Aula 6 Derivadas Direcionais e o Vetor Gradiente

Tamanho: px
Começar a partir da página:

Download "Aula 6 Derivadas Direcionais e o Vetor Gradiente"

Transcrição

1 Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

2 Derivadas Direcionais Suponha que desejamos calcular a taxa de variação de z = f (x), x = (x 1, x 2,..., x n ), no ponto a = (a 1, a 2,..., a n ) na direção de um vetor unitário u = (u 1,..., u n ). Lembre-se que um vetor u é unitário se u = 1. Exemplo 1 Suponha que f (a) é a temperatura no ponto a numa sala com ar-condicionado mas com a porta aberta. Se movemos na direção da porta, a temperatura irá aumentar. Porém, se movemos na direção do ar-condicionado, a temperatura irá diminuir. A taxa de variação de z = f (x) em a na direção de u é a derivada direcional. Note que derivada direcional de depende tando do ponto a como da direção u na qual afastamos de a.

3 Definição 2 Derivada Direcional Seja f : D R uma função de n variáveis, isto é, D R n. Considere um ponto a no interior de D e u R n um vetor com u = 1. A derivada direcional de f em a na direção u é f (a + hu) f (a) D u f (a) = lim, h 0 h se esse limite existir. Observação A distância entre a e a + hu é h. Logo, o quociente f (a + hu) f (a) h representa a taxa média de variação de f por unidade de distância sobre o segmento de reta de a à a + hu.

4 Derivada Direcional e as Derivadas Parciais A derivada direcional generaliza as derivadas parciais no seguinte sentido. A derivada direcional de f em a na direção da i-ésima componente da base canônica, ou seja, e i = (0,..., 0, }{{} 1, 0,..., 0) i-ésima componente é a derivada parcial de f em a com respeito à x i, ou seja, D ei f (a) = f x i (a) = f xi (a) = D i f (a).

5 Derivadas Parciais e a Derivada Direcional Considere a função g : R R dada por Por um lado, note que g(h) = f (a + hu). g g(h) g(0) f (a + hu) f (a) (0) = lim = lim = D u f (a). h 0 h h 0 h Por outro lado, da regra da cadeia concluímos que g (h) = f x 1 dx 1 dh + f x 2 dx 2 dh f x n dx n dh. Agora, x(h) = a + hu = (a 1 + hu 1, a 2 + hu 2,..., a n + hu n ). Logo, dx 1 dh = u 1, dx 2 dh = u 2,..., dx n dh = u n. Portanto, tem-se g (0) = f x u 1 + f 1 a x u f 2 a x n u n = a n j=1 f x u j. j a

6 Teorema 3 Se f é uma função diferenciável em a, então f tem derivada direcional para qualquer vetor unitário u e D u f (a) = n f x u j j a j=1 Observação: Qualquer vetor unitário u R 2 pode ser escrito como u = (cos θ, sen θ), para algum angulo θ. Nesse caso, D u f (x, y) = f x (x, y) cos θ + f y (x, y) sen θ.

7 Teorema 3 Se f é uma função diferenciável, então f tem derivada direcional para qualquer vetor unitário u e D u f (x) = n j=1 f x j u j Observação: Qualquer vetor unitário u R 2 pode ser escrito como u = (cos θ, sen θ), para algum angulo θ. Nesse caso, D u f (x, y) = f x (x, y) cos θ + f y (x, y) sen θ.

8 Vetor Gradiente A derivada direcional de f na direção u pode ser escrita em termos do seguinte produto escalar D u f (x) = n ( f f u j =, f,..., f ) u. x j x 1 x 2 x n } {{ } vetor gradiente j=1 Definição 4 (Vetor Gradiente) O gradiente de uma função f, denotado por f ou grad f, é a função vetorial cujas componentes são as derivadas parciais, ou seja, ( f f =, f,..., f ). x 1 x 2 x n

9 Vetor Gradiente A derivada direcional de f na direção u pode ser escrita em termos do seguinte produto escalar D u f (x) = n ( f f u j =, f,..., f ) u = f u. x j x 1 x 2 x n } {{ } vetor gradiente j=1 Definição 4 (Vetor Gradiente) O gradiente de uma função f, denotado por f ou grad f, é a função vetorial cujas componentes são as derivadas parciais, ou seja, ( f f =, f,..., f ). x 1 x 2 x n

10 Interpretação do Vetor Gradiente Sabemos que o produto escalar de dois vetores a e b satisfaz: a b = a b cos θ, em que θ é o angulo entre a e b. Assim, podemos escrever D u f = f u = f u cos θ = f cos θ. }{{} =1 O valor máximo de cos θ é 1, e isso ocorre quando θ = 0. Logo, Teorema 5 O valor máximo da derivada direcional D u f de uma função diferenciável é f e ocorre quando u tem a mesma direção e sentido que f. Em outras palavras, a maior taxa de variação de f (x) ocorre na direção e sentido do vetor gradiente.

11 Em R 2... Considere uma função f de duas variáveis x e y e uma curva de nível dada pelo conjunto dos pontos {r(t) = (x(t), y(t)) : f (x(t), y(t)) = k}. Se P = (x(t 0 ), y(t 0 )), então pela regra da cadeia, temos que f dx x dt + f dy y dt = 0 f (x 0, y 0 ) r (t 0 ) = 0, em que x 0 = x(t 0 ), y 0 = y(t 0 ) e r (t 0 ) = (x (t 0 ), y (t 0 )) é o vetor tangente a curva de nível em P. Conclusão: O vetor gradiente f (x 0, y 0 ), além de fornecer a direção e sentido de maior crescimento, é perpendicular à reta tangente à curva de nível de f (x, y) = k que passa por P = (x 0, y 0 ).

12 Em R 3... O vetor gradiente F(x 0, y 0, z 0 ), além de fornecer a direção e sentido de maior crescimento, é perpendicular ao plano tangente à superfície de nível de F(x, y, z) = k que passa por P = (x 0, y 0, z 0 ).

13 O plano tangente à superfície F(x, y, z) = k em P = (x 0, y 0, z 0 ) é dado por todos os vetores que partem de (x 0, y 0, z 0 ) e são ortogonais ao gradiente F(x 0, y 0, z 0 ), ou seja, a equação do plano tangente é: f (x 0, y 0, z 0 ) (x x 0, y y 0, z z 0 ) = 0. A reta normal a superfície F(x, y, z) = k em P = (x 0, y 0, z 0 ) é dada pelo gradiente F(x 0, y 0, z 0 ), ou seja, (x x 0, y y 0, z z 0 ) = λ f (x 0, y 0, z 0 ), λ R. Alternativamente, suas equações simétricas são x x 0 F x (x 0, y 0, z 0 ) = y y 0 F y (x 0, y 0, z 0 ) = z z 0 F z (x 0, y 0, z 0 ).

14 Exemplo 6 Determine a derivada direcional D u f (x, y) se f (x, y) = x 3 3xy + 4y 2, e u é o vetor unitário dado pelo ângulo θ = π/6. Qual será D u f (1, 2)?

15 Exemplo 6 Determine a derivada direcional D u f (x, y) se f (x, y) = x 3 3xy + 4y 2, e u é o vetor unitário dado pelo ângulo θ = π/6. Qual será D u f (1, 2)? Resposta: D u f (x, y) = 1 2 ( 3 3x 2 3x + (8 3 ) 3)y) e D u f (1, 2) =

16 Exemplo 7 Determine a derivada direcional da função f (x, y) = x 2 y 3 4y, no ponto P = (2, 1) na direção do vetor v = 2i + 5j.

17 Exemplo 7 Determine a derivada direcional da função f (x, y) = x 2 y 3 4y, no ponto P = (2, 1) na direção do vetor v = 2i + 5j. Resposta: D u f (2, 1) =

18 Exemplo 8 Se f (x, y, z) = x sen yz, a) determine o gradiente de f, b) determine a derivada direcional de f no ponto (1, 3, 0) na direção v = i + 2j k.

19 Exemplo 8 Se f (x, y, z) = x sen yz, a) determine o gradiente de f, b) determine a derivada direcional de f no ponto (1, 3, 0) na direção v = i + 2j k. Resposta: a) O gradiente de f é f (x, y, z) = (sen yz, xz cos yz, xy cos yz). b) A derivada direcional é ( D u f (x, y, z) = 3 1 ) 3 = 6 2.

20 Exemplo 9 Suponha que a temperatura no ponto (x, y, z) do espaço seja dada por 80 T (x, y, z) = 1 + x 2 + 2y 2 + 3z 2, em que T é medida em graus Celsius e x, y e z em metros. Em que direção no ponto (1, 1, 2) a temperatura aumenta mais rapidamente? Qual é a taxa máxima de aumento?

21 Exemplo 9 Suponha que a temperatura no ponto (x, y, z) do espaço seja dada por 80 T (x, y, z) = 1 + x 2 + 2y 2 + 3z 2, em que T é medida em graus Celsius e x, y e z em metros. Em que direção no ponto (1, 1, 2) a temperatura aumenta mais rapidamente? Qual é a taxa máxima de aumento? Resposta: A temperatura aumenta mais rapidamente na direção i 2j + 6k e a taxa de aumento é o C/m. 8

22 Exemplo 10 Determine as equações do plano tangente e da reta normal no ponto ( 2, 1, 3) ao elipsoide x y 2 + z2 9 = 3.

23 Exemplo 10 Determine as equações do plano tangente e da reta normal no ponto ( 2, 1, 3) ao elipsoide x y 2 + z2 9 = 3. Resposta: A equação do plano tangente é 3x 6y + 2z + 18 = 0. As equações simétricas da reta normal são x 2 1 = y 1 2 = z

Aula 19 Teorema Fundamental das Integrais de Linha

Aula 19 Teorema Fundamental das Integrais de Linha Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.6 Derivadas Direcionais e o Vetor Gradiente Nesta seção, vamos aprender como encontrar: As taxas de variação de uma função de duas ou mais variáveis

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 1. Fazer exercícios 1, 4, 5, 7, 8, 9 da seção 8.4.4 pgs 186, 187 do livro

Leia mais

Aula 9 Plano tangente, diferencial e gradiente

Aula 9 Plano tangente, diferencial e gradiente MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Seleção 2015 - Edital N 15/2014

Seleção 2015 - Edital N 15/2014 Departamento de Áreas Acadêmicas II Curso de Especialização em Matemática Seleção 015 - Edital N 15/014 INSTRUÇÕES: 1. O horário da realização da prova é previsto de 14h00min até as 17h30min.. A prova

Leia mais

Aula 16 Mudança de Variável em Integrais Múltiplas

Aula 16 Mudança de Variável em Integrais Múltiplas Aula 16 Mudança de Variável em Integrais Múltiplas MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS GRUPO Educação adistância Caderno de Estudos EQUAÇÕES DIFERENCIAIS Prof. Ruy Piehowiak Editora UNIASSELVI 2012 NEAD Copyright Editora UNIASSELVI 2012 Elaboração: Prof. Ruy Piehowiak Revisão, Diagramação

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241 Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo Curitiba, 1 de Dezembro de 005 1. A posição de uma particula é dada por: r(t) = (sen t)i+(cost)j

Leia mais

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II 1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01

CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01 CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01 1) Seja f = 36 9x 2 4y 2. Então : (a) Calcule f, f(2, 0) e

Leia mais

Notas Para um Curso de Cálculo. Daniel V. Tausk

Notas Para um Curso de Cálculo. Daniel V. Tausk Notas Para um Curso de Cálculo Avançado Daniel V. Tausk Sumário Capítulo 1. Diferenciação... 1 1.1. Notação em Cálculo Diferencial... 1 1.2. Funções Diferenciáveis... 8 Exercícios para o Capítulo 1...

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta.

(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta. UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta Lista de Exercícios de Cálculo II - MTM13 Prof. Júlio César do Espírito Santo (com colaboraçao

Leia mais

Resumo de Aulas Teóricas de Análise Matemática II. Rui Albuquerque Universidade de Évora 2011/2012

Resumo de Aulas Teóricas de Análise Matemática II. Rui Albuquerque Universidade de Évora 2011/2012 1 Resumo de Aulas Teóricas de Análise Matemática II Rui Albuquerque Universidade de Évora 2011/2012 Aula 1 O espaço euclideano R n : Espaço vectorial, espaço de pontos, vectores a = (a 1,..., a n ), x

Leia mais

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície: Capítulo 3 Integrais de superfícies 3.1 Superfícies no espaço Definição 3.1 Uma superfície S no espaço é definida como sendo a imagem de uma aplicação contínua r : K R R 3, (u, v) K 7 r (u, v) =(x (u,

Leia mais

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3 1 Lista 2 de Cálculo Diferencial e Integral II Funções de Várias Variáveis e Diferenciação Parcial 1. Determine, descreva e represente geometricamente o domínio das funções abaixo: (a) f(x, y) = xy 5 x

Leia mais

Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C

Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C Notas de Aulas de Cálculo III Prof. Sandro Rodrigues Mazorche 1 o semestre de 2015 Turmas: A e C Capítulo 4: Campos Escalares e Vetoriais Campo Escalar: Seja D uma região no espaço tridimensional e seja

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

Campos Vetoriais e Integrais de Linha

Campos Vetoriais e Integrais de Linha Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

Introdução aos Modelos Biomatemáticos - aulas

Introdução aos Modelos Biomatemáticos - aulas Introdução aos Modelos Biomatemáticos - aulas Teórico-Práticas Mestrado em BBC, 2008/2009 1 Capítulo 1 Nos exercícios 1) e 2) suponha que o crescimento é exponencial. 1. Entre 1700 e 1800 a população humana

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

Cálculo Diferencial e Integral III - EAD. Professor Paulo Cupertino de Lima

Cálculo Diferencial e Integral III - EAD. Professor Paulo Cupertino de Lima Cálculo Diferencial e Integral III - EAD Professor Paulo Cupertino de Lima Sumário Sumário i 0.1 Apresentação do livro............................. v 1 Revisão: retas, planos, superfícies cilíndricas

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

FICHA DE TRABALHO 6 - RESOLUÇÃO

FICHA DE TRABALHO 6 - RESOLUÇÃO ecção de Álgebra e Análise, Departamento de Matemática, Instituto uperior Técnico Análise Matemática III A - 1 o semestre de 23/4 FIHA DE TRABALHO 6 - REOLUÇÃO 1) Indique se as formas diferenciais seguintes

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Óptica Geométrica: Óptica de raios com matrizes

Óptica Geométrica: Óptica de raios com matrizes Óptica 0/007 UFRJ - IF Prof. Paulo H. S. Ribeiro Óptica Geométrica: Óptica de raios com matrizes Aula 4 Adriano Henrique de Oliveira Aragão Sumário Ótica Geométrica: postulados Princípio de Fermat A equação

Leia mais

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. Dirce Uesu Pesco 29/01/2013

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. Dirce Uesu Pesco 29/01/2013 GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA Dirce Uesu Pesco 29/01/2013 I) Dados um ponto do plano e vetor normal ao plano; II) III) Dados um ponto do plano e dois vetores paralelos

Leia mais

MAT2454 - Cálculo Diferencial e Integral para Engenharia II

MAT2454 - Cálculo Diferencial e Integral para Engenharia II MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine

Leia mais

3.4 Movimento ao longo de uma curva no espaço (parte segunda)

3.4 Movimento ao longo de uma curva no espaço (parte segunda) 3.4-17 3.4 Movimento ao longo de uma curva no espaço (parte segunda) 3.4.4 Mais exemplos sobre curvas no espaço. No parágrafo anterior discutimos os elementos que entram na descrição de uma trajetória

Leia mais

utilizando o software geogebra no ensino de certos conteúdos matemáticos

utilizando o software geogebra no ensino de certos conteúdos matemáticos V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a 22 de outubro de 2010 utilizando o software geogebra no ensino de certos conteúdos matemáticos ermínia de

Leia mais

II Cálculo Integral em R n

II Cálculo Integral em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de omputadores Ano Lectivo 2/22 2 o emestre Exercícios propostos para as aulas práticas II álculo Integral em R n Departamento de

Leia mais

Uma e.d.o. de segunda ordem é da forma

Uma e.d.o. de segunda ordem é da forma Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear

Leia mais

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO). LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO. PROFESSOR: RICARDO SÁ EARP OBS: Faça os exercícios sobre

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

Exercícios Resolvidos Integrais de Linha. Teorema de Green

Exercícios Resolvidos Integrais de Linha. Teorema de Green Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo

Leia mais

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita)

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita) O ampo Magnético Os primeiros registros de campos magnéticos foram feitos pelos gregos quando descobriram a quase 6 anos A.. uma pedra que tinha a propriedade de atrair metais Esta pedra, mais precisamente

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 28/06/2015 Física

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

FUNDAÇÃO EDUCACIONAL UNIFICADA CAMPOGRANDENSE (FEUC) FACULDADES INTEGRADAS CAMPO-GRANDENSES (FIC) COORDENAÇÃO DE MATEMÁTICA

FUNDAÇÃO EDUCACIONAL UNIFICADA CAMPOGRANDENSE (FEUC) FACULDADES INTEGRADAS CAMPO-GRANDENSES (FIC) COORDENAÇÃO DE MATEMÁTICA E N A D E 005 LICENCIATURA MATEMÁTICA QUESTÕES RESOLVIDAS I N T R O D U Ç Ã O Estamos apresentando a prova do ENADE aplicada em 005 para os cursos de Licenciatura em Matemática. Este trabalho tem o objetivo

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Planificação 2015/2016

Planificação 2015/2016 Planificação 2015/2016 ENSINO SECUNDÁRIO PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA A 11º ANO DE ESCOLARIDADE CONTEÚDOS PROGRAMÁTICOS GEOMETRIA NO PLANO E NO ESPAÇO II 1-Resolução de Problemas Envolvendo

Leia mais

Uma introdução ao estudo de funções multivariáveis

Uma introdução ao estudo de funções multivariáveis Uma introdução ao estudo de funções multivariáveis Universidade Federal do Amazonas Instituto de Educação, Agricultura e Ambiente Janeiro de 2014 Bem-vindo Este material trata da introdução ao estudo de

Leia mais

CURSO DE CÁLCULO INTEGRAIS

CURSO DE CÁLCULO INTEGRAIS CURSO DE CÁLCULO MÓDULO 4 INTEGRAIS SUMÁRIO Unidade 1- Integrais 1.1- Introdução 1.2- Integral Indefinida 1.3- Propriedades da Integral Indefinida 1.4- Algumas Integrais Imediatas 1.5- Exercícios para

Leia mais

A derivada (continuação) Aula 17

A derivada (continuação) Aula 17 A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema

Leia mais

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3 Integral de linha de campo vectorial Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com t [a, b]. e F : Dom( F ) R 3 R 3 F = (F 1, F 2, F 3 ) um campo vectorial contínuo cujo Dom( F ) contem todos

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici 8 C U RVA S 8.1 parametrização de curvas No Capítulo 3 estudamos as equações de uma reta no espaço e vimos que tal entidade geométrica pode ser representada pelas equações paramétricas: x r : z = a+v 1

Leia mais

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013)

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013) I N T E G R A L ac C Á L C U L O Prof. ADRIANO CATTAI 03 Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013) NOME: DATA: / / Não há ciência que fale das harmonias da natureza

Leia mais

Lista de Exercícios - Integrais

Lista de Exercícios - Integrais Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Um modelo para evolução de HIV positivo para populações em doença plenamente manifesta com parâmetros fuzzy correlacionados.

Um modelo para evolução de HIV positivo para populações em doença plenamente manifesta com parâmetros fuzzy correlacionados. Biomatemática 22 (2012), 27 44 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP Um modelo para evolução de HIV positivo para populações em doença plenamente manifesta com parâmetros

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

4.6 Campos de vetores gradientes

4.6 Campos de vetores gradientes 4.6-1 4.6 Campos de vetores gradientes Nesta seção vamos ver porque campos vetoriais de força independentes do caminho são também chamados conservativos. Pois, resulta: quando uma partícula se move sob

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

Aula 25 Teorema do Divergente

Aula 25 Teorema do Divergente Aula 25 Teorema do Divergente MA211 - Cálculo II Marcos duardo Valle Departamento de Matemática Aplicada Instituto de Matemática, statística e Computação Científica Universidade stadual de Campinas Introdução

Leia mais

Capítulo 3 Sistemas de Controle com Realimentação

Capítulo 3 Sistemas de Controle com Realimentação Capítulo 3 Sistemas de Controle com Realimentação Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Sistemas de Controle com

Leia mais

Universidade Federal do Paraná. Setor de Ciências Exatas. Departamento de Matemática

Universidade Federal do Paraná. Setor de Ciências Exatas. Departamento de Matemática Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática Oficina de Calculadora PIBID Matemática Grupo do Laboratório de Ensino de Matemática Curitiba Agosto de 2013 Duração:

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Cálculo Diferencial e Integral II Claudio Aguinaldo Buzzi Departamento de Matemática UNESP - Campus de São José do Rio Preto Índice 1 Superfícies especiais 4 1.1 Planos........................................

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS NOTAS DE AULA RICARDO ROSA MESTRADO EM MATEMÁTICA APLICADA / IM-UFRJ 1997/2, 2000/2, 2002/1, 2004/1, 2005/1

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS NOTAS DE AULA RICARDO ROSA MESTRADO EM MATEMÁTICA APLICADA / IM-UFRJ 1997/2, 2000/2, 2002/1, 2004/1, 2005/1 EQUAÇÕES DIFERENCIAIS ORDINÁRIAS E INTRODUÇÃO AOS SISTEMAS DINÂMICOS NOTAS DE AULA RICARDO ROSA MESTRADO EM MATEMÁTICA APLICADA / IM-UFRJ 1997/2, 2000/2, 2002/1, 2004/1, 2005/1 1 2 Conteúdo 1. Introdução

Leia mais

Derivação Implícita e Taxas Relacionadas

Derivação Implícita e Taxas Relacionadas Capítulo 14 Derivação Implícita e Taxas Relacionadas 14.1 Introdução A maioria das funções com as quais trabalhamos até agora é da forma y = f(x), em que y é dado diretamente ou, explicitamente, por meio

Leia mais

1 A Integral por Partes

1 A Integral por Partes Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,

Leia mais

PARTE 10 REGRA DA CADEIA

PARTE 10 REGRA DA CADEIA PARTE 10 REGRA DA CADEIA 10.1 Introdução Em Cálculo 1A, quando queríamos derivar a função h(x = (x 2 3x + 2 37, fazíamos uso da regra da cadeia, que é uma das mais importantes regras de derivação e nos

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) (IV) Derivadas Parciais; Plano Tangente; Diferenciabilidade; Regra da Cadeia. (I) Derivadas Parciais Uma derivada

Leia mais

Comprimentos de Curvas e Coordenadas Polares Aula 38

Comprimentos de Curvas e Coordenadas Polares Aula 38 Comprimentos de Curvas e Coordenadas Polares Aula 38 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

Exercícios de Cálculo Diferencial e Integral de Funções Definidas em R n. Diogo Aguiar Gomes, João Palhoto Matos e João Paulo Santos

Exercícios de Cálculo Diferencial e Integral de Funções Definidas em R n. Diogo Aguiar Gomes, João Palhoto Matos e João Paulo Santos Exercícios de Cálculo Diferencial e Integral de Funções Definidas em R n Diogo Aguiar Gomes, João Palhoto Matos e João Paulo Santos 24 de Janeiro de 2000 2 Conteúdo 1 Introdução 5 1.1 Explicação.........................................

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL Cálculo Álgebra Linear Programação Computacional Metodologia Científica Realização: Fortaleza, Fevereiro/2012 UNIVERSIDADE

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

6. Aplicações da Derivada

6. Aplicações da Derivada 6 Aplicações da Derivada 6 Retas tangentes e normais - eemplos Encontre a equação da reta tangente e da normal ao gráfico de f () e, em 0 Represente geometricamente Solução: Sabemos que a equação da reta

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

RAIOS E FRENTES DE ONDA

RAIOS E FRENTES DE ONDA RAIOS E FRENTES DE ONDA 17. 1, ONDAS SONORAS ONDAS SONORAS SÃO ONDAS DE PRESSÃO 1 ONDAS SONORAS s Onda sonora harmônica progressiva Deslocamento das partículas do ar: s (x,t) s( x, t) = s cos( kx ωt) m

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π MAT 2455 álculo Diferencial e Integral para Engenharia III Prova 2 14/5/213 Turma A Questão 1. a) 1, ponto) Um o tem o formato da curva {x, y) R 2 : x 2) 2 + y 2 = 4, y }. Se sua densidade de massa é dada

Leia mais

INTRODUÇÃO À ENGENHARIA

INTRODUÇÃO À ENGENHARIA INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação

Leia mais