Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo o Semestre

Tamanho: px
Começar a partir da página:

Download "Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre"

Transcrição

1 Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido usar máquinas de calcular nem telemóveis Não tenha o seu telemóvel consigo Não se tiram dúvidas Simpli que os cálculos ao máximo Justi que sempre as suas respostas Pode usar o verso das folhas de resposta Os rascunhos devem estar bem identi cados Não pode desagrafar as folhas do teste ATENÇÃO: NÃO SE ESQUEÇA DE ESCEVE O SEU NÚMEO EM TODAS AS FOLHAS

2 N o : Nome:. Comente num máximo de 5 linhas as seguintes proposições: (a) ( valores) Se o limite de uma sucessão é ponto de acumulação do conjunto dos seus termos, a sucessão é monótona. FALSO. Pense por exemplo nas sucessões U n = ( ) n n ou W n = ( n ; ; n n impar n par O ponto zero é o limite de ambas as sucessões, e é ponto de acumulação do conjunto dos termos de ambas as sucessões. No entanto, nenhuma delas é monótona. (b) ( valores) Se uma função real de variável real não tiver derivada nita em x = a, então a função não pode ter limite em x = a por não ser diferenciável em x = a: FALSO. Se uma funcão real de variável real não tem derivada nita em x = a, isso signi ca ou que tem derivada in nita em x = a, ou que as derivadas laterais não são iguais. Atentemos nos seguintes dois casos: f(x) = j 3p xj f(x) = ( ; x < x + ; x y y x x Em ambos os casos, as funções em causa não têm derivada nita em x = : No entanto, ambas têm limite no ponto x = e são contínuas: no primeiro caso, o limite é zero; no segundo, o limite é. O facto de a funcão não ser diferenciável em x =, sem mais informação, não nos diz nada relativamente à continuidade ou à existência de limite em x = :

3 N o : Nome:. Determine a área delimitada pelas condições: (a) ( valor) y x ^ y jxj ^ y (b) ( valor) y 3e x ^ y + e x ^ y ^ x ^ x NOTA: ESTA PEGUNTA SÓ É COTADA SE APESENTA O GÁ- FICO E A(S) ÁEA(S) ESPECTIVA(S). APESENTE TODOS OS POMENOES DO GÁFICO!!! (a) ( valor) y x ^ y jxj ^ y Há que desenhar as três curvas descritas e delimitar a área por elas compreendida: Temos também que encontrar as intersecções relevantes entre os grá cos. Para x > ; jxj = x: Assim, as intersecções ocorrem em: x = x () x(x ) = () x = _ x = x = () x = Para x < ; jxj = ( x): Assim, a intersecção ocorre em: x = x () x(x + ) = () x = _ x = x = () x = 3

4 Finalmente, a parábola intersecta a recta y = x = () x = () x = p _ x = p nos pontos: E agora, é só calcular a área sombreada, que calcularemos como duas vezes a área do lado direito: p Area = [ ( x)] dx + p p = [ x + x ] h p = = 3 p x3 + x p + p 6 [ x ( x)] dx = = + 4 i h + = 3 p + p = 7 4p 3 6 p i + + = (b) ( valor) y 3e x ^ y + e x ^ y ^ x ^ x Area = [ + ex ( )] dx + [3e x ( )] dx = = [x + e x + x] + [ 3e x + x] = = ( + + ) ( 3 + ) = 4 e e e = 9e e 3 e e 4

5 N o : Nome: 3. Considere as funções reais de variável real de nidas por. f(x) = 9 x g(x) = ln (x) h(x) = g(x) = ln x (a) (,5 valores) Determine a expressão analítica da função j(x) = (h g f)(x): x! f(x) = 9 x! g [f(x)] = ln(9 x )! h [g (f(x))] = ln [ ln(9 x )] Assim, j(x) = ln [ ln(9 x )] (b) ( valor) Determine o domínio da função j: D f = fx : 9 x > ^ ln(9 x ) > g = (x < 9) ^ [x > 8] = = (] 3; 3[) \ p 8; + p 8 = p p 3; 8 [ 8; 3 (c) (,5 valores) Pronuncie-se sobre a continuidade e diferenciabilidade da função j(x) no seu domínio. j(x) é contínua no seu domínio porque é a composição de 3 funções contínuas:! 9 x : função polinomial, logo contínua em! ln x : função logaritmo, logo contínua no seu domínio. j(x) é diferenciável em D f e j x (x) = ( x) = ln(9 x ) (9 x ) [ ln(9 x )](9 x ) (d) ( valor) Estude k(x) = jf(x)j quanto à possibilidade de ser aproximada por um polinómio de Taylor de primeira ordem em qualquer ponto do seu domínio. k(x) = j9 x j y x 5

6 Como se pode constatar, a função k(x) não é diferenciável em x = 3 nem em x = 3, logo não pode ser aproximada por um polinómio de Taylor nestes pontos. Nos restantes pontos do seu domínio, pode ser mas é inútil! Porquê?? 6

7 N o : Nome: 4. Sejam as sucessões u n = ( ) n n+ n e w n = u n+ : (a) ( valor) Existe limite da sucessão u n? E da sucessão w n? Em caso a rmativo, indique o seu valor. u n = ( n+ n n+ n se n par se n ímpar ou seja, u n = ( + se n par n + n se n ímpar A sucessão u n não tem limite pois contém duas subsucessões que convergem para valores distintos. Quando n é par, os termos da sucessão convergem para, quando n é ímpar, os termos da sucessão convergem para - (note que n é um in nitésimo!) Como o limite, se existir, é único, podemos concluir que a sucessão u n não tem limite. A sucessão w n é de nida pelo seguinte termo geral: w n = ( ) n+ n+ = n+ n+ n+ Como n+ corresponde a uma sucessão de números ímpares, podemos concluir que ( ) n+ = : Assim, lim w n = lim n+ n+ = lim n+ n+ = lim n n = lim = : (b) ( valor) Determine o conjunto dos majorantes e dos minorantes, o supremo, o máximo, o ín mo, o mínimo, a fronteira e o derivado dos termos da sucessão u n. Seja sucessão U n : A = fx : x = u n ; n Ng, ou seja, A é o conjunto dos termos da Majorantes de A = 3 ; + Minorantes de A = ] ; ] Supremo de A : 3 Máximo de A : 3 Ín mo de A : Mínimo de A : Fronteira de A = fr(a) = fu n g [ f Derivado de A = A = f ; g ; g 7

8 (c) (,5 valores) Veri que que a expressão da sucessão v n = jw n j é dada por n+ e mostre, pela de nição, que é o seu limite: n+ v n = jw n j = u(n+) = ( ) n+ n+ = n+ n+ n+. Pela de nição: 8" > ; 9n(") N : 8n > n(") =) jv n j < " n+ n+ < ", n+ n n+ < ", < ", n > " n+ " Dado " > arbitrário, escolha-se para n(") o primeiro natural superior a " " : Deste modo está provado que o limite da sucessão v n é. Note que lim! = +; o que faz sentido! 8

9 N o : Nome: 5. Considere a seguinte função f(x) = g(x + ) em que g é diferenciável até à ordem 3 e em que g() = 3g () = g () = 4g () =. (a) ( valor) Determine a derivada de x:g(x ) no ponto de abcissa p. Sejam, como é dito no enunciado: g() = ; g () = 4 ; g () = 6 ; g () = 3 [xg(x )] = g(x ) + xg (x ):x = g(x ) + x g (x ) Avaliando em x = p, temos: [xg(x )] x= p = g(p ) + p g ( p ) = g() + 4g () = + 4:4 = 8 (b) ( valor) Determine a aproximação da função f através da fórmula de MacLaurin de ordem. Caso possa, escreva o resto de Lagrange associado a este desenvolvimento. f(x) = g(x + )! f() = g() = f (x) = g (x + ):! f () = g (): = 8 f (x) = g (x + ):4! f () = g ():4 = 4 f (x) = g (x + ):8! f (c) = g (c + ):8 f(x) ' f() + f ()(x ) + f (x ) () f(x) ' g(x + ) + g ()::x + g ():4: x f(x) ' + 8x + 4: x O resto de Lagrange associado a este desenvolvimento é dado por: = f (x )3 (c) = g (c + ):8: x3, com < c < x: 3! 6 Não se pode ir mais longe. 9

10 N o : Nome: 6. Considere a função g(x; y) = x + ln y: (a) (,5 valores) Determine o domínio da função g representando-o gra - camente. Determine também o seu interior, fronteira, aderência e derivado. Indique se o domínio é fechado ou aberto. D g = f(x; y) : y > g int(d g ) = f(x; y) : y > g = D g fr(d g ) = f(x; y) : y = g ader(d g ) = D g = int(d g ) [ front(d g ) = f(x; y) : y g deriv(d g ) = D g = f(x; y) : y g O domínio da função g é aberto porque D g = int(d g ): Não é fechado porque D g 6= D g : (b) ( valor) Determine o diferencial total de g no ponto (3; ) para acréscimos dx e dy genéricos. Genericamente, o diferencial total desta função de argumento vectorial é dado por: dg = dx dy = dx + y

11 = =, o diferencial da função no ponto (3,) será y dg (3;) = dx + dy (c) ( valor) Determine a curva de nível da função g de cota 4 e designe esta função por h(x): Indique dh: x + ln y = 4, ln y = 4 x, e 4 x = y, h(x) = e 4 x dx, dh = e4 x dx (d) ( valor) Considere a seguinte equação xy + ln y =. Seja f a função de nida implicitamente por essa equação que transforma x em y: Determine f (x) no ponto onde y = : xy + ln y = Se y =, então x +ln =, x = : Assim, o ponto em estudo é o ponto (; ). Pela regra da derivada da função implícita, lembrando que y = f (x): (xy + ln y) x = () x, y + xy + y y =, y x + = y, y y = y x+ y Avaliando a derivada no ponto (; ); resulta: f y () = = = + 3 Assim, f () = 3 : (e) (,5 valores) Seja a função p dada por p(x) = g( x+ y de nição, a derivada da função p no ponto de abcissa p(x) = g( x ; e x ) = x + ln e x = x + x Pela de nição, sabemos que f (x) = lim h! Assim, f f(+h) f() () = lim h! h = lim h! ( h ) = f(x+h) f(x) : h = lim (+h) +(+h) h! h (;) x ; e x ): Determine, pela h = lim h h! h = lim h! h( h ) h =

12 N o : Nome: 7 ( valores) Seja f :! uma função com segunda derivada nita em [; ] tal que f() = 3. Supondo que: [f(x) + f (x)] sin(x)dx = calcule f(). (a) [f(x) + f (x)] sin(x)dx =, f(x) sin(x)dx + f (x) sin(x)dx = No primeiro integral, xemos u = sin x e v = f(x) para aplicação do método de primitivação por partes: f(x) sin(x)dx = [ cos (x) :f(x)] = [ cos (x) :f(x)] + f (x) cos (x) dx cos (x) :f (x)dx = No segundo integral, xemos u = f (x) e v = sin (x): f (x) sin(x)dx = [f (x) sin (x)] f (x): cos(x)dx Juntando agora os dois: f(x) sin(x)dx + f (x) sin(x)dx = [ cos (x) :f(x)] + f (x) cos (x) :dx + [f (x) sin (x)] f (x): cos(x)dx = [ cos (x) :f(x)] + [f (x) sin (x)] = [( cos()f()) ( cos():f())] + [(sin()f ()) (sin():f ())] = f() + f() = (como é dito no enunciado). Considerando que f() = 3 : 3 + f() = () f() =

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Ano Lectivo 009-10 - 1º Semestre Eame Final de ª Época em 0 de

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

6 SINGULARIDADES E RESÍDUOS

6 SINGULARIDADES E RESÍDUOS 6 SINGULARIDADES E RESÍDUOS Quando uma função f (z) não é diferenciável num complexo z 0 ; diremos que z 0 é uma singularidade de f (z) ; z 0 dir-se-á uma singularidade isolada de f (z) se, contudo, f

Leia mais

Soluções abreviadas de alguns exercícios

Soluções abreviadas de alguns exercícios Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.

Leia mais

Capítulo 5 - Funções Reais de Variável Real

Capítulo 5 - Funções Reais de Variável Real Capítulo 5 - Funções Reais de Variável Real Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark LERCI LEGI LEE o semestre 23/4 - semana de 23-2-8. Diga justificando quais dos seguintes ternos

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II 1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Introdução aos Modelos Biomatemáticos - aulas

Introdução aos Modelos Biomatemáticos - aulas Introdução aos Modelos Biomatemáticos - aulas Teórico-Práticas Mestrado em BBC, 2008/2009 1 Capítulo 1 Nos exercícios 1) e 2) suponha que o crescimento é exponencial. 1. Entre 1700 e 1800 a população humana

Leia mais

Exercícios Resolvidos Integrais de Linha. Teorema de Green

Exercícios Resolvidos Integrais de Linha. Teorema de Green Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Anderson Luiz B. de Souza Livro texto - Capítulo 14 - Seção 14.7 Encontrando extremos absolutos Determine o máximo e mínimo absolutos das funções

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

Teste Intermédio de Matemática A Matemática A Versão 2 10.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Versão 2 10.º Ano de Escolaridade Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 06.05.2009 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 205/206 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ). Considere a função u : R 2 R dada por onde a e b são duas constantes reais. 09 de Abril

Leia mais

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2 Funções contínuas, equações diferenciais ordinárias, Exp e Log Roberto Imbuzeiro Oliveira 21 de Fevereiro de 214 Conteúdo 1 O que vamos ver 1 2 Fatos preliminares sobre espaços métricos 2 3 Existência

Leia mais

(Testes intermédios e exames 2005/2006)

(Testes intermédios e exames 2005/2006) 158. Indique o conjunto dos números reais que são soluções da inequação log 3 (1 ) 1 (A) [,1[ (B) [ 1,[ (C) ], ] (D) [, [ 159. Na figura abaio estão representadas, em referencial o. n. Oy: parte do gráfico

Leia mais

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 1. Fazer exercícios 1, 4, 5, 7, 8, 9 da seção 8.4.4 pgs 186, 187 do livro

Leia mais

CURSO DE CÁLCULO INTEGRAIS

CURSO DE CÁLCULO INTEGRAIS CURSO DE CÁLCULO MÓDULO 4 INTEGRAIS SUMÁRIO Unidade 1- Integrais 1.1- Introdução 1.2- Integral Indefinida 1.3- Propriedades da Integral Indefinida 1.4- Algumas Integrais Imediatas 1.5- Exercícios para

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

PSAEN 2007/08 Primeira Fase - Matemática

PSAEN 2007/08 Primeira Fase - Matemática PSAEN 007/08 Primeira Fase - Matemática : Caio Guimarães, Rodolpho Castro, Victor Faria, Paulo Soares, Iuri Lima Digitação: Caio Guimarães, Júlio Sousa. Comentário da Prova: A prova de matemática desse

Leia mais

Introdução à Topologia Resoluções de exercícios. Capítulo 1

Introdução à Topologia Resoluções de exercícios. Capítulo 1 Introdução à Topologia Resoluções de exercícios Exercício nº5 (alíneas 3. e 4.) Capítulo 1 É imediato, directamente a partir da definição, que, dados r, s Q, d p (r, s) e que d p (r, s) = se e só se r

Leia mais

Métodos Numéricos 2010-11. Exame 11/07/11

Métodos Numéricos 2010-11. Exame 11/07/11 ESCOLA SUPERIOR DE BIOTECNOLOGIA Métodos Numéricos 2010-11 Exame 11/07/11 Parte Teórica Duração: 30 minutos Atenção: Teste sem consulta. Não é permitido o uso da máquina de calcular. Não esquecer de indicar

Leia mais

Funções reais de variável real

Funções reais de variável real Funções reais de variável real Função exponencial e função logarítmica 1. Determine a base de cada logaritmo. log a 36 = 2 (b) log a (25a) = 5 (c) log a 4 = 0.4 2. Considere x = log 10 2 e y = log 10 3.

Leia mais

FUNDAÇÃO EDUCACIONAL UNIFICADA CAMPOGRANDENSE (FEUC) FACULDADES INTEGRADAS CAMPO-GRANDENSES (FIC) COORDENAÇÃO DE MATEMÁTICA

FUNDAÇÃO EDUCACIONAL UNIFICADA CAMPOGRANDENSE (FEUC) FACULDADES INTEGRADAS CAMPO-GRANDENSES (FIC) COORDENAÇÃO DE MATEMÁTICA E N A D E 005 LICENCIATURA MATEMÁTICA QUESTÕES RESOLVIDAS I N T R O D U Ç Ã O Estamos apresentando a prova do ENADE aplicada em 005 para os cursos de Licenciatura em Matemática. Este trabalho tem o objetivo

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

Figura 2.1: Carro-mola

Figura 2.1: Carro-mola Capítulo 2 EDO de Segunda Ordem com Coeficientes Constantes 2.1 Introdução - O Problema Carro-Mola Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS GRUPO Educação adistância Caderno de Estudos EQUAÇÕES DIFERENCIAIS Prof. Ruy Piehowiak Editora UNIASSELVI 2012 NEAD Copyright Editora UNIASSELVI 2012 Elaboração: Prof. Ruy Piehowiak Revisão, Diagramação

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete

PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete Equação diferencial parcial (EDP) é a uma equação que envolve duas ou mais variáveis independentes ( x, y,z,t, K ) e derivadas parciais

Leia mais

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa 1) Eficiência e Equilíbrio Walrasiano: Uma Empresa Suponha que há dois consumidores, Roberto e Tomás, dois bens abóbora (bem 1) e bananas (bem ), e uma empresa. Suponha que a empresa 1 transforme 1 abóbora

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime Diurno/Nocturno Disciplina de COMPLEMENTOS DE MATEMÁTICA Ano lectivo de 7/8 - º Semestre Etremos

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Notas Para um Curso de Cálculo. Daniel V. Tausk

Notas Para um Curso de Cálculo. Daniel V. Tausk Notas Para um Curso de Cálculo Avançado Daniel V. Tausk Sumário Capítulo 1. Diferenciação... 1 1.1. Notação em Cálculo Diferencial... 1 1.2. Funções Diferenciáveis... 8 Exercícios para o Capítulo 1...

Leia mais

Matemáticas Gerais. (Licenciatura em Geologia) Caderno de exercícios (exercícios propostos e tabelas) Armando Gonçalves e Maria João Rodrigues

Matemáticas Gerais. (Licenciatura em Geologia) Caderno de exercícios (exercícios propostos e tabelas) Armando Gonçalves e Maria João Rodrigues Matemáticas Gerais (Licenciatura em Geologia Caderno de eercícios (eercícios propostos e tabelas Armando Gonçalves e Maria João Rodrigues Departamento de Matemática Faculdade de Ciências e Tecnologia da

Leia mais

Matemática Discreta. Provas Anteriores

Matemática Discreta. Provas Anteriores Matemática Discreta Provas Anteriores 1 Lógica e Prova 1.1 Introdução a Lógica e Tabela Verdade 1. {0, 25 pt} Dê um exemplo de uma sentença que é uma proposição e justifique porque ela é uma proposição.

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

(Testes intermédios e exames 2010/2011)

(Testes intermédios e exames 2010/2011) (Testes intermédios e eames 00/0) 57. Na Figura, está parte da representação gráfica da função f, de domínio +, definida por f() = log 9 () Em qual das opções seguintes está definida uma função g, de domínio,

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013)

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013) Universidade da Beira Interior - Departamento de Matemática MATEMÁTICA I ECONOMIA (5598) Ficha de eercícios (0/03). Determine o conjunto dos pontos interiores, eteriores e fronteiros dos seguintes conjuntos:

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

FICHA DE TRABALHO 6 - RESOLUÇÃO

FICHA DE TRABALHO 6 - RESOLUÇÃO ecção de Álgebra e Análise, Departamento de Matemática, Instituto uperior Técnico Análise Matemática III A - 1 o semestre de 23/4 FIHA DE TRABALHO 6 - REOLUÇÃO 1) Indique se as formas diferenciais seguintes

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Alguns apontamentos da história da Análise Numérica

Alguns apontamentos da história da Análise Numérica Análise Numérica 1 Âmbito da Análise Numérica Determinar boas soluções aproximadas num tempo computacional razoável? Slide 1 Porquê? Porque em muitos problemas matemáticos e respectivas aplicações práticas

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine

Leia mais

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Esboço de Curvas Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para esboçar uma curva A. Verifique o domínio da função Exemplo: f(x) = 1 x {x x = 0} Roteiro para esboçar

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

Aula 9 Plano tangente, diferencial e gradiente

Aula 9 Plano tangente, diferencial e gradiente MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para

Leia mais

Trabalho Computacional II

Trabalho Computacional II Matemática Experimental 1 Licenciatura em Matemática Aplicada e Computação, 1 ō ano 2008/09 Departamento de Matemática Instituto Superior Técnico Lisboa Trabalho Computacional II Data limite de entrega:

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Para determinarmos um valor aproximado das raízes de uma equação não linear, convém notar inicialmente

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II z t t C C α y β y Colaboradores para elaboração da apostila: Elisandra Bär de Figueiredo, Enori Carelli, Ivanete Zuchi Siple, Marnei Luis Mandler, Rogério

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

CURSO DE CÁLCULO MÓDULO 3: DERIVADAS

CURSO DE CÁLCULO MÓDULO 3: DERIVADAS CURSO DE CÁLCULO MÓDULO 3: DERIVADAS SUMÁRIO Unidade 1- Derivadas 1.1 Introdução 1.2 - A Derivada Como função 1.2.1- Diferenciabilidade e Continuidade 1.2.2- Continuidade de uma Função Diferenciável 1.3

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

Relatório da Disciplina de Matemática I

Relatório da Disciplina de Matemática I Relatório da Disciplina de 2004-2005 Docentes Fernando Carapau, flc@uevora.pt Departamento de Matemática, Universidade de Évora. Fátima Correia, mfac@uevora.pt Departamento de Matemática, Universidade

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

(Exames Nacionais 2002)

(Exames Nacionais 2002) (Exames Nacionais 2002) 105. Na figura estão representadas, num referencial o.n. xoy: parte do gráfico de uma função f, de domínio R +, definida por f(x)=1+2lnx; a recta r, tangente ao gráfico de f no

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS.

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. 1 CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS

Leia mais

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES VERSÃO 1.0.2 Resumo. Este texto resume e complementa alguns assuntos dos Capítulo 9 do Boyce DiPrima. 1. Sistemas autônomos

Leia mais

CURSO de CIÊNCIAS ECONÔMICAS - Gabarito

CURSO de CIÊNCIAS ECONÔMICAS - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA 2 o semestre letivo de 2006 e 1 o semestre letivo de 2007 CURSO de CIÊNCIAS ECONÔMICAS - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém:

Leia mais

Estudo das Equações Diferenciais Ordinárias de Primeira Ordem

Estudo das Equações Diferenciais Ordinárias de Primeira Ordem Estudo das Equações Diferenciais Ordinárias de Primeira Ordem Ricardo Aparecido de Moraes 11 de novembro de 2011 1 Sumário 1 Introdução às Equações Diferenciais 4 1.1 Denições..................................

Leia mais

Frequência / Exame de 1. a Época

Frequência / Exame de 1. a Época ISCTE - Instituto Universitário de Lisboa Licenciaturas: Gestão, Finanças e Contabilidade, Gestão e Engenharia Industrial, Marketing e Economia Frequência / Exame de 1. a Época OPTIMIZAÇÃO / MATEMÁTICA

Leia mais

Gráficos de funções em calculadoras e com lápis e papel (*)

Gráficos de funções em calculadoras e com lápis e papel (*) Rafael Domingos G Luís Universidade da Madeira/Escola Básica /3 São Roque Departamento de Matemática Gráficos de funções em calculadoras e com lápis e papel (*) A difusão de calculadoras gráficas tem levado

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

II Cálculo Integral em R n

II Cálculo Integral em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de omputadores Ano Lectivo 2/22 2 o emestre Exercícios propostos para as aulas práticas II álculo Integral em R n Departamento de

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,

Leia mais

Matemática Básica - 08. Função Logarítmica

Matemática Básica - 08. Função Logarítmica Matemática Básica Função Logarítmica 08 Versão: Provisória 0. Introdução Quando calculamos as equações exponenciais, o método usado consistia em reduzirmos os dois termos da equação à mesma base, como

Leia mais