo Em V definimos duas operações: - adição de elementos

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais